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Abstract  

With the advancement of epigenetic tools and technologies associated with intervention medicine, stroke research
has  entered  into  a  new  fertile,  dynamic  era  of  epigenetic  studies,  a  wide  plethora  of  intervention  procedure,
administration of tissue plasminogen activator, the introduction of mechanical thrombectomy, clinical studies, and
drug developments over the last decennium. Against this vivid background of newly emerging pieces of knowledge,
there is little to none advancement in the overall outcome of the disease. The stroke involves an overabundance of
inflammatory responses  arising in part  due to the body’s immune response to brain injury.  Neuroinflammation
contributes to significant neuronal cell death and the development of functional impairment and death in stroke
patients.  Recent studies demonstrated epigenetic  plays a key role in the overall  outcome of the disease.  In this
review,  we summarize the progress  of  epigenetics  which provides an overview of recent  advancements  on the
emerging key role of epigenetics over the last decade contributing to the regulation of neuroinflammation in stroke,
potential epigenetic targets that might be key factors in the development of stroke therapies and their relation in
respect to clinical practice. 
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Stroke, including ischemic stroke and intracerebral hemorrhage, results in loss of neuronal function and brain tissues
leading to sensory-motor function deficit and disability among diseased. Stroke has been theorized to be the second
most common cause of death worldwide next to ischemic heart disease [1,2,6] and is suspected to remain the same
until 2030[2,3]. Additionally, patients surviving stroke may suffer from a disability which might require temporary
or lifelong assistance, resulting in an extensive burden to the family, and economic costs are reflected over countries
economy. Corroboration suggesting socioeconomic deprivation not only corresponds to stroke and its risk factors
but also intensively cohesive to the severity of the disease [4], mortality [5], and prevalence among the relatively
younger generation [4]. So, understanding the stroke at the molecular level will help us, researchers, to produce key
modulator alteration strategies to minimize post-stroke neuroinflammation, oxidative stress, pathological apoptosis,
and promotion of neuroprotection thus reducing  GBD (global burden of disease) and DALYs (disability-adjusted
life  year)  associate  with  stroke.  The  acknowledgment  of  the  role  of  epigenetics  is  the  next  step  in  better
understanding of the disease.

Etiology 

Stroke or cerebrovascular accidents as mentioned earlier are broadly classified into two categories; ischemic stroke
and hemorrhagic stroke.  The mechanism and pathophysiology involved among this type are quite different  but
involve  some  overlapping.  Two  major  mechanisms  considered  responsible  for  ischemic  stroke  are
thromboembolism and hemodynamic failure.  Embolism, more precisely cardio-embolism has been demonstrated to
produce  20%  to  30%  of  all  ischemic  stroke.[7,8]  The  risk  factor  associated  with  cardio-embolism  is  Atrial
Fibrillation [9-11], Systolic Heart Failure [12-15], Acute Myocardial Infarction [16,17], Patent Foramen Ovale [18-
20], Aortic Arch Atheroma [21-23], Prosthetic Heart Valves [24-26], Infective Endocarditis [27-29], and others [30].
Large Vessel Atherosclerosis (LVA) is another main contributor to ischemic stroke. LVA accounts for nearly 15%
to 20% of all ischemic stroke [31,32]. Similarly, 25% of all reported ischemic stroke cases have been shown to have
an association with Small Vessel occlusion [33,34]. Hemorrhagic stroke on the other hand has a well-established
relationship with Traumatic Brain Injury [35,36], Cerebral Aneurysm [37,38], Anti-thrombolytic therapy [39,40],
Hypertension (high blood pressure) [41-43], Arteriovenous Malformation [44-46].  

Pathophysiology 

The pathophysiology involving stroke is quite complex and involves various cascade processes, which include: loss
of cellular homeostasis, energy failure, metabolic acidosis, significantly increased in intracellular Ca2+ levels, free-
radical  mediated  toxicity,  metabolic  acidosis,  generation  of  arachidonic  acid  products,  cytokine-mediated
cytotoxicity,  complement  activation,  disruption  of  Blood-Brain  Barrier  (BBB),  activation  of  glial  cells  and
infiltration of leukocytes. The mechanism involved in both ischemic and hemorrhagic stroke produces a significant
decrease  in  cerebral  blood  flow  (CBF)  leading  to  oxygen  (O2)  deprivation  causing  an  increase  in  anaerobic
metabolism and eventually, lactic acidosis which in turns sequentially causes astrocyte demise and an increase in
neuroinflammatory cytokines thus promoting neuroinflammation. Neuroinflammation has been recognized as one of
the main culprits in promoting further insults in post-stroke condition, however, they also have been reported to play
a beneficial role in promoting recovery.  Similarly, a decrease in CBF can also produce malfunction of the ionic
pump causing potassium ions (K+) efflux and sodium and calcium (Na+ and Ca2+ respectively) influx into the
neuronal cells causing excitotoxicity, oxidative stress, and eventually necrosis. (Fig. 1) 

