REFERENCES
Arenson, L.U., Hauck, C., Hilbich, C., Seward, L., Yamato, Y., &
Springman, S. (2010). Sub-surface Heterogeneities in the Murtèl –
Corvatsch Rock Glacier, Switzerland. In: Canadian Geotechnical Society
(eds.): Proceedings of the joint 63rd Canadian Geotechnical Conference
and the 6th Canadian Permafrost Conference. Calgary, Alberta, S.
1494–1500.
Azócar, G.F., & Brenning, A. (2010). Hydrological and geomorphological
significance of rock glaciers in the dry Andes, Chile (27◦–33◦S).
Permafrost and Periglacial Processes, 21(1), 42–53.
https://doi.org/10.1002/ppp.669
Barsch, D. (1996). Rockglaciers: Indicators for the Present and Former
Geoecology in High Mountain Environments. Springer Series in Physical
Environment, vol. 16. Springer, Berlin (1996).
Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola,
E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald,
H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C.,
Morán-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A.,
Six, D., Stötter, J., Strasser, U., Terzago, S., & Vincent, C. (2018).
The European mountain cryosphere: a review of its current state, trends,
and future challenges. The Cryosphere, 12, 759–794.
https://doi.org/10.5194/tc-12-759-2018
Berger, J., Krainer, K., & Mostler, W. (2004). Dynamics of an active
rock glacier (Ötztal Alps, Austria). Quaternary Research, 62(3),
233–242. https://doi.org/10.1016/j.yqres.2004.07.002
Berthling, I. (2011). Beyond confusion: Rock glaciers as
cryo-conditioned landforms. Geomorphology, 131, 98–106.
https://doi.org/10.1016/j.geomorph.2011.05.002
Brighenti, S., Tolotti, M., Bruno M.C., Warthon, G., Pusch, M.T., &
Bertoldi, W. (2019). Ecosystem shifts in Alpine streams under glacier
retreat and rock glacier thaw: A review. Science of the Total
Environment 675, 542–559.
https://doi.org/10.1016/j.scitotenv.2019.04.221
Buchli, T., Merz, K., Zhou, X., Kinzelbach, W., & Springman, S. (2013).
Characterization and Monitoring of the Fuggwanghorn Rock Glacier,
Turtmann Valley, Switzerland: Results from 2010 to 2012. Vadose Zone
Journal 12(1). https://doi.org/10.2136/vzj2012.0067
Buckel, J., & Otto, J-C. (2018). The Austrian glacier inventory GI 4
(2015) in ArcGis (shapefile) format. Pangaea,
https://doi.org/10.1594/PANGAEA.887415. PANGAEA supplement to:
Buckel, Johannes; Otto, Jan-Christoph; Prasicek, Günther; & Keuschnig,
Markus (2018): Glacial lakes in Austria - Distribution and formation
since the Little Ice Age. Global and Planetary Change, 164, 39–51
Chen J, & Ohmura, A. (1990). Estimation of Alpine glacier water
resources and their change since the 1870s. In Hydrology in Mountainous
Regions, I – Hydrological Measurements; the Water Cycle, Proceedings of
two Lausanne Symposia, August 1990, Lang H, Musy A (eds). IAHS Press:
Wallingford, Oxfordshire, UK 193, 127–135.
Colombo, N., Salerno, F., Gruber, S., Freppaz, M., Williams, M.,
Fratianni, S., & Giardino, M. (2018). Review: impacts of permafrost
degradation on inorganic chemistry of surface fresh water. Global and
Planetary Change, 162, 69–83.
https://doi.org/10.1016/j.gloplacha.2017.11.017.
Cuffey, K. M., & Paterson, W. S. B. (2010). The Physics of Glaciers.
4th ed. Elsevier Butterworth Heinemann, Burlington,
MA.
Fischer, A., Seiser, B., Stocker-Waldhuber, M., Mitterer, C., &
Abermann, J. (2015). In: Fischer, A. (Ed.), The Austrian Glacier
Inventories GI 1 (1969), GI 2 (1998), GI 3 (2006), and GI LIA in ArcGIS
(Shapefile) Format. PANGAEA; Supplement to: Fischer, Andrea; Seiser,
Bernd; Stocker-Waldhuber, Martin; Mitterer, Christian; & Abermann,
Jakob (2015): Tracing glacier changes in Austria from the Little Ice Age
to the present using a lidar-based high-resolution glacier inventory in
Austria. https://doi.org/10.1594/PANGAEA.844988.
