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OBTAINING THE EQUATIONS OF MOTION OF A 

MECHANICAL BODY THROUGH ANALYTICAL 

METHODS 

Armandt Erasmus 

The aim of this paper is to obtain the equations of motion in n-dimensional space for 

the case where no external forces act on a mechanical system using analytical methods. 

One such method is known as Lagrangian Mechanics. Lagrangian Mechanics is 

founded on the principle of least action which states that the spontaneous change from 

one configuration to another of a dynamical system has a minimum action value if the 

law of conservation of energy holds. 

We define the Lagrangian to be a smooth function 𝐿(𝑞, 𝑣, 𝑡) and write the non-

relativistic Lagrangian: 

𝐿 = 𝑇 − 𝑉 

The kinetic energy of the system is denoted by T while the potential energy of the 

system is denoted by V. The equation can therefore be rewritten as: 

𝐿 =
1

2
𝑚𝑣2 − 𝑚𝑔ℎ 

Furthermore, T and V will be generalised for a system of particles and will have form: 

𝑇 =
1

2
∑ 𝑚𝑖𝑣𝑖

2

𝑁

𝑖=1

 

And 

𝑉 = ∑ 𝑚𝑖𝑔𝑖(𝑦𝑐
0)𝑖

𝑁

𝑖=1

 

However, a more formal introduction to the above notation will be presented later since 

we are currently only concerned about one particle with uniform mass distribution. 
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APPLYING THE LAGRANGIAN TO A 

MECHANICAL SYSTEM IN THE ABSENCE OF 

EXTERNAL FORCES 

Let us suppose that there exists some particle 𝑝 centred at its origin 𝑂′ relative to some 

stationary point 𝑂 such that 𝑂, 𝑂′ ∈ ℝ2. We also let the respective axes of 𝑂 be parallel 

to that of 𝑂′. 

We define a position vector 𝑟 pointing from 𝑂 to 𝑂′ at some angle 𝜑, then 

𝑟 = |𝑟| cos 𝜑 𝑖̂ + |𝑟| sin 𝜑 𝑗̂ 

denotes the position of 𝑝 with uniform mass 𝑚 relative to 𝑂. From this result, we can 

separate 𝑟 into its 𝑖 ̂and 𝑗̂ components, respectively. 

The component with respect to the 𝑖 ̂direction denoted by 𝑟𝑥 , is given by: 

𝑟𝑥 = |𝑟| cos 𝜑 

The component with respect to the 𝑗̂ direction denoted by 𝑟𝑦 , is given by: 

𝑟𝑦 = |𝑟| sin 𝜑 

We then calculate the Lagrangian, 𝐿 = 𝑇 − 𝑉 for the system by using the equations 

from above. The kinetic energy term can be written and expanded as: 

𝑇 =
1

2
𝑚𝑣2 

𝑇 =
1

2
𝑚𝑟̇2 

                𝑇 =
1

2
𝑚(𝑟̇𝑥

2 + 𝑟̇𝑦
2) 

Note that 𝑟 is the magnitude of 𝑟 and that 𝑟̇ denotes the time derivative of 𝑟. 

Similary, the potential energy term can be expressed as: 

𝑉 = 𝑚𝑔ℎ 

𝑉 = 𝑚𝑔𝑟𝑦 
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We can then write the Lagrangian for the kinetic energy and potential energy of the 

system as: 

𝐿 =
1

2
𝑚(𝑟̇𝑥

2 + 𝑟̇𝑦
2) − 𝑚𝑔𝑟𝑦 

The Euler – Lagrange Equation can then be written for the Lagrangian: 

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑟̇
=

𝜕𝐿

𝜕𝑟
 

Since our system is defined by two spatial dimensions we expect two solutions to the 

Euler – Lagrange equation. 