Epigenetics in research frontline 

Epigenetic is defined as the branch of biology which studies the causal interactions between genes and their products
which bring the phenotype into being. Recent epigenetic studies have been demonstrated to play a key role in post-
stroke condition leading to inflammatory responses and alteration of the microenvironment within the ischemic foci.
Current understanding and development of epigenetic tools have given the researchers a more reliable method of
competitive differentiation of normal versus diseased conditions at the molecular level. Contemporary studies in the
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field of epigenetics involve Histone modification, DNA-methylation, RNA modifications, and non-coding RNA and
their association concerning both pre and post-stroke conditions. (Fig. 2)

DNA methylation

DNA methylation has been one of the most extensively studied epigenetic modifications, exclusively occurring at
CpG dinucleotides  in  mammals  and  always  symmetrical  to  maintain  the  methylation  during  the  cell  division
process. DNA methylation is carried out by de novo methyltransferases (DNMT); precisely DNMT3a and DNMT3b
in mammals. CpGs are clustered into CpG islands, often at the promotor site of the gene. CpG island tends to be
protected from methylation. Methylation observed at CpG island is entirely associated with the silencing of gene
expression and carried out either by the formation of repressive chromatin structure or inhibiting transcription factor
binding and alteration of gene expression.  
LINE-1, which is a class I transposable element in the DNA and a member of long interspersed nuclear elements
(LINEs) has been a center of many study discussions after their discovery concerning the association in predicting
increase  risk  of  ischemic  stroke  and  cardiovascular  events.  Hypomethylation  of  LINE-1 is  associated  with  an
increase  in  the  risk  of  developing  ischemic  stroke  [47-50]. However,  a  single  sex-specific  analytic  study has
demonstrated that LINE-1 hypomethylation is suggestive of advanced atherosclerotic lesions, which leads to global
hypomethylation and has more in association in determining the risk of development of ischemic stroke in men as
compared to that of women [47]. Association of hypomethylation of LINE-1 was further investigated concerning
that of circulating vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and
C-reactive protein (CRP) which displayed the co-relation between hypomethylation of LINE-1 and increase the
level of circulating VCAM-1 but no association with ICAM-1 or CRP [51]. A cross-sectional study was conducted
in the Japanese population aiming to determine the relationship between methylation of LINE-1 in leukocyte and
that  of dyslipidemia. Hypermethylation of LINE-1 in leukocytes was showcased to have a higher odds ratio in
individuals with dyslipidemia [62]. Thus, the methylation status of  LINE-1 can be a key risk factor  predictor.
Similarly,  Hypomethylation  of  TNF  receptor  associated  factor  3  (TRAF3)  and  hypermethylation  of
thrombospondin-1 (THBS1) has also been illustrated to be a crucial predictor of stoke related outcomes [52-55].
DNMT, especially DNMT1 and DNMT3a has also been identified as pivotal enzymes regulating methylation of
various genes [56-58], of which DNMT1 dependent DNA methylation has been pinpointed as a mediator of chronic
inflammation  and  development  of  atherosclerotic  disease  via the  PPAR-γ  pathway  [59]. On  the  other  hand,
DNMT3a has also been identified to promote ischemic brain damage  [60,61].    
MMP-2 (Matrix metalloproteinase-2) is one of the most studied enzymes concerning their changes in peripheral
blood concentration both in acute and chronic phases of post-stroke symptoms [66-68]. However, various studies
have produced not identical data, creating confusion within the research field. A study conducted over a sample size
(n) of 556 participants (298 with ischemic stroke versus 258 control) successfully showcased lower concentration of
MMP-2 methylation level in peripheral blood exclusively in male small-vessel occlusion participants  [69]. Thus,
narrowing the use of MMP-2 serum concentration as an effective marker in post-ischemic stroke. Apart from the
common methylation at the fifth position of the pyrimidine ring of cytosine (5mC), other forms of modifications are
also noted at a similar position namely, 5-hydroxymethyl (5hmC), 5-formal (5fC), and 5-carboxyl (5caC). Various
studies  have  successfully  showcased  5-hmC  to  regulate  several  cellular  processes  which  include  neuronal
development as well. A neoteric study was conducted in murine specie (mice), demonstrating the use of ascorbate
(mineral salt  of  ascorbic acid;  vitamin C) in post-stroke reperfusion  led to  Ten-eleven translocation 3 (TET3)
dependent conversion of 5mC to 5hmC, promoting up-regulation of neuroprotective genes and functional recovery
in mice [63].  
5-aza-2’-deoxycytidine  which  is  a  DNA  methyltransferase  inhibitor  (DNA  methylation  inhibitor)  has  been
illustrated to significantly reduce the infarct volume in treated versus vehicle.[64] Mice pre-treated with 5-aza-2’-
deoxycytidine showed a reduction in infarct volume as compared to that of the vehicle. Likewise, another study
using zebularine which is also a DNA methylation inhibitor has demonstrated dose-dependent (500 μg and 100 μg)
reduction in infarct volume [65].
DNA modifications have been widely studied over the last decade. However, their contribution to stroke research is
still limited and further studies need to be carried in this field to produce a significant clinical outcome. 

