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Abstract
This study considers the problem of control-synchronization for chaotic systems involv-
ing fractional derivative with a non-singular kernel. Using an extension of the Lyapunov
Theorem for systems with Atangana-Baleanu-Caputo (ABC) derivative, a suitable control
scheme is designed to achieve matrix projective synchronization (MP) between noniden-
tical ABC systems with di¤erent dimensions. The results are exempli�ed by the ABC
version of the Lorenz system, Bloch system, and Liu system. To show the e¤ectiveness of
the proposed results, numerical simulations are performed based on the Adams-Bashforth-
Mounlton numerical algorithm.
Keywords: Matrix projective synchronization. Chaos. Atangana-Baleanu-Caputo frac-
tional derivative. Mittag-Le­ er function. Lyapunov method.
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1 Introduction

Fractional derivative, as an extension of the classical derivative to its non-integer deriva-
tive counterpart, has been signi�cantly studied and successfully applied in various �elds,
including, bioengineering, electrical engineering, signal processing, chemical mixing, and
�uid mechanics [1-5]. Several de�nitions of fractional di¤erential operators have been
proposed, where the kernel of these operators can be non-local and singular as proposed
by the de�nitions of Riemann-Liouville and Liouville-Caputo [6] or local and non-singular
as in the de�nition of Caputo-Fabrizio [7]. Based on the generalized Mittag-Le­ er func-
tion, Atangana and Baleanu introduced a new de�nition of the fractional derivative with
non-local and non-singular kernel [8]. Due to the nature of this kernel, models with ABC
fractional derivative can capture the memory e¤ects that exist in real-life problems. Many

1



2

practical problem have been modeled using this derivative such as the computer worms
model (SEIRA model) [9], a nano�uids model [10], the predator-prey ecosystem model
[11], the coronavirus model (COVID-19 model) [12], and some other interesting results
can be found in [13-15].
Chaos is a complex behavior exhibited by some natural systems. This complexity

is due to the noise-like signals, random trajectories, and the sensitivity to initial condi-
tions of such systems. The pioneering study of Pecora and Carroll [16] showed that the
synchronization of two chaotic systems is possible.
Chaos synchronization refers to a phenomenon where two chaotic systems progress

in strong correlations and converge towards the same behavior [17]. Recently, there has
been a great deal of interest in the synchronization of fractional chaotic systems. Vari-
ous methods and techniques have been introduced to achieve synchronization in chaotic
systems with Caputo derivative including linear and nonlinear control, adaptive control,
feedback control, active control [18-25]. Moreover, some synchronization types have been
extended to fractional systems with this derivative, these include complete synchroniza-
tion, anti-synchronization, projective synchronization, Q � S synchronization, full state
hybrid projective synchronization, generalized synchronization, ��� synchronization and
� � � synchronization [26-33]. Among them, the matrix projective synchronization has
been applied intensively in secure communications and information processing [34, 35].
Nevertheless, the synchronization of chaotic systems with ABC derivative is almost un-
explored.
Motivated by the above discussion, this study aims to investigate the synchronization

between chaotic systems with ABC derivative. Using an extension of the Lyapunov The-
orem, su¢ cient conditions to achieve matrix projective synchronization for non-identical
systems with di¤erent dimensions will be established.
The remainder part of this paper is organized as follows. Some basic de�nitions and

important lemmas are given in section 2. In section 3 we propose a numerical scheme to
solve the chaotic systems in ABC sense. Our main result is presented in section 4. Section
5 presents the application of our results. Finally, section 6 is devoted to the conclusion.

2 Basic concepts

In this section, we outline the Atangana-Baleanu fractional derivation and we recall to
some important propositions.

De�nition 2.1 [8] The fractional derivative in the Atangana-Baleanu-Caputo operator
of a function f is de�ned as,

ABCD�
t f(t) =

B(�)

1� �

Z t

0

f 0(�)E�

�
��
1� �

(t� �)�
�
d� ; (1)
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where, � 2 (0; 1) is the order of the fractional derivative (1), B(�) is a normalization
function such that B(0) = B(1) = 1 and t > 0.
In this de�nition E�(z) is the Mettag-Le­ er function of one parameter

E�(z) =
1X
k=0

zk

�(�k + 1)
: (2)

The associated ABC fractional integral is

ABCI�t f(t) =
1� �

B(�)
f(t) +

�

B(�)�(�)

Z t

0

f(�)(t� �)��1d� : (3)

The following results are the extension of the Lyapunov Theorem and Alikhanov-
Aguila lemma for the ABC derivative.

