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Abstract

Recently He et al. [31] derived an analytical solution of the system of Lane-Emden equations by using the
Taylor series method and computed a closed-form solution of the system of Lane-Emden equations subject
to given initial conditions. In this work, this method is further explored and extended to a class of nonlinear
ODEs, PDEs, a system of Nonlinear ODEs and PDEs subject to certain Initial conditions and boundary con-
ditions. In some cases, we could find exact solutions and if that is not possible then we compute approximate
solutions. We have compared these solutions with other existing techniques and showed that the method is
simple and superior to other existing iterative techniques. We have also provided Mathematica codes which
user may find useful and can compute solutions as per their need.

Keywords: Taylor Series; Singular Boundary Value Problem; KDV equation; Burgers’ Equation; System of
Burgers Equation;
AMS Subject Classification:35K60; 34B16

1 Introduction
For many years researchers used various real-life examples as test problems like Lane-Emden type equations,
Burger equations, KDV equation, etc. to verify numerical methods. Lane-Emden type equations arise in various
physical phenomena that occur in astrophysics and mathematical physics like stellar structure, thermionic cur-
rents, thermal explosions, radiative cooling, CTC, etc. In this work, we focus on such models by considering the
following equation (

xβy′(x)
)′
+ xβf(x, y) = 0, 0 < x < 1 (1.1)

where β ≥ 0, f : R × R → R subject to both initial and boundary conditions. The status of the theoretical
and numerical work on Lane-Emden type equations are well known. Many authors such as Dunninger et. al.
([15, 14]), Zhang ([61, 62]), Pandey et. al. ([43, 44, 47, 48, 49]) etc. used equation (1.1) to develop theoretical
results and Russell et. al. ([51, 52]), Chawla et. al. ([8, 9, 11, 12, 10]), Jain et. al. ([33]), Pandey ([41, 42])
applied finite difference technique to find the numerical solution. Apart from these techniques many authors
applied different types of numerical methods like rational Legendre approximation technique ([34]), methods
based on splines polynomials ([35, 6, 50, 38]), different types of collocation approaches ([4, 45, 60, 40, 37]),
methods based on Legendre function ([59, 46, 7]), Haar wavelets and other orthonormal polynomial wavelets
([56, 57, 55]), NSFD method [58] etc.

We also focus on Burgers’ equation which is highly nonlinear and one dimensional analogue of Navier Stokes
equation. It has a long history (Bateman [3]) and huge number of articles are available on Burgers; equations, its
various generalisations to various forms in one dimension, two dimension and as system of nonlinear PDEs. Since
exact solution of Burgers’s equation fails for small viscosity it has posed great challenges to researchers to find its
analytical solution. Fay [18] gave its solution in a particular set up. Hopf [32] and Cole [13] computed the exact
solutions by transforming the Burger’s equation to heat equation. Group theoretic methods for calculating the
solution of Burgers’ equation with appropriate boundary and initial conditions is proposed by Abd-el-Malek [16].
We list some existing methods which has been used to compute the analytical solutions of Burgers’ equation:
Hopf and Cole transformation ([32, 13]), Group theoretic method ([16]), Adomian decomposition method ([19]),
Variation iteration method ([5, 2, 22, 23]), Tanh-function method ([53, 17]), Variational Principle ([29, 26, 30,
24, 25]), Taylor series solution ([20, 27, 31, 28]).
∗alajjav1111@gmail.com
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He ([31]) derived an analytical solution of a system of Lane-Emden equations by using the Taylor series method
and computed closed form solution of a system of Lane-Emden equations subject to given initial conditions. After
that, he applied this method on fractal Bratu-type equation ([20]) arising in the electrospinning process and third
order boundary value problem ([21]) arising in Architectural Engineering to derive the approximate solution which
gives better accuracy than other methods. A lot of investigations are still pending and to address some of these we
consider singular BVP, KDV equation, and Burgers equations. Our main aim is to extend the numerical results
of He [31] and explore it further. We present several Mathematica codes for this method corresponding to IVP,
BVP, SBVP, coupled IVP, coupled SBVP to find the approximate and exact solutions with the best accuracy. We
test each Mathematica code by considering different real-life problems of the form (1.1) and compare our results
with existing numerical results. We also extend the numerical results to Burger’s equations, KDV equation, and
system of nonlinear PDEs corresponding to initial conditions.

We have summarised the paper in a total of six sections. In section 2, we describe the Taylor series method.
We have listed Mathematica codes in section 3. Several test examples are presented in section 4. We have derived
exact solutions of Burgers’ equations, KDV equation, and system of nonlinear 2 Dimensional Burgers’ equation
in section 5. Finally, we draw our main conclusion along with future scope in section 6.