Histone modification
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Histone is the basic proteins found in the nucleus of eukaryotic cells wrapped around by 146 base pairs (bp) of DNA
into a compact structure known as a nucleosome [70]. The interaction between histone and DNA is due to the
electrical charges between them. Briefly, the histones are positively charged due to the presence of a large amount of
positively charged amino acids (mainly lysine and arginine). On the other hand, DNA is negatively charged and thus
interaction  of  positive  and  negative  charge  maintains  the  structural  integrity  of  nucleosome.  Unlike  DNA
methylation, histone modification exclusively occurs at the amino-terminal tail protruding out of the histone subunit
and is short-term reversible modifications. The amino-terminal tails are subjected to post-translational modification
namely  methylation,  acetylation,  phosphorylation,  and  ubiquitination.  Post-translational  modification  of  amino-
terminal tails is associated with DNA repair, activation or repression of gene expression, telomere integrity, and the
total interaction changes in response to these modifications are determined by ‘histone code’ [55]. 

The immune system, especially  innate immune cells  play a decisive  role in  producing signal  depended on the
response in cerebrovascular accidents. The predominant innate immune cell in the central nervous system (CNS) is
microglia along with subsidiary infiltrating myeloid cells due to the disruption of the blood-brain barrier (BBB).
Microglia  even  under  ramified  (resting)  condition  constantly  monitors  the  surrounding  environment  and  acts
promptly  per  changes  within  the  microenvironment  [71]. Activated  microglia  are  subjected  to  alter  their
morphology, gene expression, and consequently undertaking their role per the changes in the microenvironment
[72]. Microglia, similar to macrophages are characterized as M1 (pro-inflammatory) and M2 (anti-inflammatory).
The pro-inflammatory subtype (M1) has been illustrated to up-regulate inflammatory genes namely IL-1α/β, IL-6,
IL-12, IL-23, TNF-α, iNOS whereas the M2 subtype has been illustrated to up-regulate neuroprotective genes such
as Arg-1, IGF-1, Ym-1, and FIZZ [73-76]. Simultaneous down-regulation of M1 and up-regulation of  the M2
phenotype in post-stroke condition can be beneficial  in minimizing the post-stroke insults to the CNS. H3KAc
(histone 3 lysine acetylation) is up-regulated in microglia around peri-infarct and infarct zone after ischemic stroke.
Similar up-regulation in H3KAc was also noted in LPS (lipopolysaccharide) mediated microglial activation. Thus,
proving the fact that H3KAc up-regulation is highly associative to the inflammatory cytokines and down-regulation
might help to minimize CNS insults. HDAC (histone deacetylase) is a key regulator of H3KAc [77-79]. HDAC
inhibition promotes downregulation of pro-inflammatory genes such as TNF-α, iNOS, STAT1, and IL-6 and up-
regulation of IL-10 and STAT3 genes in activated microglia both in  vivo and  vitro.  The up-regulation of anti-
inflammatory genes promotes neuronal survival, reduction in brain infarct volume, and suppression of microglia
activation  (M1)  which  is  indicative  of  the  neuroprotective  abilities  of  HDAC  inhibitors  [80,81].  SAHA
(Suberoylanilide Hydroxamic Acid; vorinostat), which is an HDAC inhibitor has been exhibited to up-regulate 70
kilo Dalton heat shock protein (Hsp70; essential in protein folding and stress-related protection in cells) and B-cell
lymphoma 2 (Bcl-2; anti-apoptotic) along with the reduction of pro-inflammatory cytokines IL-1, thus preventing
neuronal loss and promoting favorable outcome in post-stroke condition [82-86].  Apart from SAHA, other HDAC
inhibitors such as valproic acid, sodium butyrate, trichostatin-A, sodium 4-phenylbutyrate have shown to promote
similar neuroprotective abilities by regulation of excitotoxicity, oxidative stress, endoplasmic reticulum stress (ER-
stress), apoptosis, inflammation, and BBB breakdown [77]. Reactive oxygen species (ROS) have a well-established
association with cerebrovascular  accidents  [87,88].  Nuclear  factor  erythroid 2-related factor  2 (Nrf-2)  has  been
identified as a key regulator in ROS dependent oxidative insults to CNS [89,90].  Up-regulation of Nrf-2 using
HDAC inhibitor such as valproic acid and trichostatin-A (TSA) has been exemplified to promote neuroprotection
against oxidative stress [91,77]. 

