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Abstract

In this paper, we consider approximate solutions (also called ε-solutions) for semi-infinite op-

timization problems that objective function and constraint functions with uncertainty data are all

convex, and establish robust counterpart of convex semi-infinite program and then consider approx-

imate solutions for its. Moreover, the robust necessary condition and robust sufficient theorems are

obtained. Then the duality results of the Lagrangian dual approximate solution is given by the robust

optimization approach under a cone constraint qualification.
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1 Introduction

Focus on the convex semi-infinite programming (CSIP) as follows:

(CSIP) minw(x)

s. t. h′t(x) ≤ 0,∀t ∈ T,
(1)

where w : Rn → R, and h′t : Rn → R, t ∈ T, are convex and continuous functions, and T is an infinite

set. When w(x), h′t(x) are all linear function, we call its as linear semi-infinite programming.

Dual theory plays an important role in the study of semi-infinite programming problems. Goberna [1]

summarizes the 2000 publication on semi-infinite linear C (SILP), which aims to identify the most active

research areas, major trends in applications. In each chapter of [2] contains detailed bibliographical

introduction on (SILP) and extensions. Goberna [2] devoted to model-building by means of primal and

dual (SILP) problems. The research on (SILP) duality is discussed the dual problems of convex semi-

infinite case in [3, 4]. Semi-infinite programming traditionally assumes certain information. In real life,

the information of optimization problems sometimes are uncertain, wrong or lacking, so it is important

to discuss the dual problem under uncertain set.

Ben-Tal and Nemirovski et al. [5] propose a deterministic framework for the study of mathematical

programming under uncertain data. The robust optimization methods for linear programming problems

and convex optimization problems under data uncertainties are discussed successfully by El Ghaoui

[6]. Consider as the data uncertainty, Goberna [7] using robust duality theory to work out convex

programming problems. The research on the robust correspondence between dual problems and uncertain
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convex programming [8] shows that the value of the robust counterpart of primal problem is equal to the

value of the optimistic counterpart of the dual primal (i. e. primal worst equals dual best).

Convex programming [9] which the constraint functions are finite with uncertain data can be sum-

marized as follows:

(UCP) minw(x)

s. t. h′i(x, ui) ≤ 0, i = 1, . . . ,m,
(2)

where h′i : Rn ×Rm → R, hi(·, ui) is convex and ui ∈ Ui ⊆ Rm is the uncertain parameter.

In recent years, many scholars have studied the robust convex optimization problem with data un-

certainty. A selection problem of robust convex optimization is proposed in [10]. For (UCP) with data

uncertainty considers robust counterpart and an optimistic counterpart. Jeyakumar and Li [11] prove

that Lagrangian strong duality theorem, and then give a new robust characteristic cone, and give the

necessary and sufficient conditions for the existence of strong duality. The optimistic correspondence is

proposed by [12]. Sun et al. [13] studies the robust quasi-approximate optimal solution for a class of

nonsmooth semi-infinite programming with uncertain data.

Lee and Lee [14] think about the approximate solution to robust convex optimization problem, and

establish the duality theorem of Wolfe type dual problem with finite constraint function. Then Lee and

Lee [15] give the ε- solution of the robust semi-infinite optimization problem. Under the closed convex

cone, an approximate weak duality theorem and a strong duality theorem for the original problem and

its Wolfe dual problem are established. Then, Zeng et al. [16] present some modified robust solutions for

fractional (SIP) with uncertain information. Lagrangian dual with finite constraints is studied in existing

literature [11], it shows strong dual holds (i. e. ε = 0) under the robust characteristic cone as following:

M =
⋃

ui∈Ui,λi≥0

epi(

m∑
i=1

λihi(·, ui))∗,

where M is closed and convex, and (

m∑
i=1

λihi(·, ui))∗ denotes the conjugate function of (

m∑
i=1

λihi(·, ui)).

With uncertain constraint conditions (CSIP), can be summarized as follows:

(UCSIP) minw(x)

s. t. ht(x, ut) ≤ 0,∀t ∈ T,
(3)

where for any t ∈ T, ht : Rn × Rm → R, are continuous convex functions, and ut ∈ Rm is an uncertain

parameter, which belong to some convex compact set Ut ⊂ Rm.

Defined the uncertainty set-valued mapping U : T → Rm as U(t) := Ut for all t ∈ T . And u ∈ U
implies that u is an element of U , i. e. , u : T → Rm and ut ∈ Ut for all t ∈ T .

The Lagrangian dual of (UCSIP) is given by

(LDUCSIP) max
λt

inf
x∈Rn

{w(x) +
∑
t∈T

λtht(x, ut)}

s. t. λt ≥ 0,

(4)

The robust counterpart of (UCSIP) can be summarized as follows:

(RCSIP) minw(x)

s. t. ht(x, ut) ≤ 0,∀t ∈ T, ut ∈ Ut.
(5)
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The best possible robust feasible solution is the one that solves the optimization problem (RCSIP) or

which is same with (UCSIP). (RCSIP) is called the robust counterpart of the original uncertain problem

(UCSIP).

