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GOAL: Estimate Fire Arrival Time from Satellite Data As Basic Method - Ideal Case

a Continuous Spatial Field
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* Light-weight, no physics model, statistically justified

 Solve grad grad 7=0 approximately by least squares
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the fire arrival time

 Last detection of ground with no fire = lower
bound on the fire arrival time

 This is the same as the bending of an elastic plate

How Do the Data Look Like? between an upper and a lower obstacle
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Unfortunately in reality...
 Data are often missing (clouds, smoke, obscured by terrain,...)
* Pixels do not form a nice continuous progression in time.

350

Real Data Are More Tricky
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No-fire Detections of Clear Ground Are Important Too! a rectangular mesh as piecewise cubic functions. The degrees of
freedom are the values and the partial derivatives at the mesh nodes:

Fire detections in the

domain of interest in « The discrete penalized problem, solved by a multigrid method:
one MODIS granule.
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with satellite detections at select time points. (2015 Cougar Creek Fire)

(2015 Cougar Creek » Statistical interpretation: maximum a-posteriori probability Bayesian estimate.

Fire) »  Gaussian prior log density equals minus the bending energy, with maximum probability when gradT is constant. Acknowledgements
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