Giardino, J.R., Vitek, J.D., & Demorett, J.L. (1992). A model of water
movement in rock glaciers and associated water characteristics. In:
Dixon, J.C., Abrahams, A.D. (Eds.): Periglacial Geomorphology. Wiley,
Chichester, pp. 159–184.
Groh, T., & Blöthe, J.H. (2019). Rock glacier kinematics in the
Kaunertal, Ötztal Alps, Austria. Geosciences, 9, 373.
https://doi.org/10.3390/geosciences9090373
Haeberli, W. (1985). Creep of mountain permafrost. Internal structure
and flow of alpine rock glaciers. Mitteilungen der Versuchsanstalt für
Wasserbau, Hydrologie und Glaziologie der ETH Zürich, 77. Eidgenössische
Technische Hochschule, Zürich.
Harrington, J.S., Mozil, A., Hayashi, M., Bentley, L.R. (2018).
Groundwater flow and storage processes in an inactive rock glacier.
Hydrological Processes, 32, 3070–3088.
https://doi.org/10.1002/hyp.13248
Hausmann, H., Krainer, K., Brückl, E., & Mostler, W. (2007). Internal
structure and ice content of Reichenkar Rock Glacier (Stubai Alps,
Austria) assessed by geophysical investigations. Permafrost and
Periglacial Processes, 18, 351–367. https://doi.org/10.1002/ppp.601
Hausmann, H., Krainer, K., Brückl, E., & Ullrich, C. (2012). Internal
structure, ice content and dynamics of Ölgrube and Kaiserberg rock
glaciers (Ötztal Alps, Austria) determined from geophysical surveys.
Austrian Journal of Earth Sciences 105(2), 12–31.
Hayashi, M. (2020). Alpine Hydrogeology: The Critical Role of
Groundwater in Sourcing the Headwaters of the World. Groundwater, 58(4),
498–510. https://doi.org/10.1111/gwat.12965
Heigert, K. (2018). Speicherverhalten und Abflussdynamik aktiver
Blockgletscher am Beispiel „Ölgrube Süd“, Kaunertal [storage and
discharge dynamics of active rock glaciers, example „Ölgrube Süd“,
Kaunertal valley]. Beiträge zur Hydrogeolgie, 62, 33–42.
Hoinkes, G., & Thoni, M. (1993). Evolution of the Ötztal-Stubai,
Scarl-Campo and Ulten basement units. In: von Raumer, J.F., Neubauer, F.
(eds.) Pre-Mesozoic Geology in the Alps, pp. 485–494. Springer, Berlin,
Heidelberg
Jones, D.B., Harrison, S., Anderson, K., Selley, H.L., Wood, J.L., &
Betts, R.A. (2018). The distribution and hydrological significance of
rock glaciers in the Nepalese Himalaya. Global and Planetary Change,
160, 123–142. https://doi.org/10.1016/j.gloplacha.2017.11.005
Jones, D. B., Harrison, S., Anderson, K., & Whalley, W. B. (2019). Rock
glaciers and mountain hydrology. A review. Earth-Science Reviews, 193,
66–90. https://doi.org/10.1016/j.earscirev.2019.04.001
Klemes, V. (1986). Operational testing of hydrological simulation
models. Hydrological Sciences, 31(1), 13–24.
https://doi.org/10.1080/02626668609491024
Krainer, K., & Mostler, W. (2002). Hydrogeology of active rock
glaciers: Examples from the Austrian Alps. Arctic, Antarctic and Alpine
Research, 34(2), 142–149.
https://doi.org/10.1080/15230430.2002.12003478
Krainer, K., & Mostler, W. (2006). Flow velocities of active rock
glaciers in the Austrian Alps. Geografiska Annaler: Series A, Physical
Geography, 88, 267–280.
https://doi.org/10.1111/j.0435-3676.2006.00300.x
Krainer, K., Mostler, W., & Spötl, C. (2007). Discharge from active
rock glaciers, Austrian Alps; a stable isotope approach. Austrian
Journal of Earth Sciences, 100, 102–112.