We first find the solution obtained from 𝑟𝑥: 

𝑑

𝑑𝑡

𝜕

𝜕𝑟𝑥̇
(

1

2
𝑚(𝑟̇𝑥

2 + 𝑟̇𝑦
2) − 𝑚𝑔𝑟𝑦) =

𝜕

𝜕𝑟𝑥
(

1

2
𝑚(𝑟̇𝑥

2 + 𝑟̇𝑦
2) − 𝑚𝑔𝑟𝑦) 

𝑑

𝑑𝑡
(𝑚𝑟𝑥̇) = 0 

𝑟̈𝑥 = 0 

Which is valid since the acceleration in the 𝑖 ̂direction is zero. By a similar manner, 

we find the solution obtained from 𝑟𝑦: 

𝑑

𝑑𝑡

𝜕

𝜕𝑟𝑦̇
(

1

2
𝑚(𝑟̇𝑥

2 + 𝑟̇𝑦
2) − 𝑚𝑔𝑟𝑦) =

𝜕

𝜕𝑟𝑦
(

1

2
𝑚(𝑟̇𝑥

2 + 𝑟̇𝑦
2) − 𝑚𝑔𝑟𝑦) 

𝑑

𝑑𝑡
(𝑚𝑟̇𝑦) = −𝑚𝑔 

𝑟̈𝑦 = −𝑔 

Which is also a valid result since we expect that 𝑝 accelerates due to gravity in the 𝑗̂ 
direction. 

We assume that 𝑝 has some initial velocity 𝑣⃑0 at some angle 𝜃 relative to 𝑂′. Then 𝑣⃑0 

can be written in terms of its 𝑖′̂ and 𝑗̂′. Since 𝑂 is parallel to 𝑂′ we can say that 𝑖̂ ≡ 𝑖̂′ 
and also that 𝑗̂ ≡ 𝑗̂′ such that: 

𝑣⃑0 = |𝑣⃑0| cos 𝜃 𝑖̂ + |𝑣⃑0| sin 𝜃 𝑗̂ 

Note that 𝑣⃑0 = 𝒓̇0. 
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Finally, the acceleration vector for 𝑝 can be written as the sum of its components, which 

were obtained by solving the Euler – Lagrange equation: 

𝒓̈ = −𝑔𝑗̂ 

Since we know that 𝒓̈ =
𝑑2𝒓

𝑑𝑡2 , we can show that: 

𝑑2𝒓

𝑑𝑡2
= −𝑔𝑗̂ 

        ∫ 𝑑2𝒓 = ∫ −𝑔𝑗̂ 𝑑𝑡2 

             
𝑑𝒓

𝑑𝑡
= −𝑔𝑡𝑗̂ + 𝒓̇0 

𝒓̇(𝑡) = |𝒓̇0| cos 𝜃 𝑖̂ + (|𝒓̇0| sin 𝜃 − 𝑔𝑡)𝑗 ̂

The result obtained from integrating 𝒓̈ is the velocity function of particle 𝑝. It is 

important to note that integrating 𝒓̇(𝑡) with respect to time gives us two solutions, one 

which gives the position vector as a function of time for 𝑂′ relative to 𝑂 and the other 

gives the position vector as a function of time for 𝑝 with respect to 𝑂′. 

Since we have already defined the position vector of 𝑂′ with respect to 𝑂, we will 

determine the first solution first. We know that 𝒓0 = 𝑟 = |𝑟| cos 𝜑 𝑖̂ + |𝑟| sin 𝜑 𝑗̂ , so 

the position vector of 𝑂′ relative to 𝑂 as a function of time can be calculated by: 

∫ 𝒓̇(𝑡) 𝑑𝑡 = ∫|𝒓̇0| cos 𝜃 𝑖̂ + (|𝒓̇0| sin 𝜃 − 𝑔𝑡)𝑗̂ 𝑑𝑡 

𝒓(𝑡) = |𝒓̇0| cos 𝜃𝑡 𝑖̂ + (|𝒓̇0| sin 𝜃𝑡 −
1

2
𝑔𝑡2) 𝑗̂ + 𝒓0 

𝒓(𝑡) = (|𝒓̇0| cos 𝜃𝑡 + |𝑟| cos 𝜑)𝑖̂ + (|𝒓̇0| sin 𝜃𝑡 −
1

2
𝑔𝑡2 + |𝑟| sin 𝜑) 𝑗̂ 

We obtain a similar result for the position vector as a function of time for 𝑝 with respect 

to 𝑂′ since 𝒓′0 = 0⃑⃑. 