Motivated by above, in this paper, we consider approximate solutions (i. e. ε > 0) for robust semi-

infinite convex programming. By using the robust optimization method, the robust necessary condition

and sufficient conclusions of (RCSIP) under closed convex cone constraints are established, denote the

cone Γ as follows:

Γ :=
⋃

ut∈Ut,λt≥0,t∈T

epi

(∑
t∈T

λtht(·, ut)
)∗
. (6)

where (
∑
t∈T

λtht(·, ut))∗ is the conjugate function of (
∑
t∈T

λtht(·, ut)). Moreover, under the closed convex

cone Γ constraint qualification, between the primal problem and Lagrangian dual problem, we prove that

an approximate weak duality result and strong duality theorem are held.

Denote the optimistic counterpart of (LDUCSIP) as follows,

(OLDCSIP) max
λt

inf
x
{w(x) +

∑
t∈T

λtht(x, ut)}

s. t. λt ≥ 0,∀t ∈ T, ut ∈ Ut, x ∈ Rn.
(7)

Denote the Lagrangian dual of the robust counterpart (RCSIP) as follows,

(LDRCSIP) max
λt

inf
x

sup
ut

{w(x) +
∑
t∈T

λtht(x, ut)}

s. t. λt ≥ 0,∀t ∈ T, ut ∈ Ut, x ∈ Rn.
(8)

We kick the approximate weak dual theorem and strong dual theorem of (LDRCSIP) around in section

4. And get the feasible set of (UCSIP) is as follows:

F := {x ∈ Rn|ht(x, ut) ≤ 0,∀t ∈ T, ut ∈ Ut} . (9)

Let ε ≥ 0. We define x̂ as an ε-solution of (RCSIP) if x̂ satisfied

w(x) ≥ w(x̂)− ε,

for any x ∈ F .

The structure of the paper is as following. We introduce some preliminary knowledge and notations

in section 2. Some conditions for the existence are discussed in Section 3. Approximate weak and strong

theorem are given in Section 4. In section 5, we summarize the content of this article.

2 Notations and preliminaries

In order to show our conclusions are given in next section, recall some symbols and preliminary results.

Representation Rn is the n-dimension Euclidean space, denote R+ as the nonnegative quadrant of R,

and denote the graph of set U as gphU := {(t, ut)|ut ∈ Ut, t ∈ T}. Representation clA, coA, and coneA

is the closure, the convex hull, and the conical hull severally. Let w : Rn → R̃ where R̃ is a extended
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real set, denote as R̃ = [−∞,+∞]. Here, if for all x ∈ Rn, w(x) > −∞ and exists x′ ∈ Rn such that

w(x′) ∈ R, then w is said to be proper .

Definition 2.1: δA be the indicator function, if Rn → R ∪ +∞ where A is a closed and convex set,

A ∈ Rn. δA(x) = 0 when x ∈ A, and δA(x) = +∞, when x /∈ A. i. e.

δA(x) :=

 0, ifx ∈ A,

+∞, (otherwise).
(10)

Definition 2.2: The domain of w is domw, dimension domw is as follows

domw := {x ∈ Rn|w(x) < +∞}. (11)

Definition 2.3: Defined the epigraph of a function w : Rn → R ∪+∞, epiw as follows

epiw := {(x, r)T ∈ Rn+1|w(x) ≤ r}. (12)

Definition 2.4: Defined the conjugate function of w as w∗ : Rn → R ∪ {+∞}, for any proper convex

function w on Rn, and for any w∗ ∈ Rn,

w∗(x∗) = sup{〈x∗, x〉 − w(x)|x ∈ Rn}. (13)

Definition 2.5: If for any µ ∈ [0, 1], x, y ∈ Rn,satisfied

w((1− µ)x+ µy) ≤ (1− µ)w(x) + µw(y),

we call w(x) is convex functions.

Then according to Definition 2. 5 epiw is convex. When −w is a convex function, the function w is

a concave function.

The sub-differential of w at x ∈ w is defined by

∂xw(x) := {x∗ ∈ Rn|〈x∗, x̃− x〉 ≤ w(x̃)− w(x),∀x̃ ∈ Rn}. (14)

If x /∈ domw, ∂xw(x) is empty. More generally, for ε ≥ 0, defined the ε-sub-differential of w at

x ∈ domw as follows:

∂εw(x) := {x∗ ∈ Rn|〈x∗, x̃− x〉 ≤ w(x̃)− w(x) + ε, ∀x̃ ∈ Rn}. (15)

For x /∈ domw, ∂xw(x) is empty. We call w is a lower is a lower semi-continuous function if

lim inf
x̃→x

w(x̃) ≥ w(x) (16)

for all x ∈ Rn.
Definition 2.6: [14]For any ε > 0 there exists ρ > 0 such that for all s ∈ T,Us ⊂ Ut + εB where B is a

unit ball in Rm and d(s, t) ≤ ρ where d is the distance on U , then the set-valued mapping U :T → Rm,

where (T, d) is a metric space, called the upper semi-continuous at t ∈ T .