Krainer, K., Bressan, D., Dietre, B., Haas, J. N., Hajdas, I., Lang, K.,
Mair, V., Nickus, U., Reidl, D., Thies, H., & Tonidandel, D. (2015). A
10,300-year-old permafrost core from the active rock glacier Lazaun,
southern Ötztal Alps (South Tyrol, northern Italy). Quaternary
Research, 83(2), 324–335. https://doi.org/10.1016/j.yqres.2014.12.005
Kreft, A., & Zuber, A. (1978). On the physical meaning of the
dispersion equation and its solutions for different initial and boundary
conditions. Chemical Engineering Science, 33(11), 1471–1480.
https://doi.org/10.1016/0009-2509(78)85196-3
Kuhn, M., Kuhn M., Dreiseitl E., & Emprechtinger M. (2013). Temperatur
und Niederschlag an der Wetterstation Obergurgl, 1953-2011. In Koch,
E.M. Erschbamer, B. (eds.): Klima, Wetter, Gletscher im Wandel.
Innsbruck university press (Alpine Forschungsstelle Obergurgl, 3), ISBN
978-3-902811-89, 9, 11–30.
Maillet, E. (1905). Essais d’hydraulique souterraine et fluviale.
Librairie Scientifique A. Hermann, Paris
Mouelhi, S., Michel, C., Perrin, C., & Andréassian, V. (2006). Stepwise
development of a two-parameter monthly water balance model. Journal of
Hydrology, 318, 200–214. https://doi.org/10.1016/j.jhydrol.2005.06.014
Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through
conceptual models. Part I – A discussion of principles. Journal of
Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6
Nepal, S., Chen, J., Penton D.J., Neumann, L.E., Zheng, H., & Wahid, S.
(2017). Spatial GR4J conceptualization of the Tamor glaciated alpine
catchment in Eastern Nepal: evaluation of GR4JSG against streamflow and
MODIS snow extent. Hydrological Processes, 31, 51–68.
https://doi.org/10.1002/hyp.10962
Pauritsch, M., Birk, S., Wagner, T., Hergarten, S. & Winkler, G.
(2015). Analytical approximations of discharge recessions for steeply
sloping aquifers in alpine catchments. Water Resources Research, 51,
8729–8740. https://doi.org/10.1002/2015WR017749
Pauritsch, M., Wagner, T., Winkler, G. & Birk, S. (2017). Investigating
groundwater flow components in an Alpine relict rock glacier (Austria)
using a numerical model. Hydrogeology Journal, 25, 371–383.
https://doi.org/10.1007/s10040-016-1484-x
Posavec, K., Giacopetti, M., Materazzi, M., & Birk, S. (2017). Method
and Excel VBA algorithm for modeling master recession curve using
trigonometry approach. Groundwater, 55(6), 891–898.
https://doi.org/10.1111/gwat.12549
Rogger, M., Chirico, G.B., Hausmann, H., Krainer, K., Brückl, E.,
Stadler, P., & Blöschl, G. (2017). Impact of mountain permafrost on
flow path and runoff response in a high alpine catchment. Water
Resources Research, 53, 1288–1308. https://doi.org/10.1002/2016WR019341
Schnegg, P.-A. (2002). An inexpensive field fluorometer for
hydrogeological tracer tests with three tracers and turbidity
measurement. XXXII IAH & ALHSUD Congress Groundwater and Human
Development. Balkema, Mar del Plata, Argentina, pp. 1484–1488.
Shannon, S., Smith, R., Wiltshire, A., Payne, T., Huss, M., Betts, R.,
Caesar, J., Koutroulis, A., Jones, D., & Harrison, S. (2019). Global
glacier volume projections under high-end climate change scenarios.
Cryosphere, 13, 325–350. https://doi.org/10.5194/tc-13-325-2019
Singh, R., Wagener, T., van Werkhoven, K., Mann, M.E., & Crane, R.
(2011). A trading space-for-time approach to probabilistic continuous
streamflow predictions in a changing climate – accounting for changing
watershed behavior. Hydrology and Earth System Sciences, 15, 3591–3603.
https://doi.org/10.5194/hess-15-3591-2011
Tenthorey, G. (1992). Perennial névés and the hydrology of rock
glaciers. Permafrost and Periglacial Processes, 3(3), 247–252.
https://doi.org/10.1002/ppp.3430030313
Vonder Mühll, D. S. (1993). Geophysikalische Untersuchungen im
Permafrost des Oberengadins [Geophysical investigations of permafrost
in the Upper Engadin]. Doctoral Thesis, Eidgenössische Technische
Hochschule, Zürich.