∫ 𝒓̇(𝑡) 𝑑𝑡 = ∫|𝒓̇0| cos 𝜃 𝑖̂ + (|𝒓̇0| sin 𝜃 − 𝑔𝑡)𝑗̂ 𝑑𝑡 

𝒓(𝑡) = |𝒓̇0| cos 𝜃𝑡 𝑖̂ + (|𝒓̇0| sin 𝜃𝑡 −
1

2
𝑔𝑡2) 𝑗 ̂
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We have obtained the equations of motion for a mechanical body, however we are able 

to obtain one final equation where motion in the 𝑦 − 𝑎𝑥𝑖𝑠 becomes a function for 

motion in the 𝑥 − 𝑎𝑥𝑖𝑠. We do this by resolving 𝒓(𝑡) into its respective components, 

and solving for time within the 𝑖 ̂direction. 

𝑟𝑥 = |𝒓̇0| cos 𝜃𝑡 and  𝑟𝑦 = |𝒓̇0| sin 𝜃𝑡 −
1

2
𝑔𝑡2 

Where 

𝑡 =
𝑟𝑥

|𝒓̇0| cos 𝜃
 

We may then write: 

𝑦(𝑥) = |𝒓̇0| sin 𝜃 (
𝑥

|𝒓̇0| cos 𝜃
) −

1

2
𝑔 (

𝑥

|𝒓̇0| cos 𝜃
)

2

 

Which simplifies to: 

𝑦(𝑥) = (tan 𝜃)𝑥 − (
𝑔

2|𝒓̇0|2 cos2 𝜃
) 𝑥2 

We may also find the equation for the range of 𝑝 by letting 𝑦(𝑥) = 0: 

(tan 𝜃)𝑥 = (
𝑔

2|𝒓̇0|2 cos2 𝜃
) 𝑥2 

𝑥𝑅 =
|𝒓̇0|2 sin 2𝜃

𝑔
 

 

In summary we see that the equations of motion can easily be obtained from the Euler 

– Lagrange equation by solving for the Lagrangian. 

We will further study the effects on a mechanical body where external forces such as 

drag are present by the same methods as above. A more formal introduction to the Euler 

– Lagrange equation will be presented in which we account for external forces or forces 

of constraint. 

It is important to note that the gravitational acceleration due to the force of gravity on 

a particle remains unchanged and present for every particle in every study of a 

mechanical system throughout this paper and will therefore not be considered as an 

external force. 
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APPLYING THE LAGRANGIAN TO A 

MECHANICAL SYSTEM WHERE EXTERNAL 

FORCES ACT ON A MECHANICAL BODY 

By a more formal definition of the Euler – Lagrange equation, we are able to study the 

effects of external forces, which we will call the forces of constraint acting on a 

mechanical system, 𝑄𝑗. 

We write the derived equation for the Lagrangian as stated before: 

∑ (𝑄𝑗 − (
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞̇𝑗
−

𝜕𝐿

𝜕𝑞𝑗
))

𝑁

𝑗=1

𝛿𝑞𝑗 = 0 

For which we neglect the independent displacement term such that we may write: 

𝑄𝑗 =
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞̇𝑗
−

𝜕𝐿

𝜕𝑞𝑗
 

Where 𝑄𝑗 = {𝐹⃑𝐷𝑥 , 𝐹⃑𝐷𝑦} and 𝑞𝑗 = {𝑥, 𝑦}. Note that for now we specify specific 

variables 𝑥, 𝑦 to denote different spaces, however I will introduce a more generalised 

way of specifying spaces to only one variable 𝑞𝑗 to simplify notation. 

We assume the same mechanical system as before for a particle 𝑝 centred at the origin 

of its reference frame 𝑂′ relative to some other reference frame 𝑂 whose axes are 

parallel to that of 𝑂′. Since we are only concerned about the drag force 𝐹⃑𝐷, we say that 

it is proportional to and acting in the opposite direction of the velocity vector of 𝑝, such 

that we may write: 

𝐹⃑𝐷 = −𝑐|𝑣⃑0|𝑣̂ 

Which simplifies to: 

𝐹⃑𝐷 = −𝑐𝑟̇𝑗 
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The Lagrangian remains the same as before and we write it as: 

𝐿 =
1

2
𝑚(𝑟̇𝑥

2 + 𝑟̇𝑦
2) − 𝑚𝑔𝑟𝑦 

Now we will solve the new Euler – Lagrange equation for both the 𝑥 and 𝑦 components. 