If for any ε > 0 there exists ρ > 0 such that for all s, t ∈ T , Us ⊂ Ut + εB with d(s, t) ≤ ρ, U is called

uniformly upper semi-continuous on T .
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In order to describe the relationship between the ε-sub-differential and the epigraph of a conjugate

function we give following lemma, which plays a key role in the derivation of the main results.

Lemma 2.1: If w is said to be proper, w = {x ∈ Rn|w(x) < +∞} 6= ∅. Let w be a proper lower

semi-continuous convex function, w : Rn → R ∪ {+∞}. Then

epiw∗ =
⋃
ε≥0

{(u, 〈u, ξ〉+ ε− w(ξ)) : ξ ∈ ∂εw(ξ)}. (17)

where ξ ∈ domw.

Lemma 2.2: If domw ∩ domh 6= ∅, let w, h : Rn → R ∪ {+∞}, and w, h be a be a proper lower

semi-continuous convex function, then

epi(w + h)∗ = cl(epiw∗ + epih∗). (18)

Then

epi(w + h)∗ = epiw∗ + epih∗, (19)

where one of the functions w and h is continuous,

Lemma 2.3: Let I is an arbitrary index set, hi : Rn → R ∪ {+∞}, i ∈ I, and hi be a proper lower

semi-continuous convex function. If there exists x′ ∈ Rn such that supi∈Ihi(x
′) < +∞. Then,

epi

(
sup
i∈I

hi

)∗
= cl

(
co
⋃
i∈I

epih∗i

)
. (20)

Lemma 2.4: Let ut ∈ Rm, for any vector x, ht(x, ut) is a convex function, ht : Rn × Rm → R, t ∈ T ,

and ht be continuous functions, then

⋃
ut∈Ut,λt≥0,t∈T

epi

(∑
t∈T

λtht(·, ut)
)∗
. (21)

is called the robust characteristic cone. This cone plays an important role in duality theory of next part.

And following lemma prove cone is convex and closed under certain conditions.

Proof: Let λt = 0, t ∈ T , one observes that

(0, 0)T ∈
⋃

ut∈Ut,λt≥0,t∈T

epi

(∑
t∈T

λtht(·, ut)
)∗
.

Now let λ > 0 and (a, b)T ∈
⋃

ut∈Ut,λt≥0,t∈T

epi

(∑
t∈T

λtht(·, ut)
)∗

.

Then, there exist ut ∈ Ut, αt ≥ 0, t ∈ T , such that (a, b)T ∈ epi

(∑
t∈T

αtht(·, ut)
)∗
.

Let λt = αtλ ≥ 0. Then,

λ(a, b)T ∈ λepi

(∑
t∈T

αtht(·, ut)
)∗

= epi

(∑
t∈T

λtht(·, ut)
)∗
⊆

⋃
ut∈Ut,λt≥0,t∈T

epi

(∑
t∈T

λtht(·, ut)
)∗
.

Hence,
⋃

ut∈Ut,λt≥0,t∈T

epi

(∑
t∈T

λtht(·, ut)
)∗

is a cone.
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Generally speaking, without the condition that ht(x, ut) is a convex function most robust characteristic

cone is not a convex cone .

We next illustrate that convexity of the robust characteristic cone under the concavity of h(x, ·) and

the convexity of Ut.

Lemma 2.5: Let ht : Rn × Rm → R, t ∈ T , and ht be continuous functions. Assume that for every

Ut ⊆ Rm, is convex, for every ut ∈ Rm, t ∈ T, ht(·, ut) be convex, ht(x, ·) is concave on Ut, for any x ∈ Rn.
Then

Γ =
⋃

ut∈Ut,λt≥0,t∈T

epi

(∑
t∈T

λtht(·, ut)
)∗
. (22)

is convex.

Proof: In order to proof its convex, let (ai, bi)
T ∈ Γ, i = 1, 2, and µ ∈ [0, 1]. In order to illustrate Γ is

convex, we now prove that (µa1 + (1− µ)a2, µb1 + (1− µ)b2)T ∈ Γ.Obviously, Γ is a cone, µ(a1, b1)T ∈ Γ

and (1 − µ)(a2, b2)T ∈ Γ. So for each i = 1, 2, there exist u1t ∈ Ut, t ∈ T, for each i = 1, 2, there exist

λ1t , λ
2
t ≥ 0 such that

µ(a1, b1)T ∈ epi

(∑
t∈T

λ1tht(·, u1t )
)∗
,

(1− µ)(a2, b2)T ∈ epi

(∑
t∈T

λ2tht(·, u2t )
)∗ (23)

According to the definition of epiw, that we have(∑
t∈T

λ1tht(·, u1t )
)∗

(µa1) +

(∑
t∈T

λ2tht(·, u2t )
)∗

((1− µ)a2) ≤ µb1 + (1− µ)b2 (24)

Next, as t ∈ T ,

λt := µλ1t + (1− µ)λ2t (25)

ut :=


u1t , ifλt = 0,

µλ1t
λt

u1t +
(1− µ)λ2t

λt
u2t , ifλt > 0.