Theorem 2.1 [36] Let X = 0 be the trivial solution of system

ABCD�
t X (t) = G (X (t)) ; (4)

where X (t) = (x1 (t) ; x2 (t) ; :::; xn (t))
T and G : Rn ! Rn: Suppose there exists a positive

de�nite Lyapunov function V (X (t)) such that ABCD�
t V (X (t)) < 0, for all t > 0, then

X = 0 is asymptotically stable.

Lemma 2.1 [36] 8t > 0 and � 2 (0; 1) :

ABCD�
t

�
XT (t)X(t)

�
� 2XT (t)

�
ABCD�

t (X(t))
�
: (5)

3 Numerical scheme

In this paper, we use an ABC version of the Adams-Bashforth-Mounlton numerical algo-
rithm [37] to solve the fractional equation in ABC sense:

ABCD�
t x (t) = f(x(t)): (6)

Where 0 < � � 1; t 2 [0; T ] ; T > 0 and the operator in left-hand side of this equation is
the ABC operator de�ned by (1). Applying the ABI�t integral in both side of (6), we get
the Voltera integral equation

x(t) = x(0) +
1� �

B(�)
f(x(t)) +

�

B(�)�(�)

tZ
0

(t� �)��1f(x(�))d� ; (7)
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given a uniform grid ftk = k:dt; k = 0; : : : ; nTg, where dt = T
nT
and nT is positive integer,

the solution of (7) at tk can be written as

x(tk+1) = x(0) +
1� �

B(�)
f(x(tk+1)) +

�

B(�)�(�)

kX
j=0

tj+1Z
tj

(tk+1 � �)��1f(x(�))d� : (8)

The approximation of the integral in (8), in each interval [tj; tj+1] by the trapezoidal
quadrature formula, leads to the ABC-predictor-corrector scheme:8>>>><>>>>:

xPk+1 = x(0) + 1��
B(�)

f(xk) +
�

B(�)�(�)

kX
j=0

bj;k+1 f(xj);

xk+1 = x(0) + 1��
B(�)

f(xPk+1) +
�

B(�)�(�)

kX
j=0

aj;k+1f(x(tj)) + ak+1;k+1 f(x
P
k+1);

(9)

where

aj;k+1=
(dt)�

�(�+ 1)

8><>:
k�+1 � (k � �)(k + 1)�; j = 0;

(k � j + 1)�+1 + (k � j)�+1 � 2(k � j + 1)�+1; 1 � j � k;

1; j = k + 1;

and
bj;k+1=

(dt)�

�
[(k � j + 1)� � (k � j)�] ; 0 � j � k:

In the numerical simulation, we can choose B(�) as

B(�) = 1� �+
�

�(�)
:

4 Synchronization

In this section, we will construct the synchronization controllers to achieve synchronization
between two commensurate ABC fractional-order systems. We consider the master and
the slave systems,

ABCD�
t x = f (x) ; (10)

ABCD�
t y = Ay + g(y) + U; (11)

where x = (xi(t)); (i = 1; : : : ; n) and y = (yj(t)); (j = 1; : : : ;m) are states of the master
system (10) and the slave system (11) respectively; f = (fi)1�i�n and g = (gi)1�i�m are
non linear continuous functions, A = (aij)m�m; and U = (Uj); (j = 1; : : : ;m) is a control
law to be designed.
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De�nition 4.1 The master and thr slave systems (10)-(11) are said to matrix projective
(MP) synchronized if there exists a constant matrix M and a suitable controller U such
that the synchronization error

e(t) = y(t)�Mx(t) (12)

satisfy
lim
t!1

ke(t)k = 0 (13)

Theorem 4.1 The master and thr slave systems (10)-(11) are MP synchronized under
the following control law

U =M ABCD�
t x� Ay � g(y) + (A�B)e (14)

where B = (bij)m�m is a control matrix such that A�B is negative de�nite.