Firstly for 𝑗 = 𝑥 

−𝑐𝑟̇𝑥 =
𝑑

𝑑𝑡

𝜕

𝜕𝑟̇𝑥
(

1

2
𝑚(𝑟̇𝑥

2 + 𝑟̇𝑦
2) − 𝑚𝑔𝑟𝑦) −

𝜕

𝜕𝑟𝑥
(

1

2
𝑚(𝑟̇𝑥

2 + 𝑟̇𝑦
2) − 𝑚𝑔𝑟𝑦) 

Which we know simplifies to: 

𝑟̈𝑥 = −
𝑐

𝑚
𝑟𝑥̇ 

Differently than before, we will integrate the equation above to get the velocity function 

acting in the 𝑖 ̂direction before combining it with the velocity function acting in the 𝑗̂ 
direction. 

𝑑𝒗𝑥

𝑑𝑡
= −

𝑐

𝑚
𝑣𝑥 

∫ −
𝑐

𝑚
 𝑑𝑡 = ∫

1

𝑣𝑥
 𝑑𝑣𝑥 

−
𝑐

𝑚
𝑡 = ln 𝑣𝑥 + 𝑣𝑐 

Which by solving for 𝑣𝑐 can then be written as: 

−
𝑐

𝑚
𝑡 = ln (

𝑣𝑥

|𝑟̇0| cos 𝜃
) 

𝑣𝑥 = 𝑟̇𝑥(𝑡) = |𝑟̇0| cos 𝜃 𝑒𝑥𝑝 (−
𝑐

𝑚
𝑡) 

Which upon further integration gives the position as a function of time in the 𝑖 ̂direction: 

𝑟𝑥 = ∫|𝑟̇0| cos 𝜃 𝑒𝑥𝑝 (−
𝑐

𝑚
𝑡)  𝑑𝑡 

𝑟𝑥(𝑡) =
𝑚

𝑐
|𝑟̇0| cos 𝜃 (1 − 𝑒𝑥𝑝 (−

𝑐

𝑚
𝑡)) 
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Now we solve for 𝑗 = 𝑦, and write the Euler – Lagrange equation as: 

−𝑐𝑟̇𝑦 =
𝑑

𝑑𝑡

𝜕

𝜕𝑟̇𝑦
(

1

2
𝑚(𝑟̇𝑥

2 + 𝑟̇𝑦
2) − 𝑚𝑔𝑟𝑦) −

𝜕

𝜕𝑟𝑦
(

1

2
𝑚(𝑟̇𝑥

2 + 𝑟̇𝑦
2) − 𝑚𝑔𝑟𝑦) 

Which we then expect to be the same as before where: 

𝑚𝑟̈𝑦 = −𝑐𝑟̇𝑦 − 𝑚𝑔 

We do the same as before to get the velocity function acting in the 𝑗̂ direction: 

𝑚 
𝑑𝒗𝑦

𝑑𝑡
= −𝑐𝑣𝑦 − 𝑚𝑔 

∫ −
1

𝑚
 𝑑𝑡 = ∫

1

𝑐𝑣𝑦 + 𝑚𝑔
 𝑑𝑣𝑦 

∫ −
1

𝑚
 𝑑𝑡 =

1

𝑐
∫

𝑐

𝑐𝑣𝑦 + 𝑚𝑔
 𝑑𝑣𝑦 

−
1

𝑚
𝑡 =

1

𝑐
ln(𝑐𝑣𝑦 + 𝑚𝑔) + 𝑟̇𝑐 

−
𝑐

𝑚
𝑡 = ln (

𝑐𝑣𝑦 + 𝑚𝑔

𝑐|𝑟̇0| sin 𝜃 + 𝑚𝑔
) 

𝑣𝑦 = 𝑟̇𝑦(𝑡) = (|𝑟̇0| sin 𝜃 +
𝑚𝑔

𝑐
) 𝑒𝑥𝑝 (−

𝑐

𝑚
𝑡) −

𝑚𝑔

𝑐
 

Again, integrating once more will give us the position as a function of time in the 𝑗̂ 
direction: 

𝑟𝑦 = ∫ (|𝑟̇0| sin 𝜃 +
𝑚𝑔

𝑐
) 𝑒𝑥𝑝 (−

𝑐

𝑚
𝑡) −

𝑚𝑔

𝑐
 𝑑𝑡 

𝑟𝑦(𝑡) = −
𝑚

𝑐
(|𝑟̇0| sin 𝜃 +

𝑚𝑔

𝑐
) 𝑒𝑥𝑝 (−

𝑐

𝑚
𝑡) −

𝑚𝑔

𝑐
𝑡 + 𝑟𝑐 

𝑟𝑦(𝑡) =
𝑚

𝑐
(|𝑟̇0| sin 𝜃 +

𝑚𝑔

𝑐
) (1 − 𝑒𝑥𝑝 (−

𝑐

𝑚
𝑡)) −

𝑚𝑔

𝑐
𝑡 

It is important to note that both the 𝑟𝑥 and 𝑟𝑦 position functions represent the position 

of 𝑝 with respect to 𝑂′ and not 𝑂. The next step would be to form a position vector for 

both components and then relate the result to 𝑂 in order to generalise both frames. 
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Figure 1 Projectile Path with Drag 

We obtain the position vector for the particle 𝑝 with respect to 𝑂′ by adding its 

respective components in the form: 

                    𝒓(𝑡) = (∫|𝑟̇0| cos 𝜃 𝑒𝑥𝑝 (−
𝑐

𝑚
𝑡)  𝑑𝑡) 𝑖̂

+ (∫ (|𝑟̇0| sin 𝜃 +
𝑚𝑔

𝑐
) 𝑒𝑥𝑝 (−

𝑐

𝑚
𝑡) −

𝑚𝑔

𝑐
 𝑑𝑡) 𝑗̂ 

Which becomes: 

                    𝒓(𝑡) = (
𝑚

𝑐
|𝑟̇0| cos 𝜃 (1 − 𝑒𝑥𝑝 (−

𝑐

𝑚
𝑡))) 𝑖̂

+ (
𝑚

𝑐
(|𝑟̇0| sin 𝜃 +

𝑚𝑔

𝑐
) (1 − 𝑒𝑥𝑝 (−

𝑐

𝑚
𝑡)) −

𝑚𝑔

𝑐
𝑡) 𝑗̂ 

Similar to as before, we can easily model the trajectory by finding a function for the 

motion in the y – axis as a function of the motion in the x – axis by solving the x – 

component for t, and substituting the result into y. We write the simplified equation as: 

                   𝑦(𝑥) = [
𝑚

𝑐
(|𝑟̇0| sin 𝜃 +

𝑚𝑔

𝑐
) (1 − 𝑒𝑥𝑝 (ln (−

𝑐𝑥 − 𝑚|𝑟̇0| cos 𝜃

𝑚|𝑟̇0| cos 𝜃
)))

−
𝑚2𝑔

𝑐2 (ln (−
𝑐𝑥 − 𝑚|𝑟̇0| cos 𝜃

𝑚|𝑟̇0| cos 𝜃
))] 

For illustrative purposes I have added a computer simulated graph by using the 

equation above: 
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We can clearly see the effect when a drag force is applied by the asymmetric property 

of the graph. Conversely, in the case where no forces of constraint are present, we 

expect a perfectly symmetric parabolic function by which a projectile’s path of motion 

can be modelled. 

 

 

 

 

APPLYING THE LAGRANGIAN TO A 

MECHANICAL SYSTEM BOUNDED IN THREE – 

DIMENSIONAL EUCLIDEAN SPACE 

By now we have only solved the Euler – Lagrange equations for a mechanical system 

in ℝ2 – space, however a more realistic approach would be to extend our generalisation 

beyond a two – dimensional system to one that contains three degrees of freedom. 