Histone methylation has also been extensively explored to determine factors associated with prognostic outcomes in
both  pre  and  post-stroke  conditions.  Aging  is  one  of  the  principal  determinants  of  functional  outcome  in
cerebrovascular accidents [94,95] and is highly associated with a reduction in brain plasticity [92,93]. A murine
study displayed a significant reduction of H3K4me3 (Trimethylation of Histone H3 at lysine 4) in cortical astrocytes
with progression in age [96]. H3K9 (Histone 3 lysine 9) has also been identified as a potential target therapy region
as  inhibition  of  Histone-lysine  N-methyltransferase  SUV39H1  and  G9a  (Euchromatic  histone-lysine  N-
methyltransferase 2) promotes up-regulation of Brain-derived neurotrophic factor (BDNF) in E17 neuronal cells
[97].  Another  study  using  dimethyloxalylglycine  (DMOG)  to  inhibit  histone  lysine  demethylase  subfamily  4
(KDM4) has been shown to promote neuronal repair via H3K9me2 dependent manner in CD1 mouse [98].    

Apart  from histone  acetylation  and  methylation,  post-translational  phosphorylation  has  also  been  identified  in
cerebral ischemic conditions [99-102]. According to one of the studies, an increase in ionotropic glutamate receptor
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(NMDA) activity promotes histone phosphorylation (γ-H2A.X) in rat cortical neurons. However, pretreatment with
vitamin E and BAPTA-AM (calcium chelator) attenuated γ-H2A.X formation [99]. A study using the  Drosophila
model demonstrated neuronal necrosis is through phosphorylation of histone 3 serine 28 (H3S28Ph) [100]. A list of
commonly undertaken histone modification and histone binding module has been enlisted in Fig. 3(A-C). 

Non-coding RNA 

Non-coding RNA (ncRNA) is the RNA that is not translated into proteins. Their association with a cerebrovascular
accident has recently been under the spotlight because of their role as potential biomarkers and as well as target
therapy.  Functional  ncRNA  includes  transfer  RNA  (tRNA),  ribosomal  RNA  (rRNA),  microRNA  (miRNA),
smallRNA, small-interfering RNA (siRNA), piwi-interacting RNA (piRNA), small nucleolar RNA (snoRNA), small
nuclear RNA (snRNA), extracellular RNA (exRNA), small cajal body-specific RNA (scaRNA) and long-non coding
RNA (lncRNA). 

lncRNAs

lncRNA are defined as non-coding transcripts greater than 200 base-pairs in length transcribed by RNA Pol II from
an independent  promoter.  lncRNAs such  as  MALAT1  (metastasis-associate  lung adenocarcinoma transcript  1),
ANRIL (antisense non-coding RNA in the INK4 locus), N1LR, MEG3 (maternally expressed gene 3), H19, C2dat1
(CaMK2D-associated transcript 1), FosDT (Fos downstream transcript), SNHG14 (small nucleolar RNA host gene
14) and TUG1 (taurine-upregulated gene 1) is up-regulated in cerebral  ischemic animal models and/or oxygen-
glucose deprivation cells. Gene ontology studies suggested MEG3, H19, and MALAT1 are also associated with
angiogenesis [198-200], neurite growth [201], and neuroinflammation through gene regulation. 

One of  the well-explored lncRNA is MALAT1. MALAT1 has been  documented to regulate apoptosis through
various signaling pathways. MALAT1 has been successfully showcased as a competing endogenous RNA (ceRNA)
for miR-205-3p, regulates apoptosis in PTEN dependent manner in the OGD model [202]. Similarly, MALAT1 has
also been demonstrated to be ceRNA for miR-26b and up-regulates expression of ULK2 in OGD/R (oxygen-glucose
deprivation/reoxygenation) vitro model [205]. MALAT1/MDM2/p53 signaling pathway was documented as a key
regulator of apoptosis in the MCAO/R (middle cerebral artery occlusion/ reperfusion) murine model [203]. Down-
regulation of MALAT1 in the OGD model (both vivo and  vitro) attenuates neuronal cell death by suppression of
Beclin1-dependent autophagy and regulating miR-30a expression [204]. So, it can be concluded that MALAT1 is a
key regulator of apoptosis in oxygen-glucose deprivation state (mimicking ischemic stroke) and can be a potential
therapeutic target to reduce ischemic insults in post-ischemic stroke patients. 

Similar to MALAT1, ANRIL has also been shown to have a close relation with OGD-induced cellular injury and
apoptosis. OGD-induced PC-12 cells were used to mimic the ischemic stroke model in vitro, demonstrated down-
regulation of ANRIL negatively regulates miR-127 expression which in turn further negatively regulates Mcl-1.
Over-expression of ANRIL produces a significant reduction in cellular injury, increases cell viability, and decreases
apoptosis.  Contrastingly,  the  up-regulation  of  miR-127 produces  a  significant  increase  in  OGD-induced  PC-12
injury [206]. So, lncRNAs and their association with stroke have showcased, there lies a definite correlation between
lncRNAs and miRNAs, and regulation of one or the other produces a significant effect on cellular mechanism. 

miRNAs

miRNAs have been most extensively studied over the last decade concerning post-stroke excitotoxicity, oxidative
stress, neuroinflammation, and neuronal apoptosis. Neurotransmitters are endogenous chemical substances that are
released by neuronal cells and act as a signaling molecule leading to convey of action potential to the adjacent
neurons. The main known classes of neurotransmitters include amino acids, peptides, monoamines, gasotransmitters,
trace  amines,  purines,  catecholamines,  and  so  on.  Glutamate  which  belongs  to  the  amino  acid  class  of
neurotransmitters is the most abundant excitatory neurotransmitter in the nervous system. Glutamate like any other
neurotransmitter  works  via  receptors  present  within  the  nervous  system.  Receptors  of  glutamate  are  mainly
categorized into α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor  (AMPA), N-methyl-D-aspartate
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receptor (NMDA), and metabotropic glutamate receptors (mGluRs). Hypo or hyper-activity of these receptors is
associated with excitotoxicity in post-stroke conditions. Over-expression of miR-107 has been identified to decrease
the expression of glutamate transporter-1(GLT-1), thus promoting glutamate accumulation within the neurons and
subsequently leading to excitotoxicity in post-ischemic stroke condition [103]. An increase in GLT-1 expression has
been  identified  as  a  potential  therapeutic  target  to  minimize  post-ischemic  excitotoxicity  [104,105].  Various
pharmacological  reagents  have  been  studied  to  up-regulate  GLT-1  expression  of  which  histamine  [112]  and
Magnesium Lithospermate B [106] are worth mentioning. However further studies and trails need to be conducted to
determine  their  efficacy  in  clinical  settings. Contrariety,  over-expression  of  miR223 has  been  demonstrated  to
promote protection against excitotoxicity via the down-regulation of GluR2 and NMDA subunit NR2B [107]. miR-
181a has  been shown to possess a  highly conserved  binding site  within GluA2 (GRIA2)  mRNA, a subunit  of
AMPA-Rs. Thus, it was concluded that miR-181a is a key regulator of AMPA [108]. 

Neuroinflammation in post-ischemic stroke has been recognized to be largely modulated by activated microglia
within  the  CNS [109,110].  The  up-regulation  of  miR-155 within  microglia  was  identified  in  response  to  pro-
inflammatory cytokines and a decrease in a suppressor of cytokine signaling-1 (SOCS-1) expression simultaneously
[111]. A study exhibited miR-155 knockdown promoted protection against I/R injury (ischemic/reperfusion)  via
inhibition of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) as well as down-regulation of iNOS and COX-2
via MafB dependent manner [112]. Similarly, miR-181c down-regulation in BV-2 microglial cells was observed in
contrast  to  the  up-regulation  of  tumor  necrosis  factor-α  (TNF-α)  expression  under  oxygen-glucose  deprivation
(OGD) condition in vitro [113]. Another study illustrated miR-18 suppresses TLR4 (toll-like receptor-4) by directly
binding  to  3'-untranslated  region  of  TLR4 and  thus  a  potential  therapeutic  target  pathway  in  ischemic  stroke
management [114]. Similarly, miR-181a has been demonstrated to promote anti-inflammatory actions via the down-
regulation  of  IL1-α [115].  miR-145-5p is  a  key  regulator  of  Nurr1 (Nuclear  receptor  related-1 protein).  Over-
expression of miR-145-5p during the ischemic condition in both vivo and vitro has been shown to attenuate Nurr1
expression  and  TNF-α  up-regulation  simultaneously.  Thus,   promoting  further  neuronal  injury.  However,  the
administration of anti-miR-145-5p promoted Nurr1 expression and a significant reduction in infarct volume in acute
cerebral  ischemia  [116].  Over  the  last  decennium role  of  some miRNA has been  pinpointed  to  harmonize  the
quiescence state of microglia thus minimizing neuroinflammation in post-stroke condition. miR-124, miR-424, and
miR-let-7c-5p has shown to be key regulators of the quiescence state of microglia and thus promote neuroprotection
by inhibiting microglia activation in both vivo and vitro [117-119]. Similarly, miR-203 has been shown to negatively
regulate activation of microglia  via  MyD88-NF-κβ (myeloid differentiation primary response 88-NF-κβ) pathway
under ischemic condition [120]. miR-125b has been demonstrated to down-regulate ubiquitin-editing enzyme A20
and up-regulation of NF-κB concurrently in microglia in a P2X7 receptor-dependent manner [121]. Thus, making
miR-125b as a key modulator of microglia activation. 