Proof. By substituting the controllers (14) into the system (11), we get

ABCD�
t y �MABCD�

t x = (A�B)e;

so,
ABCD�

t e(t) = (A�B)e(t): (15)

The MP synchronization error de�ned in (12) converge to zero over the time if and only
if the zero steady-state of the synchronization error system (15) is asymptotically stable.
Now if we choose the Lyapunov function by

V (e(t)) =
1

2
eT (t)e(t);

then, the ABC derivative of the above function with respect to time and of order � yields

ABCD�
t V (e(t)) =

1

2

ABC

D�
t

�
eT (t)e(t)

�
:

Using Lemma 2.1, we get

ABCD�
t V (e(t))� eT (t)ABCD�

t (e(t))

= eT (t)(A�B)e(t) < 0:

From ABC fractional Lyapunov stability Theorem 2.1, we conclude that the zero steady-
state of the error system (15) is asymptotically stable and therefore, the master system
(10) and the slave system (11) are MP synchronized.
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5 Applications

To show the applications of the developed scheme to non-identical chaotic systems, we
propose two master-slave formulations. The �rst one concerns the chaotic systems with
the same dimension. While the second one examines the chaotic systems with di¤erent
dimensions.
As master system, we consider the fractional 3D-Lorenz system in the ABC sense [38]

is described as follows 8><>:
ABCD�

t x1 = �(x2 � x1);
ABCD�

t x2 = x1(�� x3)� x2;
ABCD�

t x3 = x1x2 � 
x3:

(16)

This system exhibits chaotic behavior when (�; �; 
) = (10; 28; 8
3
) and � = 0:995; the

chaotic attractors are shown in Figure 1.

Figure 1: The chaotic attractors of the system (16) for � = 0:995 and
(�; �; 
) = (10; 28; 8

3
):
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5.1 MP synchronization of ABC-chaotic systems with the same
dimension

Consider as slave system, the controlled fractional 3D-Bloch system in ABC sense [39]8><>:
ABCD�

t y1 =  y2 + �y3(y1 sin(�)� y2 cos(�))� 1
T2
y1 + u1;

ABCD�
t y2 = � y1 � y3 + �y3(y2 sin(�) + y1 cos(�))� 1

T2
y2 + u2;

ABCD�
t y3 = y2 � �y3 sin(�)(y

2
1 + y22)� 1

T1
(y3 � 1) + u3;

(17)

where ui; i = 1; 2; 3 are synchronization controllers. For a speci�c values of parameters
 = 1:26; � = 10; � = 0:7764; T1 = 0:5, T2 = 0:25 and � = 0:95; the chaotic behavior of
the Bloch model (i.e. system (17) with ui = 0; i = 1; 2; 3) is shown in Figure 2.

Figure 2: The chaotic attractors of the system (17) for � = 0:95,  = 1:26; � = 10;
� = 0:7764; T1 = 0:5, T2 = 0:25.
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Comparing with the notation in (11), the linear and the nonlinear parts of the system
(17) are described as follows

A =

0B@�
1
T2
 0

� 1
T2
�1

0 1 � 1
T1

1CA ; g(y) =

0B@ �y3(y1 sin(�)� y2 cos(�))

�y3(y2 sin(�) + y1 cos(�))

��y3 sin(�)(y21 + y22) +
1
T1

1CA :

The MP error synchronization system between the master system (16) and the controlled
system (17) is de�ned as 0B@e1e2

e3

1CA =

0B@y1y2
y3

1CA�M

0B@x1x2
x3

1CA
where,

M =

0B@1 0 0

0 1 0

1 0 1

1CA
According to Theorem 4.1, if we choose

B =

0B@ 0 0 0

� 0 0

0 1 2
T1

1CA ;

then, the control law ui; i = 1; 2; 3 are designed as

u1=
x1
T1
�  x2 + y1y3 � � sin(�)y1y3 +

ABCD�
t x1;

u2=x1 +
x2
T2
+ x3 +  y1 � � cos(�)y1y3 � � sin(�)y2y3 +

ABCD�
t x2;

u3=
1

T1
(3x1 + 3x3 � 2y3)� (1 + y2) + � sin(�)(y21 + y22) +

ABCD�
t (x1 + x3);

since

A�B =

0B@�
1
T2

 0

0 � 1
T2
�1

0 0 � 3
T1

1CA
is negative de�nite, therefore, according to the Theorem 4.1, the Lorenz system (16) and
the Bloch system (17) are MP synchronized in 3-dimension.
To illustrate the above results numerically, the ABC-predictor-corrector scheme (9) is

used to solve the MP-synchronization error system associated to the master-slave systems
(16)-(17) and described by
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8><>:
ABCD�

t e1 = � 1
T2
e1 +  e2;

ABCD�
t e2 = � 1

T2
e2 � e3;

ABCD�
t e3 = � 3

T1
e3;

(18)

where the initial conditions for the Lorenz system (16) and the Bloch system (17)
are (x1(0), x2(0), x3(0)) = (5,-6,2) and (y1(0); y2(0); y3(0)) = (11; 3; 1), respectively. So
the initial conditions for the error system (18) are (e1(0); e2(0); e2(0)) = (6; 9;�6). The
synchronization errors states evolution are provided in Figure 3. This evolution indicates
successful MP-synchronization between systems (16) and (17).