It seems quite trivial that we can expect to solve three Euler – Lagrange equations in 

order to obtain the equations of motion in a three – dimensional system, however the 

method becomes somewhat more difficult in that finding an equation that accurately 

models the path taken by a projectile in ℝ3 – space demands complex equations. We 

will find a work – around to this problem by solving for the Euler – Lagrange equations 

as before and then translating the velocity vector onto the 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒. 

We begin by defining a new mechanical system in ℝ3 – space where the coordinate 

system with origin 𝑂 is centred such that it contains point 𝑝, where 𝑝 is the mechanical 

body in question. We assign an initial velocity vector 𝑣⃑0 to 𝑝 such that it has a positive 

angle of trajectory 𝜃 and an azimuth deviation 𝜑 from the positive x – axis. 

We say that 𝑣⃑0 forms a shadow onto the 𝑥𝑧 − 𝑝𝑙𝑎𝑛𝑒 which we will denote by 𝑣⃑𝐻0 

where 𝑣⃑𝐻0 = 𝑣⃑0 cos 𝜃. Furthermore, we define the Lagrangian of this system as: 

𝐿 = 𝑇 − 𝑉 

Such that: 

𝐿 =
1

2
𝑚(𝑟̇𝑥

2 + 𝑟̇𝑦
2 + 𝑟̇𝑧

2) − 𝑚𝑔𝑟𝑦 
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We then write the Euler – Lagrange equation as: 

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞̇𝑗
=

𝜕𝐿

𝜕𝑞𝑗
 

Where 𝑞𝑗 = {𝑟𝑥, 𝑟𝑦, 𝑟𝑧}. 

Solving the Euler – Lagrange equation when 𝑗 = 𝑥: 

𝑑

𝑑𝑡

𝜕

𝜕𝑟𝑥̇
(

1

2
𝑚(𝑟̇𝑥

2 + 𝑟̇𝑦
2 + 𝑟̇𝑧

2) − 𝑚𝑔𝑟𝑦) =
𝜕

𝜕𝑟𝑥
(

1

2
𝑚(𝑟̇𝑥

2 + 𝑟̇𝑦
2 + 𝑟̇𝑧

2) − 𝑚𝑔𝑟𝑦) 

𝑟̈𝑥 = 0 

Solving the Euler – Lagrange equation when 𝑗 = 𝑦: 

𝑑

𝑑𝑡

𝜕

𝜕𝑟𝑦̇
(

1

2
𝑚(𝑟̇𝑥

2 + 𝑟̇𝑦
2 + 𝑟̇𝑧

2) − 𝑚𝑔𝑟𝑦) =
𝜕

𝜕𝑟𝑦
(

1

2
𝑚(𝑟̇𝑥

2 + 𝑟̇𝑦
2 + 𝑟̇𝑧

2) − 𝑚𝑔𝑟𝑦) 

𝑟̈𝑦 = −𝑔𝑗̂ 

Finally, solving the Euler – Lagrange equation when 𝑗 = 𝑧: 

𝑑

𝑑𝑡

𝜕

𝜕𝑟𝑧̇
(

1

2
𝑚(𝑟̇𝑥

2 + 𝑟̇𝑦
2 + 𝑟̇𝑧

2) − 𝑚𝑔𝑟𝑦) =
𝜕

𝜕𝑟𝑧
(

1

2
𝑚(𝑟̇𝑥

2 + 𝑟̇𝑦
2 + 𝑟̇𝑧

2) − 𝑚𝑔𝑟𝑦) 

𝑟̈𝑧 = 0 

We find that 𝑟̈(𝑡) = −𝑔𝑗.̂ 

Furthermore, we find the velocity function by integrating the acceleration function with 

respect to time: 

𝑟̇(𝑡) = ∫ 𝑟̈(𝑡) 𝑑𝑡 

𝑟̇(𝑡) = (𝑣⃑𝐻0 cos 𝜑)𝑖̂ + (|𝑟̇0| sin 𝜃 − 𝑔𝑡)𝑗̂ + (𝑣⃑𝐻0 sin 𝜑)𝑘̂ 

Which we then write as: 

𝑟̇(𝑡) = (|𝑟̇0| cos 𝜃 cos 𝜑)𝑖̂ + (|𝑟̇0| sin 𝜃 − 𝑔𝑡)𝑗̂ + (|𝑟̇0| cos 𝜃 sin 𝜑)𝑘̂ 
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Figure 2 Deviated Trajectory Due to Translation in the XY - 