Wagner, T., Mayaud, C., Benischke, R., & Birk, S. (2013). Ein besseres
Verständnis des Lurbach-Karstsystems durch ein konzeptionelles
Niederschlags-Abfluss-Modell [A better understanding oft he Lurbach
karst system via a conceptional rainfall-runoff model]. Grundwasser,
18, 225–235. https://doi.org/10.1007/s00767-013-0234-4
Wagner, T., Pauritsch, M., & Winkler, G. (2016). Impact of relict rock
glaciers on spring and stream flow of alpine watersheds: Examples of the
Niedere Tauern Range, Eastern Alps (Austria). Austrian Journal of Earth
Sciences, 109(1), 84–98. https://doi.org/10.17738/ajes.2016.0006
Wagner, T., Kainz, S., Wedenig, M., Pleschberger, R., Krainer, K.,
Kellerer-Pirklbauer, A., Ribis, M., Hergarten, S., & Winkler, G.
(2019). Wasserwirtschaftiche Aspekte von Blockgletschern in
Kristallingebieten der Ostalpen – Speicherverhalten, Abflussdynamik und
Hydrochemie mit Schwerpunkt Schwermetallbelastungen (RGHeavyMetal) –
Endbericht. Final report, 158 p.
https://www.bmnt.gv.at/wasser/wasserqualitaet/RG-HeavyMetal.html
Wagner, T., Pauritsch, M., Mayaud, C., Kellerer-Pirklbauer, A.,
Thalheim, F., & Winkler, G. (2019). Controlling factors of microclimate
in blocky surface layers of two nearby relict rock glaciers (Niedere
Tauern Range, Austria). Geografiska Annaler: Series A, Physical
Geography, 101(4), 310–333.
https://doi.org/10.1080/04353676.2019.1670950
Wagner, T., Brodacz, A., Krainer, K., & Winkler, G. (2020a). Active
rock glaciers as shallow groundwater reservoirs, Austrian Alps.
Grundwasser, 25, 215–230. https://doi.org/10.1007/s00767-020-00455-x
Wagner, T., Pleschberger, R., Kainz, S., Ribis, M., Kellerer-Pirklbauer,
A., Krainer, K., Philippitsch, R., & Winkler, G. (2020b). The first
consistent inventory of rock glaciers and their hydrological catchments
of the Austrian Alps. Austrian Journal of Earth Sciences, 113(1), 1–23.
https://doi.org/10.17738/ajes.2020.0001
Wagner, T., Ribis, M., Kellerer-Pirklbauer, A., Krainer, K., & Winkler,
G. (2020c). The Austrian rock glacier inventory RGI_1 and the related
rock glacier catchment inventory RGCI_1 in ArcGis (shapefile) format.
PANGAEA, https://doi.org/10.1594/PANGAEA.921629
Wetzel, K.-F. (2003). Runoff production processes in small alpine
catchments within the unconsolidated Pleistocene sediments of the
Lainbach area (Upper Bavaria). Hydrological Processes, 17, 2463–2483.
https://doi.org/10.1002/hyp.1254
Williams, M.W., Knauf, M., Caine, N., Liu, F., Verplanck, P.L. (2006).
Geochemistry and source waters of rock glacier outflow, Colorado Front
Range. Permafrost and Periglacial Processes, 17, 13–33.
https://doi.org/10.1002/ppp.535
Winkler, G., Wagner, T., Pauritsch, M., Birk, S., Kellerer-Pirklbauer,
A., Benischke, R., Leis, A., Morawetz, R., Schreilechner, M.G., &
Hergarten S. (2016). Identification and assessment of groundwater flow
and storage components of the relict Schöneben Rock Glacier, Niedere
Tauern Range, Eastern Alps (Austria). Hydrogeology Journal, 24,
937–953. https://doi.org/10.1007/s10040-015-1348-9
Winkler, G., Wagner, T., Krainer, K., Ribis, M., & Hergarten, S.
(2018). Hydrogeology of Rock Glaciers – Storage Capacity and Drainage
Dynamics – an Overview. In: Sychev, V.G., & Mueller, L., Novel methods
and results of landscape research in Europe, Central Asia and Siberia,
Vol II/71, 329–334.
Zenklusen Mutter, E., & Phillips, M. (2012). Thermal evidence of recent
talik formation in Ritigraben rock glacier: Swiss Alps. In K. M. Hinkel
(Ed.), Resources and risks of permafrost areas in a changing world.
Proceedings. Vol. 1: international contributions (pp. 479-483). The
Northern Publisher.
Zurawek, R. (2002). Internal structure of a relict rock glacier, Sleza
Massif, southwest Poland. Permafrost and Periglacial Processes, 13,
29–42.
https://doi.org/10.1002/ppp.403