2 Description of the method
Let us assume that the solution y(x) of equation (1.1) is n times differentiable at x = 0 and can be written as in
the following Taylor series expansion

yTaylor(x) ≈
n∑
i=0

y(i)(0)

i!
xi, (2.1)

where y(i)(0) are unknown coefficients which are to be determined. Now, differentiating equation (1.1) n times
with respect to x, we have

di

dxi

((
xβy′(x)

)′
+ xβf(x, y)

)
= 0, for i = 0, 1, · · · , n (2.2)

and setting x = 0. Therefore, by using initial conditions and equations (2.2) we can easily determine the unknown
constants y(i)(0) for i = 0, 1, · · · , n. Finally, the exact solution of equation (1.1) can be written as

y(x) = lim
n→∞

yTaylor(x). (2.3)

For better understanding, we consider the simple linear IVP

y′ =
1

1 + x
, y(0) = 0. (2.4)

Differentiating equation (2.4) with respect to x three time, we have

y′′ = − 1

(1 + x)2
, y′′′ =

2

(1 + x)3
& y′′′′ = − 6

(1 + x)4
. (2.5)

Therefore, by setting x = 0, we have

y′(0) = 1, y′′(0) = −1, y′′′(0) = 2 & y′′′′(0) = −6. (2.6)

So, from equation (2.1) we have the first order, second order, third order and fourth order approximation are as
follows

yTaylor(x) ≈ x, x− x2

2
, x− x2

2
+
x3

3
& x− x2

2
+
x3

3
− x4

4
. (2.7)

By similar analysis, for n→∞ we have the exact solution, which is

y(x) = x− x2

2
+
x3

3
− x4

4
+ · · · = log(1 + x). (2.8)

We provide an algorithm of the Taylor series method which is used to develop code for different real life problems
to compute the solution.
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2.1 Algorithm
Step 1. Fix the value of n (number of terms of the Taylor series).
Step 2. Input the differential equation (1.1) and corresponding initial conditions.
Step 3. Differentiate equation (1.1) with respect to x upto n times and put x = 0.
Step 4. Identify the unknown constants y(i)(0) for i = 0, 1, · · · , n and solve the system of equations as in Step 3.
Step 5. Substitute all the values of y(i)(0) for i = 0, 1, · · · , n in equation (2.1) to get the solution.

3 Mathematica Codes
By using the algorithm 2.1 and Mathematica 11.3 software, we develop codes for this method corresponding to
second-order IVP, BVP, coupled IVP, and coupled BVP to find the approximate and exact solutions with the
best accuracy.

3.1 IVP
We consider the following initial value problem

y′′ +
α

x
y′ + g(x, y) = 0, 0 < x < 1 (3.1)

y(0) = c & y′(0) = d, (3.2)

where c, d are constants and g(x, y) be arbitrary function of x and y. Below we present a Mathematica code for
(3.1) and (3.2) which gives Taylor series solution upto nth terms.

n = 3; (*Order of the Taylor series solution*)

α = 2;

f = x (y''[x]) + α y'[x] + x (g (x, y[x])); (*Differential equation of the form (1.1)*)

y[0] = c; (*Where c is constant/Initial condition*)

y'[0] = d; (*Where d is constant/Initial condition*)

For[i = 0, i ≤ n, i++, Print[Fi = D[f, {x, i}]]]

A = Table[Fi  0, {i, n}] /. x  0

A // MatrixForm

Derivativevalue = Table[D[y[x], {x, i + 1}], {i, n}] /. x  0

Derivativevalueatorigin = Flatten[Solve[A, Derivativevalue]]

Derivativevalueatorigin // MatrixForm

Derivativefinaloutput = Table[Derivativevalue[[i]] /. Derivativevalueatorigin[[i]], {i, 1, n}]

Sum
(D[y[x], {x, k}] /. x  0)

k!
xk, {k, 0, n} /. Derivativevalueatorigin (*Final Taylor series solution of equation (1.1)*)

3.2 BVP
We consider the equation (1.1) subject to the boundary condition in the following form

y′′ +
α

x
y′ + g(x, y) = 0, 0 < x < 1, (3.3)

y′(0) = 0 & y(1) = d, (3.4)

where d are constants and g(x, y) be arbitrary function of x and y. Since the value of y(0) is not known, therefore
we take y(0) = c. Again, we provide a Mathematica code for (3.3) and (3.4) which gives Taylor series solution
upto nth terms as a function of c and x. The value of c can be determined by using the boundary condition
y(1) = d.
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n = 2; (*Order of the Taylor series solution*)

α = 3;

f = x (y''[x]) + α (y'[x]) + x (g (x, y[x])); (*DIfferential equation of the form (1.1)*)

y[0] = α; (*Where α is constant which is to be determined/assumption*)

y'[0] = 0; (*Initial condition*)

For[i = 0, i ≤ n, i++, Print[Fi = D[f, {x, i}]]]

A = Table[Fi  0, {i, n}] /. x  0

A // MatrixForm

Derivativevalue = Table[D[y[x], {x, i + 1}], {i, n}] /. x  0

Derivativevalueatorigin = Flatten[Solve[A, Derivativevalue]]

Derivativevalueatorigin // MatrixForm

Derivativefinaloutput = Table[Derivativevalue[[i]] /. Derivativevalueatorigin[[i]], {i, 1, n}]

Sum
(D[y[x], {x, k}] /. x  0)

k!
xk, {k, 0, n} /. Derivativevalueatorigin (*Final Taylor series solution y(x)*)

3.3 Coupled IVP
We consider the coupled system of equation with the help of (1.1) subject to the initial conditions in the following
form

u′′ +
α

x
u′ + h1(x, u, v) = 0, 0 < x < 1, (3.5)

v′′ +
β

x
v′ + h2(x, u, v) = 0, 0 < x < 1, (3.6)

u(0) = c1, v(0) = c2, u
′(0) = d1 & v′(0) = d2, (3.7)

where c1, c2, d1, d2 are constants and h1(x, u, v), h2(x, u, v) are arbitrary functions of x, u and v. Now, we present
a Mathematica code for (3.5), (3.6) and (3.7) which gives Taylor series system of solutions upto nth terms as a
function of x.

n = 2;

α = 8;

β = 4;

f = x (u''[x]) + α ( u'[x]) + x (h1 (x, u[x], v[x])); (*Differential equation of the form (1.1)*)

g = x (v''[x]) + β (v'[x]) + x (h2 (x, u[x], v[x])); (*Differential equation of the form (1.1)*)

u[0] = c1; (*Where c1 is constant/Initial condition*)

u'[0] = d1; (*Where d 1is constant/Initial condition*)

v[0] = c2; (*Where c2 is constant/Initial condition*)

v'[0] = d2; (*Where d2 is constant/Initial condition*)

For[i = 0, i ≤ n, i++, Print[Fi = D[f, {x, i}]]]

For[i = 0, i ≤ n, i++, Print[Gi = D[g, {x, i}]]]

A = Table[Fi  0, {i, n}] /. x  0

B = Table[Gi  0, {i, n}] /. x  0

B // MatrixForm

A // MatrixForm

Derivativevalueu = Table[D[u[x], {x, i + 1}], {i, n}] /. x  0

Derivativevaluev = Table[D[v[x], {x, i + 1}], {i, n}] /. x  0

Differentialequation = Flatten[{A, B}]

Derivativevalue = Flatten[{Derivativevalueu, Derivativevaluev}]

Derivativevalueatorigin = Flatten[Solve[Differentialequation, Derivativevalue]]

Derivativevalueatorigin // MatrixForm

Derivativefinaloutput = Table[Derivativevalue[[i]] /. Derivativevalueatorigin[[i]], {i, 1, n}]

Sum
(D[u[x], {x, k}] /. x  0)

k!
xk, {k, 0, n} /. Derivativevalueatorigin (*Final Taylor series solution u(x)*)

Sum
(D[v[x], {x, k}] /. x  0)

k!
xk, {k, 0, n} /. Derivativevalueatorigin (*Final Taylor series solution v(x)*)
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3.4 Coupled BVP
Here, we consider the following coupled system of equations subject to the boundary conditions in the following
form

u′′ +
α

x
u′ + h1(x, u, v) = 0, 0 < x < 1, (3.8)

v′′ +
β

x
v′ + h2(x, u, v) = 0, 0 < x < 1, (3.9)

u′(0) = 0 & v′(0) = 0, u(1) = c1 & v(1) = c2, (3.10)

where c1, c2 are constants and h1(x, u, v), h2(x, u, v) are arbitrary functions of x, u and v. Since the value of u(0)
and v(0) are unknown, so we chose u(0) = a and v(0) = b. In the following, we provide a Mathematica code for
(3.8), (3.9) and (3.10) which gives Taylor series system of solutions upto nth terms as a function of x, a and b.

n = 2;

α = 8;