Plane 

We then find the position function by integrating 𝑟̇(𝑡) with respect to time: 

𝑟(𝑡) = ∫ 𝑟̇(𝑡)  𝑑𝑡 

𝑟(𝑡) = (|𝑟̇0| cos 𝜃 cos 𝜑 𝑡)𝑖̂ + (|𝑟̇0| sin 𝜃𝑡 −
1

2
𝑔𝑡2) 𝑗̂ + (|𝑟̇0| cos 𝜃 sin 𝜑 𝑡)𝑘̂ 

Which clearly provides a time dependent function, and we have obtained the equations 

of motion in three – dimensional Euclidean space in a similar way as before. 

Now we will introduce a different way of representing the velocity vector: 

𝒓̇ = 〈𝑟̇𝑥, 𝑟̇𝑦 , 𝑟̇𝑧〉 

𝒓̇ = 〈|𝑟̇0| cos 𝜃 cos 𝜑 , |𝑟̇0| sin 𝜃 , |𝑟̇0| cos 𝜃 sin 𝜑〉 

We are then able to simplify the three – dimensional system by translating 𝒓̇ onto the 

xy – plane by the translation matrix T: 

𝑇𝑥𝑦 =  [

1 0 0 0
0 1 0 0
0 0 1 −|𝑟̇0| cos 𝜃 sin 𝜑
0 0 0 1

] 

We find the transformation of 𝒓̇ as 𝑇𝒓̇ where 𝒓̇ is written in homogeneous coordinates: 

𝑇𝑥𝑦𝒓̇ = [

1 0 0 0
0 1 0 0
0 0 1 −|𝑟̇0| cos 𝜃 sin 𝜑
0 0 0 1

] [

|𝑟̇0| cos 𝜃 cos 𝜑
|𝑟̇0| sin 𝜃

|𝑟̇0| cos 𝜃 sin 𝜑
1

] 

Which gives us the translated velocity vector 𝒓̇′: 

𝒓̇′ =  (|𝑟̇0| cos 𝜃 cos 𝜑)𝑖̂ + (|𝑟̇0| sin 𝜃)𝑗 ̂

By integrating with respect to time and finding the respective time functions, we find 

𝑦(𝑥): 

𝑦(𝑥) = (
tan 𝜃

cos 𝜑
) 𝑥 − (

𝑔

2|𝑟̇0|2 cos2 𝜃 cos2 𝜑
) 𝑥2 

We are able to illustrate the 2 – Dimensional deviation from the actual trajectory: 
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Figure 3 Deviated Trajectory Due to Translation in 
the YZ - Plane 

We repeat the same process to project the motion onto the yz – plane by taking the 

product of the transformation matrix 𝑇𝑦𝑧 and 𝒓̇: 

𝑇𝑦𝑧𝒓̇ =  [

1 0 0 −|𝑟̇0| cos 𝜃 cos 𝜑
0 1 0 0
0 0 1 0
0 0 0 1

] [

|𝑟̇0| cos 𝜃 cos 𝜑
|𝑟̇0| sin 𝜃

|𝑟̇0| cos 𝜃 sin 𝜑
1

] 

This gives us the velocity vector with respect to the yz – plane as: 

𝒓̇ = |𝑟̇0| sin 𝜃 𝑗̂ + |𝑟̇0| cos 𝜃 sin 𝜑 𝑘̂ 

Furthermore, we find y(z) by integration with respect to time and elementary algebra: 

𝑦(𝑧) = (
tan 𝜃

tan 𝜑
) 𝑧 − (

𝑔

2|𝑟̇0|2 sin2 𝜑 cos2 𝜃
) 𝑧2 

The projected motion is illustrated by: 

 

 

 

 

 

 

 

 

 

 

 

We can also show that the projection onto the xz – plane yields a linear function x(z) 

such that 𝑥(𝑧) = (tan 𝜑)𝑧, which is a trivial and expected result. By using linear 

transformations, we can simplify an n – dimensional system such that we get the 

(n – 1) – dimensional projection. 

We also find that this projection deviates from the original system, which we expect. 