(26)

If λt = 0, then λ1t = λ2t = 0, so

µλ1tht(x, u
1
t ) + (1− µ)λ2tht(x, u

2
t ) = λtht(x, ut) (27)

If λt 6= 0, then suppose that λt > 0, then,

µλ1tht(x, u
1
t ) + (1− µ)λ2tht(x, u

2
t ) = λt

(
µλ1t
λt

ht(x, u
1
t ) +

(1− µ)λ2t
λt

ht(x, u
2
t )

)
≤ λtht

(
x,
µλ1t
λt

u1t +
(1− µ)λ2t

λt
u2t

)
= λtht(x, ut),∀t ∈ T.

(28)
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According to the definition of concave function the second inequality holds. By (24), we have

µb1 + (1− µ)b2 ≥
(∑
t∈T

λ1tht(·, u1t )
)∗

(µa1) +

(∑
t∈T

λ2tht(·, u2t )
)∗

((1− µ)a2)

= sup
x∈Rn

{
〈µa1, x〉 −

∑
t∈T

λ1tht(x, u
1
t )

}
+ sup
x∈Rn

{
〈(1− µ)a2, x〉 −

∑
t∈T

λ2tht(x, u
2
t )

}
≥ sup
x∈Rn

{
〈µa1 + (1− µ)a2, x〉 −

∑
t∈T

(λ1tht(x, u
1
t ) + λ2tht(x, u

2
t ))

}
≥ sup
x∈Rn

{
〈µa1 + (1− µ)a2, x〉 −

∑
t∈T

(λ1tht(x, ut)

}

=

(∑
t∈T

λtht(·, ut)
)∗

(µa1 + (1− µ)a2),

(29)

where because of the definition of 2.3, the second equality holds, and the fourth inequality holds by (24).

So (µa1 + (1− µ)a2, µb1 + (1− µ)b2)T ∈ Γ.

Lemma 2.6: Let ht: R
n × Rm → R, t ∈ T, be continuous convex functions, such that for each ut ∈

Rm, ht(·, ut) is convex. Suppose that each Ut is convex and compact, there exists x ∈ Rn such that

ht(x, ut) < 0,∀ut ∈ Ut, t ∈ T (30)

And,

Γ =
⋃

ut∈Ut,λt≥0,t∈T

epi

(∑
t∈T

λtht(·, ut)
)∗
. (31)

is closed.

Proof: We defined that

Γ :=
⋃

ut∈Ut,λt≥0,t∈T

epi

(∑
t∈T

λtht(·, ut)
)∗
. (32)

According to the proposition of proper lower semi-continuous convex functions and functions ht(·, ut) is

continuous, such that

epi

(∑
t∈T

λtht(·, ut)
)∗

:=


∑
t∈T

λtepi(ht(·, ut))∗, if λt 6= 0,

{0} ×R+, if λt = 0.

(33)

Contact with (32) can be obtained that

Γ =
⋃

ut∈Ut

{ ⋃
λt≥0

∑
t∈T

λt epi(ht(·, ut))∗ ∪ {0} ×R+

}

=
⋃

ut∈Ut

co cone

{ ⋃
t∈T

epi(ht(·, ut))∗ ∪ (0, 1)

}
.

(34)

Then let (sκ, rκ)T ∈ Γ be a sequence with (sκ, rκ)T → (x∗, r) ∈ Rn ×R. In order to prove the result, we

illustrate that (x∗, r)T ∈ Γ. Because of (sκ, rκ)T ∈ Γ, for each κ ∈ N , we have uκt ∈ Ut, t ∈ T , such that

(sκ, rκ)T ∈ co cone({epi(ht(·, uκt ))∗ : t ∈ T} ∪ (0, 1)).
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According to Caratheodory theorem that for all κ ∈ N , there exist uκti ∈ Uκti , t
κ
i ∈ T, λκti ≥ 0, i =

1, · · · , n+ 1, and λκt ≥ 0 such that

(sκ, rκ)T ∈
n+1∑
i=1

λκtiepi(hκti(·, u
κ
ti))
∗ + λκt (0, 1) (35)

Because T is compact, we suppose that tκi → ti ∈ T as κ→∞, i = 1, . . . , n+ 1.

Next, let i = 1, . . . , n + 1 and ε > 0 be fixed. Since U is uniformly upper semi-continuous, there

exists ρ > 0 such that Ut ⊂ Uti + εB where B is a closed unit ball of Rn for any t ∈ T with d(t, ti) ≤ ρ.