To date, a total of 2300 human mature miRNAs have been identified [123] and further researches are been carried
out as we speak for the discovery of another few thousand or even more miRNAs. Nuclear factor erythroid 2-related
factor 2 (NRF2) is a leucine zipper protein (bZIP) that regulates the expression of antioxidant proteins in response to
oxidative stress [124] has been shown to have an association with 85 miRNAs and 7469 transcription factors till
date [125]. miR-424 has been showcased to decrease infarct volume, modulate apoptosis, up-regulate expression,
and  activation  of  manganese  superoxide  dismutase  (MnSOD),  superoxide  dismutase  (SOD),  and  NRF2 [126].
Similarly, miR-93 has been identified as pro-inflammatory miRNA. Treatment with miR-93 antagomir significantly
reduces  infarct  volume,  cortical  neuronal apoptosis,  and promotes  better neurological  scores  in C57BL/6J mice
[127].  Furthermore,  treatment  with  miR-93  antagomir  has  been  demonstrated  to  up-regulate  NRF2  and  heme
oxygenase-1 (HO-1) and luciferase reporter assay foresee direct binding of miR-93 at 3'-UTR target sites of NRF2
gene in the same study. Prostaglandin-endoperoxide synthase-2 also known as cyclooxygenase-2 or COX-2 has been
identified to produce reactive oxygen species (ROS) under chronic ischemic conditions [128]. miR-146a has been
identified to reduce IL-6 and COX-2 expression upon activation by IL-1β [129].

Following ischemic insult to the CNS; apoptosis, necrosis, and necroptosis are observed from the onset of symptoms
and may last for a  significant amount of time determining the severity of the insult. Apoptosis which is referred to
as the programmed cell death is both physiological and pathological. However, cerebrovascular accidents produce
pathological apoptosis. Several miRNAs have been studied to inhibit this pathological apoptosis, thus promoting
neuroprotection in post-ischemic stroke. miR-25 has been reported to express in brain ischemic tissues and a key
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regulator of I/R induced neuronal apoptosis via Fas/FasL down-regulation [130]. miR-200c has also been identified
to  reduce  CD95  mediated  apoptosis  via  FAP-1  (anti-apoptotic  gene)  dependent  manner  [131].  miR-99a  over-
expression in neuro-2a cells promoted neuroprotection against hydrogen peroxide (H2O2) via suppression of lactate
dehydrogenase (LDH) release and inhibition of H2O2 induced G1/S phase transition in neuro-2a cells along with a
significant reduction in cyclin D1 protein levels and down-regulation of CDK6 expression [132]. Thus, the miR-99a
overexpression target strategy in post-ischemic conditions might be a potential therapeutic intervention to minimize
neuronal apoptosis by re-entry to the cell cycle. miR-106b-5p was also identified as a key modulator of apoptosis in
I/R injury. Briefly, miR-106b-5p antagomir significantly reduces malondialdehyde (MDA) levels along with the
restoration  of  SOD, increase  expression  myeloid cell  leukemia-1 (Mcl-1)  and B cell  lymphoma-2 (Bcl-2),  and
significant reduction of Bax in male Sprague Dawley rats with middle cerebral artery occlusion (MCAO). In vitro,
miR-106b-5p antagomir up-regulate Mcl-1 and Bcl-2 levels along with down-regulation LDH and promoting SOD
activity in PC12 cells. Thus, it can be concluded that miR-106b-5p antagomir promotes neuronal protection against
apoptosis by up-regulating SOD activity both in  vivo and  vitro [133]. Another significant miRNA, miR-216a up-
regulation has been shown to promote neuroprotection against apoptosis and inflammation via negative regulation of
janus tyrosine kinase-2 (JAK2)/signal transducer and activator of transcription-3 (STAT3) signaling pathway [134].
A  handful  of  miRNA  and  their  associated  genes  and  pathophysiology  have  been  summarized  in  Fig.  4(A).
Furthermore, miRNAs have also been studied to promote neurogenesis [135-143] and angiogenesis [144-156] in
both vivo and vitro. A compact list of miRNAs involved in neurogenesis and angiogenesis has been listed in Table
1. 

circRNAs

A subtype of miRNAs has recently been identified as a key biomarking modality, which is circulating miRNAs
(circRNAs). circRNAs has been identified as an acute and chronic phase biomarker in various forms of  cancers
[157-160].  In  cerebrovascular  accidents,  standardized  assessment  of  the  incoming  patients  involves  imaging
evaluation which includes Non-Contrast CT (NCNT) or magnetic resonance imaging (MRI) to exclude intracerebral
hemorrhage (ICH) before IV-tPA. CTA (CT angiography) with CTP (CT perfusion) or MRA (MR angiography)
with  diffusion-weighted  magnetic  resonance  imaging  (DW-MRI)  with  or  without  MR  perfusion  is  also
recommended [161]. However, cost-effectiveness for the above-mentioned imaging modality still plays a crucial
drawback in the effective management of incoming patients. circRNAs are shown to be somewhat low cost-effective
and less time-consuming in trials. Early detection circRNAs associated with cerebrovascular insults can be a game-
changer  in  the  effective  and precise  management  of  the  disease.  A study conducted  on 48 patients  (24  acute-
ischemic strokes versus 24 vascular risk factor control) demonstrated that level of miR-122, miR-148a, Let-7i, miR-
19a, miR-320d, miR-4429 were significantly reduced as compared to elevated levels of miR-363, miR-487b in the
blood  plasma  of  acute-ischemic  stroke  patients  [162].  miR-124-3p,  miR-125b-5p,  and  miR-192-5p  were  also
demonstrated to be potential biomarkers in determining prognostic outcomes following IV-tPA [163]. miR-422a and
miR-125b-2-3p were showcased as potential biomarkers for ischemic stroke [164]. A list of circRNAs illustrating
association with cerebrovascular accidents and their respective changes in post-ischemic stroke plasma levels are
enlisted in Fig. 4(B) [162-173].