β = 4;

f = x (u''[x]) + α ( u'[x]) + x (h1 (x, u[x], v[x])); (*Differential equation 1 of the form (1.1)*)

g = x (v''[x]) + β (v'[x]) + x (h2 (x, u[x], v[x])); (*Differential equation 2 of the form (1.1)*)

u[0] = a; (*Where a is constant which is to be determined/Assumptions*)

u'[0] = 0; (*Initial condition*)

v[0] = b; (*Where b is constant which is to be determined/Assumptions*)

v'[0] = 0; (*Initial condition*)

For[i = 0, i ≤ n, i++, Print[Fi = D[f, {x, i}]]]

For[i = 0, i ≤ n, i++, Print[Gi = D[g, {x, i}]]]

A = Table[Fi  0, {i, n}] /. x  0

B = Table[Gi  0, {i, n}] /. x  0

B // MatrixForm

A // MatrixForm

Derivativevalueu = Table[D[u[x], {x, i + 1}], {i, n}] /. x  0

Derivativevaluev = Table[D[v[x], {x, i + 1}], {i, n}] /. x  0

Differentialequation = Flatten[{A, B}]

Derivativevalue = Flatten[{Derivativevalueu, Derivativevaluev}]

Derivativevalueatorigin = Flatten[Solve[Differentialequation, Derivativevalue]]

Derivativevalueatorigin // MatrixForm

Derivativefinaloutput = Table[Derivativevalue[[i]] /. Derivativevalueatorigin[[i]], {i, 1, n}]

Sum
(D[u[x], {x, k}] /. x  0)

k!
xk, {k, 0, n} /. Derivativevalueatorigin (*Taylor series solution u[x]*)

Sum
(D[v[x], {x, k}] /. x  0)

k!
xk, {k, 0, n} /. Derivativevalueatorigin (*Taylor series solution v[x]*)

4 Taylor Series Solution for ODE
Here, we present few real life problems as test examples to verify our code.

4.1 IVP
We consider some initial value problems.

4.1.1 IVP 1

We consider equations (3.1) and (3.2) with g(x, y) = y(x)− (6 + 12x+ x2 + x3), c = 0, d = 0 and α = 2, which
have an exact solution x2 + x3. By using the Mathematica code as in subsection 3.1, we get the Taylor series
solution upto third terms which is yTaylor(x) ≈ x2 + x3. The accuracy of the method is better than variational
iteration method (VIM) [1] [See figure 1].
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Figure 1: Comparison between Taylor series method and VIM for equations (3.1) and (3.2) with g(x, y) =
y(x)− (6 + 12x+ x2 + x3), c = 0, d = 0 and α = 2

4.1.2 IVP 2

Here we take Lane-Emden type equations (3.1) and (3.2), where g(x, y) = (8ey + 4e

y

2 ), c = 0, d = 0 and α = 2,
which have an exact solution −2 log(1 + x2). With the help of Mathematica code given in subsection 3.1, we
compute the Taylor series solution which is given as follows

yTaylor ≈ −2x2, − 2x2 + x4, − 2x2 + x4 − 2x6

3
, · · · (4.1)

For n→∞, we get the closed form of the solution which is

y(x) = yTaylor = −2(x2 − x4

2
+
x6

3
− · · · ) = −2 log(1 + x2). (4.2)

We can also verify our derived result by VIM ([1]).

4.1.3 IVP 3

We consider Lane-Emden type equations (3.1) and (3.2, where g(x, y) = −6y(x) − 4y log(y), c = 1, d = 0 and
α = 2 with an exact solution ex

2

. Now, by using Mathematica code given in subsection 3.1, we arrive at

yTaylor ≈ 1 + x2, 1 + x2 +
x4

2
, 1 + x2 +

x4

2!
+
x6

3!
, · · · (4.3)

As n → ∞, we get the closed form of the solution which is ex
2

. Also, we see that each of these approximations
are same as approximations calculated by VIM ([1]).

4.2 BVP
He ([20]) applied the Taylor series method on the Bratu type boundary value problem which is nonlinear but
regular and computed the approximate solution. He also showed that this method is quite powerful than the
iterative method VIM. Here, we consider a few highly non-linear singular boundary value problems of Lane-Emden
type and verify the Mathematica codes given in subsection 3.2.