Since tκi → ti as κ → ∞, there exists κi ∈ N such that for all κ ≥ κi, d(tκi , ti) ≤ ρ. So, for all

κ ≥ κi, Utκi ⊂ Uti + εB. Since utκi ∈ Utκi , there exists νti ∈ Uti such that utκi ∈ νti + εB, i. e. ,

‖utκi − νti‖ < ε.So, inf
lti∈Uti

‖utκi − lti‖ < ε. It according to that there exists κi ∈ N such that for all

κ ≥ κi, d(utκi , Uti) ≤ ε. So, d(u
tκ
i
, Uti) → 0 as κ → ∞, i. e. , utκi ∈ Uti . Hence, there exists

l∗tκi ∈ Uti , κ = 1, 2, . . . such that d(utκi , Uti) = ‖utκi − l
∗
tκi
‖ → 0 as κ→∞. Since Uti is compact, we suppose

that z∗tκi → uti ∈ Uti as κ→∞. Then we get:

lim
κ→∞

‖utκi − uti‖ = lim
κ→∞

‖(utκi − l
∗
tκi

) + (l∗tκi − uti)‖

≤ lim
κ→∞

‖utκi − l
∗
tκi
‖+ lim

κ→∞
‖z∗tκi − uti‖

= 0

(36)

So, if κ→∞ have utκi → uti .

Next, we prove that zκ :=

n+1∑
i=1

λκti + λκt is bounded. By the contract, we supposed that zκ →∞. And

we assume that
λκti
zκ
→ σi∈R+

, i = 1, . . . , n+ 1 and
λκt
zκ
→ σ0 ∈ R+ with

n+1∑
i=1

σi + σ0 = 1. Then according

to (35) and the definition 2. 3, for any x ∈ Rn. we have

(sκ)Tx−
n+1∑
i=1

λκtih
κ
ti(x, u

κ
ti) ≤

( n+1∑
i=1

λκtih
κ
ti(x, u

κ
ti)

)∗
(sκ) ≤ rκ − λκt ≤ rκ (37)

Both sides of the last inequality divide by zκ and taking the limit, we have that,

n+1∑
i=1

σihti(x, uti) ≥

σ0,∀x ∈ Rn. If σi = 0, ∀i = 1, . . . , n + 1,then we get that 0 =

n+1∑
i=1

σihti(x, uti) ≥ 1. This is contrary to

the assumption. Also, if σi 6= 0, for some i, then

n+1∑
i=1

σihti(x, uti) ≥ 0. The assumption is contrary to (30)

as 0 <

n+1∑
i=1

σi ≤ 1. So, zκ is bounded. Now, without loss of generality, because of l = zκ is bounded, such

that λκti → λti and λκt → λt. As, for each x ∈ Rn,

(sκ)Tx−
n+1∑
i=1

λκtih
κ
ti(x, u

κ
ti) ≤ r

κ − λκt (38)

it follows, by passing to the limit and notice that ht is continuous, so, (x∗)Tx −
n+1∑
i=1

λtihti(x, u
κ
ti) ≤
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r − λt,∀x ∈ Rn,it follows that

(x∗, r − λt)T ∈ epi

( n+1∑
i=1

λtihti(·, uκti)
)∗
,

(x∗, r)T ∈ epi

( n+1∑
i=1

λtihti(·, uκti)
)∗

+ λt(0, 1)

⊆ epi

{∑
t∈T

λt(ht(·, ut)
}∗

+ {0} ×R+

⊆
⋃

ut∈Ut,λt≥0,t∈T

epi

(∑
t∈T

λtht(·, ut)
)∗

= Γ

(39)

So Γ is closed.

3 Necessary conditions for dual theorem

Some main necessary optimality conditions for a robust approximate optimal solution of (UCSIP) are

discussed in this section. In order to show necessary conditions for dual theorem, we give the following

Robust Farkas Lemma for convex function.

Lemma 3.1: Let w : Rn → R be a convex function and let ht : Rn × Rm → R, ht(·, ut) is a convex

function. Let Ut ⊆ Rm, t ∈ T , be compact and let F := {x ∈ Rn : ht(x, ut) ≤ 0, for all ut ∈ Ut, t ∈ T} is

not empty. Then following relationships are equivalent.

(i){x ∈ Rn|ht(x, ut) ≤ 0,∀ut ∈ Ut, t ∈ T} ⊆ {x ∈ Rn|w(x) ≥ 0};

(ii)(0, 0)T ∈ epiw∗ + cl co

{ ⋃
ut∈Ut,λt≥0,t∈T

epi

(∑
t∈T

λtht(·, ut)
)∗}

.
(40)

Proof: By the definition of F . Then we will prove that

epiσ∗F = cl co

{ ⋃
ut∈Ut,λt≥0,t∈T

epi(
∑
t∈T

λtht(·, ut))∗
}
.

