Aquac. Res.
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., et al. (2017). vegan: Community Ecology Package.R Packag. ver. 2.4–3 .
Pielou, E.C. (1975). Ecological Diversity . Wiley, New York, NY, USA.
R Core Team. (2017). R: A Language and Environment for Statistical Computing. R Found. Stat. Comput. Vienna, Austria .
Rawls, J.F., Mahowald, M.A., Ley, R.E. & Gordon, J.I. (2006). Reciprocal Gut Microbiota Transplants from Zebrafish and Mice to Germ-free Recipients Reveal Host Habitat Selection. Cell , 127, 423–433.
Reznick, D.A., Bryga, H. & Endler, J.A. (1990). Experimentally induced life-history evolution in a natural population. Nature , 346, 357–359.
Reznick, D.N., Bassar, R.D., Handelsman, C.A., Ghalambor, C.K., Arendt, J., Coulson, T., et al. (2019). Eco-evolutionary feedbacks predict the time course of rapid life-history evolution. Am. Nat. , 194, 671–692.
Reznick, D.N. & Bryga, H. (1987). Life-History Evolution in Guppies (Poecilia reticulata): 1. Phenotypic and Genetic Changes in an Introduction Experiment. Evolution. , 41, 1370.
Reznick, D.N., Rodd, F.H. & Cardenas, M. (1996). Life-history evolution in guppies (Poecilia reticulata: Poeciliidae). IV. Parallelism in life-history phenotypes. Am. Nat.
Reznick, D.N., Shaw, F.H., Rodd, F.H. & Shaw, R.G. (1997). Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science. , 275, 1934–1937.
Roeselers, G., Mittge, E.K., Stephens, W.Z., Parichy, D.M., Cavanaugh, C.M., Guillemin, K., et al. (2011). Evidence for a core gut microbiota in the zebrafish. ISME J. , 5, 1595–1608.
Russell, J.A., Moreau, C.S., Goldman-Huertas, B., Fujiwara, M., Lohman, D.J. & Pierce, N.E. (2009). Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc. Natl. Acad. Sci. U. S. A. , 106, 21236–21241.
Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods , 9, 671–5.
Sevellec, M., Derome, N. & Bernatchez, L. (2018). Holobionts and ecological speciation: the intestinal microbiota of lake whitefish species pairs. Microbiome , 6, 47.
Sibly, R.M., Townsend, C.R. & Calow, P. (1981). Strategies of digestion and defecation. In: Physiological ecology: an evolutionary approach to resource use . Sinauer Associates, pp. 109–139.
Smith, C.C.R., Snowberg, L.K., Gregory Caporaso, J., Knight, R. & Bolnick, D.I. (2015). Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME J. , 9, 2515–2526.
Spor, A., Koren, O. & Ley, R. (2011). Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. Microbiol. , 9, 279–90.
Stoll, S., Gadau, J., Gross, R. & Feldhaar, H. (2007). Bacterial microbiota associated with ants of the genus Tetraponera. Biol. J. Linn. Soc. , 90, 399–412.
Sullam, K.E., Essinger, S.D., Lozupone, C.A., O’Connor, M.P., Rosen, G.L., Knight, R., et al. (2012). Environmental and ecological factors that shape the gut bacterial communities of fish: A meta-analysis. Mol. Ecol. , 21, 3363–78.
Sullam, K.E., Rubin, B.E.E.R.R., Dalton, C.M., Kilham, S.S., Flecker, A.S. & Russell, J.A. (2015). Divergence across diet, time and populations rules out parallel evolution in the gut microbiomes of Trinidadian guppies. ISME J. , 9, 1508–1522.
Travis, J., Reznick, D. & Bassar, R.D. (2014). Do eco-evo feedbacks help us understand nature? Answers from studies of the Trinidadian guppy. Adv. Ecol. Res. , 50, 1–40.
Turnbaugh, P.J. & Gordon, J.I. (2009). The core gut microbiome, energy balance and obesity. In: Journal of Physiology . pp. 4153–4158.
Vuong, H.E., Yano, J.M., Fung, T.C. & Hsiao, E.Y. (2017). The Microbiome and Host Behavior. Annu. Rev. Neurosci. , 40, 21–49.
Yilmaz, P., Parfrey, L.W., Yarza, P., Gerken, J., Pruesse, E., Quast, C., et al. (2014). The SILVA and “all-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. , 42.
Zandonà, E., Auer, S.K., Kilham, S.S., Howard, J.L., López-Sepulcre, A., O’Connor, M.P., et al. (2011). Diet quality and prey selectivity correlate with life histories and predation regime in Trinidadian guppies. Funct. Ecol. , 25, 964–973.
Zandonà, E., Auer, S.K., Kilham, S.S. & Reznick, D.N. (2015). Contrasting population and diet influences on gut length of an omnivorous tropical fish, the trinidadian guppy (poecilia reticulata).PLoS One , 10, 1–18.
Zandonà, E., Dalton, C.M., El-Sabaawi, R.W., Howard, J.L., Marshall, M.C., Kilham, S.S., et al. (2017). Population variation in the trophic niche of the Trinidadian guppy from different predation regimes.Sci. Rep. , 7, 5770.
Zhu, L., Wu, Q., Dai, J., Zhang, S. & Wei, F. (2011). Evidence of cellulose metabolism by the giant panda gut microbiome. Proc. Natl. Acad. Sci. , 108, 17714–17719.
Zilber-Rosenberg, I. & Rosenberg, E. (2008). Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution.