References
1. Reiniger L, Bödör C, Bognár Á, et al. Richter’s and prolymphocytic
transformation of chronic lymphocytic leukemia are associated with high
mRNA expression of activation-induced cytidine deaminase and aberrant
somatic hypermutation. Leukemia . 2006;20(6):1089-1095.
2. Foucar K, Rydell RE. Richter’s syndrome in chronic lymphocytic
leukemia. Cancer . 1980;46(1):118-134.
3. Rana C, Sharma S, Agarwal M. Prolymphocytic and Richter’s
Transformation in Peripheral Blood: A Case Report and Review of
Literature. J Hematol . 2014;3(3):86-88.
4. Jaffe ES, Harris NL, Stein H, Vardiman JW. WHO Classification of
Tumors of Hematopoietic and Lymphoid Tissues. In: Pathology and
Genetics of Tumors of Hematopoietic and Lymphoid Tissues . IARC Press:
Lyon; 2001.
5. Richter MN. Generalized Reticular Cell Sarcoma of Lymph Nodes
Associated with Lymphatic Leukemia. Am J Pathol .
1928;4(4):285-292.
6. Tsimberidou A-M, Keating MJ. Richter syndrome: biology, incidence,
and therapeutic strategies. Cancer . 2005;103(2):216-228.
7. Bockorny B, Codreanu I, Dasanu CA. Hodgkin lymphoma as Richter
transformation in chronic lymphocytic leukaemia: a retrospective
analysis of world literature. Br J Haematol . 2012;156(1):50-66.
8. Rossi D, Gaidano G. Richter syndrome: pathogenesis and management.Semin Oncol . 2016;43(2):311-319.
9. Tsimberidou A-M, O’Brien S, Khouri I, et al. Clinical outcomes and
prognostic factors in patients with Richter’s syndrome treated with
chemotherapy or chemoimmunotherapy with or without stem-cell
transplantation. J Clin Oncol Off J Am Soc Clin Oncol .
2006;24(15):2343-2351.
10. Jain P, Keating M, O’Brien S.
Richter’s syndrome – update on biology and management. Expert
Opin Orphan Drugs . 2014;2(5):453-463.
11. Yamamoto K, Yakushijin K, Sanada Y, Kawamoto S, Matsuoka H, Minami
H. Coexistent t(8;21)(q22;q22) Translocation and 5q Deletion in Acute
Myeloid Leukemia. J Clin Exp Hematop JCEH . 2015;55(3):181-185.
12. Al-Harbi S, Aljurf M, Mohty M, Almohareb F, Ahmed SOA. An update on
the molecular pathogenesis and potential therapeutic targeting of AML
with t(8;21)(q22;q22.1);RUNX1-RUNX1T1. Blood Adv .
2020;4(1):229-238.
13. Lam K, Zhang D-E. RUNX1 and RUNX1-ETO: roles in hematopoiesis and
leukemogenesis. Front Biosci J Virtual Libr . 2012;17:1120-1139.
14. Sood R, Kamikubo Y, Liu P. Role of RU NX 1 in hematologic
malignancies. Blood 2017:129(15): 2070-2082
15. Libermann TA, Pan Z, Akbarali Y, Hetherington CJ, Boltax J, Yergeau
DA, Zhang D. AML1 (CBFα2) Cooperates with B Cell-specific Activating
Protein (BSAP/PAX5) in Activation of the B Cell-specific BLK Gene
Promoter. J Biol Chem 1999; 274(35): 24671-24676
16. Grossmann V, Kern W, Harbich S, Alpermann T, Jeromin S, Schnittger
S, Haferlach T, Kohlmann A. Prognostic relevance of RUNX 1 mutations in
T–cell acute lymphoblastic leukemia. Haematologica 2011; 96(12):
1874-1877.
Figure 1: Peripheral blood showing prolymphocytic
transformation to CLL cells (1A) and bone marrow biopsy with
transformation of CLL to prolymphocytic leukemia (1B).
Figure 2: Cytogenetics showed an abnormal male karyotype with
six out of twenty metaphases showing a translocation between chromosomes
8 and 21 in addition to trisomy 12 (2A), while remaining metaphases
showed a normal karyotype (2B)