For any x ∈ Rn, σF (x) = sup
ut∈Ut,λt≥0,t∈T

∑
t∈T

λtht(x, ut). Thus we have

epiσ∗F = cl(epiσ∗F )

= cl

{ ⋃
ut∈Ut,λt≥0,t∈T

epi(
∑
t∈T

λtht(·, ut))∗
}

= cl

{
cl co

⋃
ut∈Ut,λt≥0,t∈T

epi(
∑
t∈T

λtht(·, ut))∗
}

= cl co

{ ⋃
ut∈Ut,λt≥0,t∈T

epi(
∑
t∈T

λtht(·, ut))∗
}
,

(41)

where the third equality holds by Lemma 2.3.
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So,besides (ii) holds, we get

(ii)⇔ (0, 0)T ∈ epiw∗ + epiσ∗F according to (40)

⇔ (0, 0)T ∈ epi(w + σF )∗ invokes Lemma 2.2

⇔ (w + σF )∗(0) ≤ 0 follows from the definition of 2.3

⇔ (w + σF )∗(0) = sup

{
〈x∗, 0〉 − (w + σF )∗(x) : x ∈ Rn

}
= sup

{
0− (w + σF )∗(x)

}
⇔ (w + σF )(x) ≥ 0,∀x ∈ Rn by the definition of 2.4

⇔ w(x) ≥ 0,∀x ∈ F

⇔ (i),

(42)

According to Lemma 3.1, the following theorem is given:

Theorem 3.1: Let w be a convex function, where w is defined as Rn → R and define ht as Rn×Rm → R,

ht be continuous for any t ∈ T , ht(·, ut) is convex on Rn for each ut ∈ Rm. Let x̂ ∈ F and define

Ut ⊆ Rm, t ∈ T which is compact. Assume that Γ is closed and convex, then x̂ is an approximate solution

(ε−solution) of (RCSIP) if and only if there exist (λ̂t) ≥ 0 and ût ∈ Ut, t ∈ T , such that for any x ∈ Rn,

w(x) +
∑
t∈T

λ̂tht(x, ût) ≥ w(x̂)− ε. (43)

Proof:(Sufficiency) Suppose that x̂ be an ε−solution of (RCSIP). So for any x ∈ F , x̂ satisfy w(x) ≥
w(x̂)− ε. Then F ⊆ {x ∈ Rn : w(x)− w(x̂) + ε ≥ 0}. Using Lemma 3.1,

(0, ε− w(x̂))T ∈ epiw∗ + cl co
⋃

ut∈Ut,λt≥0,t∈T

epi

(∑
t∈T

λtht(·, ut)
)∗
. (44)

And cone
⋃

ut∈Ut,λt≥0,t∈T

epi

(∑
t∈T

λtht(·, ut)
)∗

is closed and convex, so (44) is equivalent to

(0, ε− w(x̂))T ∈ epiw∗ +
⋃

ut∈Ut,λt≥0,t∈T

epi

(∑
t∈T

λtht(·, ut)
)∗
. (45)

So let λ̂t ≥ 0, ut ∈ Ut, then we have

(0, ε− w(x̂))T ∈ epiw∗ + epi

(∑
t∈T

λ̂tht(·, ût)
)∗
. (46)

And because ht : Rn ×Rm → R,∀t ∈ T, are continuous and λ̂t ≥ 0, and Lemma2.2, then we get,

(0, ε− w(x̂))T ∈ epiw∗ +

(∑
t∈T

epi(λ̂tht(·, ût)
)∗
. (47)

And, ∃ξ∗ ∈ Rn, p ≥ 0, s∗t ∈ Rn, and qt ≥ 0, t ∈ T have:

(0, ε− w(x̂))T ∈ (ξ∗, w∗(ξ∗) + p) +
∑
t∈T

(s∗t , (λ̂tht(·, ût))∗(s∗t ) + qt). (48)

So,

0 = ξ∗ +
∑
t∈T

s∗t

ε− w(x̂) = w∗(ξ∗) + p+
∑
t∈T

((λ̂tht(·, ût))∗(s∗t ) + qt).
(49)
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Hence, according to (49) for any x ∈ Rn,

−
〈∑
t∈T

s∗t , x

〉
− w(x) = 〈s∗, x〉 − w(x)

≤ w∗(s)∗

= ε− w(x̂)− p−
∑
t∈T

((λ̂tht(·, ût))∗(s∗t ) + qt),

(50)

where the second inequality holds by w∗(s∗) = sup{〈s∗, s〉 − w(s), s ∈ Rn}. Thus, for any x ∈ Rn,

w(x̂)− ε ≤
〈∑
t∈T

s∗t , x

〉
+ w(x)− p−

∑
t∈T

(λ̂tht(·, ût))∗(s∗t )−
∑
t∈T

qt

≤
〈∑
t∈T

s∗t , x

〉
+ w(x)−

∑
t∈T

(λ̂tht(·, ût))∗(s∗t )

≤ w(x) +
∑
t∈T

λ̂tht(x, ût).

(51)

According to the definition of conjugate function of ht(·, ût), the third inequality is true.

(Necessity) Supposed that ∃(λ̂t) ≥ 0, ût ∈ Ut, t ∈ T, such that for any x ∈ Rn,

w(x) +
∑
t∈T

λ̂tht(x, ut) ≥ w(x̂)− ε.

For any x ∈ F then we have (meet the constraint conditions),

w(x) ≥ w(x) +
∑
t∈T

λ̂tht(x, ût) ≥ w(x̂− ε).

Hence we get the conclusion that w(x) ≥ w(x̂)− ε. Then x̂ is an approximate solution of (RCSIP).