RNA modification

Similar to DNA modifications, RNA modifications have also been shown to be a regulator of gene expression [174-
182]. To date, RNA modifications include m6A (N6-methyladenosine), m6Am (N6,2’-O-dimethyladenosine), m1A
(N1-methyladenosine),  m5C(5-methylcytosine),  hm5C  (5-hydroxymethylcytosine),  ac4C  (N4-acetylcytidine),  ψ
(rotation  isomerization  of  uridine/  pseudouridine)  and  m7G  (7-Methylguanosine)  (Fig.  5).  m6A  (N6-
methyladenosine)  is one of the most commonly observed mRNA modifications [183] and was identified in the
1970s [184-186], however their association with small nuclear RNA (snRNA), mRNA, and long non-coding RNA
have recently understood [187]. Mapping of m6A over human and murine RNA has identified over 18,000 m6A sites
in 7,000 human genes with a consensus sequence of [G/A/U][G>A] m6A[U>A/C] [195-197]. m6A has also been
shown to be highly down-regulated during embryonic brain development in murine species and up-regulated in
adulthood  [195].  Furthermore,  the  silencing  of  m6A  methyltransferase  affects  gene  expression  and  modulate
p53(TRP53) signaling pathway and apoptosis [196]. Likewise,  m6Am, m1A, m5C, hm5C, ac4,  C, ψ, and m7G are
somewhat understood in the context of cancer and as potential biomarkers. For example, m1A was identified as a
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modulator of PI3K/AKT/mTOR and the ErbB pathway in gastrointestinal cancer [178] and m6A were showcased to
regulate the brain functions, development of synaptic plasticity, and their association in neuropsychiatric disorders
[188]. However, RNA modification and their association with cerebrovascular accidents are yet to be determined. 

Discussion

Advancements in stroke research have significantly decreased the death rate due to interventions in the hyperacute
stage of the disease.  However,  long-term disability and institutionalization of the post-stroke remain unchanged.
Stroke  being  a  complex,  multi-factorial  disease  in  which  a  wide  plethora  of  pathological  processes  are
simultaneously set in motion, and modulation of a single molecular factor is unlikely to be sufficient to attenuate or
reverse the progression of stroke pathology. However,  epigenetic alterations such as DNA methylation, Histone
modifications, miRNAs, and RNA modifications are potent modulators of gene regulation, and an accumulating
body of evidence suggests that they play a pivotal role in regulating brain remodeling after stroke. As a result,
efforts are being made to identify key molecular signatures and development of combination therapy strategy similar
to cancer [189]. 

DNA methylation has been one of the heavily researched topics over the last decade and their association regarding
risk factor prediction has been well documented. For example, DNA methylation of CDKN2B has been showcased
to  promote  increase  risk  of  arterial  calcification  in  ischemic  stroke  patients [190,191].   Similarly,  histone
modifications have been illustrated to be a regulator of gene expression [80,81,97,99]. However, miRNAs have been
demonstrated to be both key modulators of gene expression and potential biomarkers. For this reason, miRNAs have
acquired  a  significant  interest  in  target  therapies  as  pharmaceutical  intervention  because  a  single  miRNA can
influence networks of neuronal and/ or nonneuronal genes [192]. Another fascinating aspect of miRNAs is their
ability as peripheral biomarkers. miRNAs as biomarkers have been identified in several forms of cancers and a study
has showcased miRNAs abilities to determine the clinical outcome in breast cancer patients [193]. Studies have
illustrated  an  increase  in  associate  miRNA  level  increase  in  blood  plasma  within  a  few  hours  of  myocardial
infarction [194]. miRNAs as potential biomarkers in stroke have already been enlisted in our review and several
other potential miRNAs are currently undergoing evaluations for clinical practice. Similarly, studies have concluded
that  their lies a definite co-relationship between lncRNAs and the miRNAs. lncRNAs similar to protein-coding
genes, their genomic locations are heavily marked by enrichment of H3K4 trimethylation at the transcriptional site
and H3K36 trimethylation throughout the gene body. Studies in the field of cancer research have demonstrated that
lncRNAs can be a double-edged sword i.e. they can act as a tumor suppressor as well as oncogenic functions [207].
With the advancement in epigenetic research, lncRNAs have shown to be inhibited by a newly designed approach
known  as  Antisense  Oligonucleotide  (ASO)  technology,  which  causes  degradation  of  lncRNAs  in  RNase  H-
dependent manner [208]. For example, ASO-dependent depletion of lncRNA MALAT1, have been shown to impact
growth and metastasis of lung and breast cancer cells in murine species [209,210]. As mentioned earlier, MALAT1
has also been highly associated with stroke. A similar approach to depletion of MALAT1 to regulate post-stroke
apoptosis can be a key therapeutic approach.  