Figure 3: The time evolution of the error system (18).

5.2 Synchronization of chaotic systems with di¤erent dimen-
sions

In this case, to have a model of a slave system with di¤erent dimensions from the master
system (16), we extended the 4D-Liu system [40] to the ABC sense by replacing the
integer order derivative by the ABC fractional derivative. We get the controlled ABC Liu
system 8>>><>>>:

ABCD�
t y1 = 10(y2 � y1) + y4 + u1;

ABCD�
t y2 = 40y1 + 0:5y4 � y1y3 + u2;

ABCD�
t y3 = �2:5y3 + 4y21 � y4 + u3;

ABCD�
t y4 = �2

3
y2 � y4 + u4;

(19)
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where ui; i = 1; : : : ; 4 are synchronization controllers. Using the scheme (9), we
investigate the existence of chaotic behavior of the system (19) for � = 0:94; which is
shown in Figure 4.

Figure 4: The chaotic attractors of the system (19) for � = 0:94:

Comparing with (11), the linear and the nonlinear parts of the system (19) are de-
scribed as follows

A =

0BBB@
�10 10 0 1

40 0 0 1
2

0 0 �5
2
�1

0 �2
3

0 �1

1CCCA ; g(y) =

0BBB@
0

�y1y3
4y21
0

1CCCA :
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The MP error synchronization system between the master system (16) and the controlled
system (19) is de�ned as 0BBB@

e1
e2
e3
e4

1CCCA =

0BBB@
y1
y2
y3
y4

1CCCA�M

0B@x1x2
x3

1CA ;

where,

M =

0BBB@
1 0 0

0 2 0

0 0 3

4 0 0

1CCCA :

According to the Theorem 4.1, if we choose

B =

0BBB@
0 10 0 1

0 2 0 1
2

0 0 0�1
0 0 0 1

1CCCA ;

then, the controllers ui; i = 1; : : : ; 4 are designed as

u1=10x1 � 10y2 � y4 +
ABC D�

t x1;

u2=40x1 + 4x2 � 2y2 + y1y3 � 0:5y4 +ABC D�
t (2x2);

u3=�4y21 + 7:5x3 + y4 +
ABC D�

t (3x3);

u4=8x1 +
4

3
x2 � y4 +

ABC D�
t (4x1):

Obviously, the matrix

A�B =

0BBB@
�10 0 0 0

40 �2 0 0

0 0 �5
2
0

0 �2
3
0 �2

1CCCA
is negative de�nite so the Lorenz system (16) and the Liu system (19) are MP-synchronized
in 4-dimension.
Synchronization error system associated to the master-slave systems (16) and (19) is

described by 8>>><>>>:
ABCD�

t e1 = �10e1;
ABCD�

t e2 = 40e1 � 2e2;
ABCD�

t e3 = �5
2
e3;

ABCD�
t e4 = �2

3
e2 � 2e4;

(20)
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where the initial conditions for the Lorenz system (16) and the Liu system (19) are
(x1(0),x2(0),x3(0)) = (1;�2; 7)and (y1(0); y2(0); y3(0); y4(0)) = (8;�1; 1; 3), respectevely.
So the initial conditions for the error system (20) are (e1(0); e2(0); e2(0); e4(0)) = (7; 3;�20;�1).
The time evolution of the synchronization error system states are provided in Figure 5.
Which indicates successful MP-synchronization between the 3D-Lorenz system (16) and
the 4D-Liu system (19).

Figure 5: The time evolution of the error system (20).

6 Conclusion

In the present paper, we investigated the problem of chaos synchronization in chaotic
systems with the Atangana-Baleanu-Caputo derivative. First, we proposed the master-
slave formulation for the matrix projective synchronization and we introduced a novel
control scheme to achieve synchronization between chaotic systems with the same or
di¤erent dimensions. Numerical simulations are performed to verify the e¤ectiveness of
the approach developed herein. The scheme presented in this paper can be applied to
various classes of chaotic systems with derivative in ABC sense.
In our future research, we will extend di¤erent types of synchronization [27-28], to

fractional chaotic systems with discrete Mittag-Le­ er Kernels. Moreover, we plan to
study the control and synchronization of spatiotemporal models with ABC time fractional
derivative [43, 44].
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