Theorem3. 2:(ε optimality theorem) Let w be a convex function, w : Rn → R, and let ht be continuous

functions such that for each ut ∈ Rm, ht(·, ut) is convex on Rn, for any t ∈ T, ht : Rn × Rm → R. let

Ut ⊆ Rq, t ∈ T be compact. Assume that Γ is closed and convex. Let x̂ ∈ F , then the following (i), (ii),

(iii) are equivalent:

(i)x̂ is an ε−solution to (RCSIP);

(ii)(0, ε− w(x̂))T ∈ epiw∗ +
⋃

ut∈Ut,λt≥0,t∈T

epi(
∑
t∈T

λtht(·, ut))∗;

(iii)∃(λ̂t) ≥ 0, ût ∈ Ut, εt ≥ 0, t ∈ T and ε0 ≥ 0 such that 0 ∈ ∂ε0w(x̂) +
∑
t∈T

∂εt(λ̂tht(·, ût))(x̂) and

ε0 +
∑
t∈T

εt − ε =
∑
t∈T

λ̂tht(x̂, ût).

Proof: Assume that x̂ is an ε−solution of (RCSIP). Therefore, w(x) ≥ w(x̂) − ε, for any x ∈ F , let

ϕ(x) := w(x)− w(x̂) + ε, then we can get ϕ(x) ≥ 0 for any x ∈ F , it follows

ϕ∗(u) = sup{〈u, x〉 − ϕ(x)|x ∈ Rn}

= sup{〈u, x〉 − w(x) + w(x̂)− ε|x ∈ Rn}

= sup{〈u, x〉 − w(x)|x ∈ Rn}+ w(x̂)− ε

= w∗(u) + w(x̂)− ε,

(52)

and by Lemma 3. 1 we can get (i)⇔(ii)
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Let F := {x ∈ Rn : ht(x, ut) ≤ 0,∀ut ∈ Ut, t ∈ T}, then F 6= ∅ we have,

According to(ii), we get (0, ε− w(x̂))T ∈ epiw∗ +
⋃

ut∈Ut,λ̂t≥0,t∈T

epi(
∑
t∈T

λtht(·, ût))∗.

That means there exists ût ∈ Ut, λ̂t ≥ 0 such that

(0, ε− w(x̂))T ∈ epiw∗ + epi

(∑
t∈T

λ̂tht(·, ût)
)∗

(53)

By Lemma 2.1, there exist ε0 ≥ 0, εt ≥ 0, t ∈ T then w and ut ∈ Rm, ht(·, ut) are all convex, such

that

(0, ε− w(x̂))T ∈
⋃
ε0≥0

{(ζ0, 〈ζ0, x̂〉+ ε0 − w(x̂))T : ζ0 ∈ ∂ε0w(x̂)}

+
∑
t∈T

⋃
εt≥0

{(ζt, 〈ζt, x̂〉+ εt − λ̂tht(x̂, ût))T : ζt ∈ ∂εt(λ̂tht(·, ût))(x̂)}.
(54)

It equivalent to that there exist ût ∈ Ut, λ̂t ≥ 0, ζ̂0 ∈ ∂ε0w(x̂) and ζ̂t ∈ ∂εt(λ̂tht(·, ût))(x̂), t ∈ T , such

that

(0, ε− w(x̂))T ∈ (ζ̂0, 〈ζ̂0, x̂〉+ ε0 − w(x̂))T +
∑
t∈T

(ζ̂t, 〈ζ̂t, x̂〉+ εt − λ̂tht(x̂, ût))T . (55)

Then it can be written as there exist ut ∈ Ut, λt ≥ 0, ζ̂0 ∈ ∂ε0w(x̂), ζ̂t ∈ ∂εt and ε0 ≥ 0, εt ≥ 0, t ∈ T
such that

0 = ζ̂0 +
∑
t∈T

ζ̂t

ε0 +
∑
t∈T

εt − ε =
∑
t∈T

λ̂tht(x̂, ût),
(56)

which is equivalent to (iii).

4 ε-duality theorem of Lagrangian dual

Next, using the approximate solution to (RCSIP), we consider a Lagrangian dual problem (LDRCSIP)ε,

as follows

(LDRCSIP)ε max
λt

inf
z

sup
ut

{
w(z) +

∑
t∈T

λtht(z, ut)

}
s. t. λt ≥ 0,∀t ∈ T, ut ∈ Ut, z ∈ Rn.

(57)

If (z, u, λ) is a feasible solution of (LDRCSIP)ε, then z satisfies the following statement:0 ∈ ∂ε0w(z) +∑
t∈T ∂εt(λtht(·, ut))(z) and ε0 ≥ 0, εt ≥ 0, ε0 +

∑
t∈T εt ≤ ε So the feasible set of (LDRCSIP)ε is

FL =:

{
(z, u, λ)|0 ∈ ∂ε0w(z) +

∑
t∈T

∂εt(λtht(·, ut))(z), λt ≥ 0,

∀t ∈ T, ut ∈ Ut, z ∈ Rn, ε0 ≥ 0, εt ≥ 0, ε0 +
∑
t∈T

εt ≤ ε
}
.