Studies undertaken to date have successfully demonstrated that stroke leads to epigenetic dysregulation which in
turn triggers a series of cascade changes that cause neuroinflammation, oxidative stress, apoptosis, and so on. Thus,
regulation of these key triggers such as cytokines, genes, miRNAs will be beneficial to produce the desired outcome
in post-stroke conditions.

Concluding Remarks

Advancement in technology has led to a new era of ‘epigenetics’ and knowledge we gather on stoke over the last
decade has led to the revolution of target and combination therapies. Further understanding of the key modulators at
the molecular level and their alteration in post-stroke conditions would be the answer to the long-standing problem
of GBD (Global Burden of Disease) for stroke.
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Figure legends

Fig.1 Pathophysiology and Mechanism involved in Ischemic and Hemorrhagic stroke. Color blue (top and middle
right) represents classification; color green represents pathophysiology involved and color red represents mechanism
involved  in  each  condition.  Briefly,  mechanisms  involved  in  both  ischemic  and  hemorrhagic  stroke  involves
decrease in cerebral blood flow (CBF) leading to oxygen (O2) deprivation causing increase in anaerobic metabolism
and  eventually  lactic  acidosis  which  sequentially  causes  astrocyte  demise  and  increase  in  neuroinflammatory
cytokines thus promoting neuroinflammation. Subsequently, decrease in CBF can also cause malfunction of ionic
pump causing potassium ions (K+) efflux and sodium and calcium (Na+ and Ca2+ respectively) influx into the
neuronal cells causing excitotoxicity, oxidative stress and eventually necrosis. 

Fig. 2 Illustrate common epigenetic modifications in stroke which include DNA-methylation, Histone modification,
micro-RNA(miRNA)  and  RNA  modifications.  DNA  methylation  occurring  exclusively  at  the  CpG  island  is
associated  with gene silencing and are  irreversible modifications.  Known histone modification occurring  at  the
amino terminal tails are short term reversible modifications. A microRNA (miRNA) is a small non-coding RNA
molecule  (containing  about  22 nucleotides)  found in plants,  animals  and some viruses,  that  functions in  RNA
silencing and post-transcriptional regulation of gene expression. RNA modifications are the chemical alteration of
the RNA molecules post transcription that alters the expression of RNA. 

Fig. 3  Histone Modifications; Fig. 3(A) Illustrate pictorial representation of all known till date post-translational
modification of histone amino terminal tail and their location regions. ; Fig. 3(B) provides a list of frequently used
histone  modified  regions,  functions  and  location  in  DNA  sequence  which  includes  H3K4me1,  H3K4me3,
H3K9me3, H3K27me3, H3K36me3, H3K79me2, H3K9Ac, H3K27Ac, H4K16Ac, H3S10P and Gamma H2A.X. ;
Fig. 3(C) portraits frequency used histone marks and their histone binding modules such as BRCT, bromodomain,
chromodomain, MBT, PHD, Tudor, WD40 repeats and 14-3-3. 

Fig. 4 Illustrate the role of microRNAs in post ischemic stroke condition. Figure 4(A) depicts microRNA(miR) and
their associative genes in neuroinflammation, apoptosis and oxidative stress in post-ischemic stroke. Rectangular
brown color  boxes  represents  miR in association with their  respective  genes  (purple  rectangular  boxes)  which
further  has  been indicated to their  respective  pathologies  (red,  blue and green).  Figure 4(B) Illustrate  a  list  of
circulating miR and associative levels in the circulation post-ischemic stroke. Post ischemic stroke the levels of
miR-363; miR-487b; miR-124; miR-125b-2; miR-27a, miR-422a; miR-488; miR-627; miR-290; hsa-miR-106b-5P;
hsa-miR-4306; miR-10a; miR-182; miR-200b; miR-298 significantly increases whereas miR-210; miR-122; miR-
148a; Let-7i; miR-19a; miR-320d; miR-4429; miR-30a; miR-126; hsa-miR-320e; hsa-miR-320d; miR-124; miR-9;
miR-219 levels decrease in the blood plasma. The changes in various miR levels in the blood plasma has been
strongly  indicative  parameter  in  distinguishing  acute  versus  chronic  stroke  presentation  and  thus  further
investigation is necessary in determining their use in the clinical settings. 

Fig.  5  Illustrate  DNA to  RNA transcription;  followed  by  possible  mRNA (messenger  RNA)  modifications  at
different  nitrogen  bases.  N6-methyladenosine:  m6A;  Pseudouridine:  Ψ;  5-methylcytosine:  m5C;  5-
hydroxymethylcytidine: hm5C; N1- methyladenosine: m1A; 7-Methylguanosine: m7G; N6,2’-O-dimethyladenosine:
m6Am. (Abbreviations:  3’UTR:  Three  prime untranslated  region;  CDS:  CoDing Sequence;  5’UTR: Five  prime
untranslated region).
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