(58)
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Assume that ε ≥ 0, and (x̂, û, λ̂) is the approximate solution of (LDRCSIP)ε, if for any (z, u, λ) ∈ FL,

w(z) +
∑
t∈T

λtht(z, ut) ≥ w(x̂) +
∑
t∈T

λ̂tht(x̂, ût)− ε (59)

And then we can obtain

inf
z∈Rn

sup
ut∈Ut

{
w(z) +

∑
t∈T

λtht(z, ut)

}
≥ inf
x̂∈Rn

sup
û∈Ut

{
w(x̂) +

∑
t∈T

λ̂tht(x̂, ût)

}
− ε (60)

Theorem 4. 1: Suppose x and (z, u, λ) are feasible solutions of (RCSIP) and (LDRCSIP)ε,respectively.

if

w(x) ≥ inf
z∈Rn

sup
ut∈Ut

w(z) +
∑
t∈T

λtht(z, ut)− ε (61)

then we call that x satisfied approximate weak duality theorem.

Proof: Supposed that x is a feasible solution of (RSIP) and (z, u, λ) is a feasible solution of (LDRCSIP)ε.

Then we have λt ≥ 0, t ∈ T, ut ∈ Ut, z ∈ Rn, ε0 ≥ 0, εt ≥ 0, ζ̂0 ∈ ∂ε0w(z) and ζ̂t ∈ ∂εt(λtht(·, ut))(z), such

that ε0 +
∑
t∈T

εt ≤ ε and ζ̂0 +
∑
t∈T

ζ̂t Thus, we have

w(x)− w(z)− sup
ut∈Ut

∑
t∈T

λtht(z, ut)

≥ 〈ζ̂0, x− z〉 − ε0 − sup
ut∈Ut

∑
t∈T

λtht(z, ut)

= −〈
∑
t∈T

ζ̂t, x− z〉 − ε0 − sup
ut∈Ut

∑
t∈T

λtht(z, ut)

≥ −
∑
t∈T

λt(ht(x, ut)− ht(z, ut))− ε0 −
∑
t∈T

εt − sup
ut∈Ut

∑
t∈T

λtht(z, ut)

≥ − sup
ut∈Ut

∑
t∈T

λt(ht(x, ut)− ht(z, ut))− ε0 −
∑
t∈T

εt − sup
ut∈Ut

∑
t∈T

λtht(z, ut)

= − sup
ut∈Ut

∑
t∈T

λtht(x, ut)− ε0 −
∑
t∈T

εt

≥ −ε

(62)

And then

w(x) ≥ w(z) + sup
ut∈Ut

{∑
t∈T

λtht(z, ut)

}
− ε

w(x) ≥ inf
z∈Rn

sup
ut∈Ut

{
w(z) +

∑
t∈T

λtht(z, ut)

}
− ε

(63)

Theorem 4. 2: Let w be a convex function for w : Rn → R , for any t ∈ T, ht : Rn ×Rm → R, and let

ht be continuous such that ht(·, ut) is convex on Rn for each ut ∈ Rm. Let Ut ⊆ Rm, t ∈ T , be compact.

Assume that the closed convex cone constraint qualification holds. Let λ̂ := λ̂t, for any λt ≥ 0, t ∈ T and

let û = (ut) ∈ U . If x̂ is an ε-solution of (RCSIP), then (x̂, û, λ̂) is a 2ε-solution of (LDRCSIP)ε, then we

call that x satisfied Approximate strong duality theorem.

Proof: Let x̂ ∈ F , be an ε-solution of (RCSIP). Then, from Theorem 3. 2, there existλ̂t ≥ 0, ût ∈
Ut, t ∈ T, εt ≥ 0, t ∈ T , and ε0 ≥ 0 such that

0 ∈ ∂ε0w(x̂) +
∑
t∈T

∂εt(λ̂tht(·, ût))(x̂) and ε0 +
∑
t∈T

εt − ε =
∑
t∈T

λ̂tht(x̂, ût). (64)

13



Then according to Theorem4. 1,

w(x̂) +
∑
t∈T

λ̂tht(x̂, ût)− inf
z∈Rn

sup
ut∈Ut

{
w(z) +

∑
t∈T

λtht(z, ut)

}
≥ −ε+

∑
t∈T

λ̂tht(x̂, ût)

≥ −ε+ ε0 +
∑
t∈T

εt − ε

≥ −2ε

(65)

Thus

−w(x̂)−
∑
t∈T

λ̂tht(x̂, ût) + inf
z∈Rn

sup
ut∈Ut

{
w(z) +

∑
t∈T

λtht(z, ut)

}
≤ 2ε

5 Conclusion

A convex semi-infinite optimization problem with uncertain information in the constraint function is

established in this paper. Based on the robust optimization approach some approximate optimality

qualifications and approximate dual theorem are all established under a closed and convex cone Γ. Then

a Lagrangian dual problem is established, and the approximate weak dual and strong dual theorem with

data uncertain are also given in this paper .
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