4.2.1 BVP 1

First we consider linear second order singular boundary value problem (3.3) and (3.4) with g(x, y) = y(x)− 5

4
+
x2

16
,

d =
17

16
and α = 1. The exact solution of this linear SBVP is 1 +

x2

16
. Now, by using the code and Mathematica

11.3 software, we have

yTaylor ≈ c+ 1

16
(5− 4c)x2, (4.4)

where c = y(0). By using the boundary condition y(1) =
17

16
we have c = 1. Hence Taylor series solution is

yTaylor ≈ 1 +
1

16
x2 (4.5)
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which is equivalent to the exact solution. Also, we see that the Taylor series solution gives better accuracy than
VIM approximation. Below we provide an absolute error graph (fig. 2) comparison between these two methods.
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Figure 2: Comparison between absolute error of Taylor series method and VIM for SBVP (3.3) and (3.4) with

g(x, y) = y(x)− 5

4
+
x2

16
, d =

17

16
and α = 1

4.2.2 BVP 2

Now, we consider a model based on equilibrium isothermal gas sphere arising in astronomy of the form (3.3) and

(3.4) where g(x, y) = y5, d =

√
3

2
and α = 2. The exact solution of BVP is

1√
1 +

x2

3

. By using the Mathematica

code given in subsection 3.2, we get second order and 12th order Taylor series approximations, given as follows

yTaylor ≈ c− c5x2

6
, (4.6)

yTaylor ≈ c+ 77c25x12

248832
− 7c21x10

6912
+

35c17x8

10368
− 5c13x6

432
+
c9x4

24
− c5x2

6
. (4.7)

Now, by using the boundary condition y(1) =
√
3

2
we have c = 0.999832. Therefore, for n = 12 the Taylor series

approximation is

yTaylor ≈ 0.000308x12 − 0.001009x10 + 0.003366x8 − 0.0115489x6 + 0.04160x4 − 0.166527x2 + 0.999832. (4.8)

Now, we compare our solution (4.8) with the solution computed by VIM which is

yV IM2 ≈ 7× 10−10x12 − 0.000030x10 + 0.000577x8 − 0.00609035x6 + 0.039355x4 − 0.161465x2 + 0.993678. (4.9)

From figure 3 we observe that Taylor series solution gives better accuracy than VIM solution ([36]).
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Figure 3: Comparison between absolute error of Taylor series method and VIM for SBVP (3.3) and (3.4) where

g(x, y) = y5, d =

√
3

2
and α = 2
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4.2.3 BVP 3

Here, we take the equation of shallow membrane cap of the form (3.3) and (3.4) where g(x, y) = −1

2
+

1

8y2
,

d = 1 and α = 3. It has no exact solution. Again, by using the Mathematica code given in subsection 3.2, we
get Taylor series approximation upto second term as follows

yTaylor ≈ c+
(
4c2 − 1

)
x2

64c2
(4.10)

where c = y(0). By using the boundary condition y(1) = 1, we have c = 0.954645. Hence, the Taylor series
approximation is

yTaylor ≈ 0.045355x2 + 0.954645. (4.11)

We compare our computed approximation with the VIM ([36]) approximation

yV IM1 ≈ 0.04834939252005x2 + 0.95165060747995. (4.12)

We have seen that Taylor series solution gives better approximation than VIM solution [See figure 4].
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Figure 4: Comparison between absolute error of Taylor series method and VIM (3.3) and (3.4) where g(x, y) =

−1

2
+

1

8y2
, d = 1 and α = 3

4.3 Coupled IVP
He et al. ([31]) computed closed form solution of coupled IVP by using Taylor series method. Our main aim
in this section is to verify our developed Mathematica code as in subsection 3.3 by considering different highly
non-linear real life problems. To achieve our goal first we take a real life example which is described in [31]. We
also found closed form solution as given in [31]. Now, we consider two real life problems.

4.3.1 Coupled IVP 1

Wazwaz et al. [39] consider the system of Lane-Emden type equations of the form (3.5), (3.7) and (3.6) with

h1(x, u, v) = 8

(
eu + 2e

−
v

2

)
, h2(x, u, v) = −8

(
e−v + e

u

2

)
, α = 5, β = 3, c1 = 0, c2 = 0, d1 = 0 and

d2 = 0. Exact solution of this coupled IVP is (u(x), v(x)) = (−2 log(1+x2), 2 log(1+x2)). They used Adomian’s
decomposition method (ADM) to find the approximate system of solutions. Now, by using Taylor series method,
we arrive at

uTaylor ≈ x12

3
− 2x10

5
+
x8

2
− 2x6

3
+ x4 − 2x2, (4.13)

vTaylor ≈ −x
12

3
+

2x10

5
− x8

2
+

2x6

3
− x4 + 2x2. (4.14)

Therefore, for n → ∞ we get the closed form system of solutions (u(x), v(x)) = (−2 log(1 + x2), 2 log(1 + x2))
which are same as computed by ADM.
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4.3.2 Coupled IVP 2

Here, we consider the system of equation ([39]) (3.5), (3.7) and (3.6) with h1(x, u, v) = (18u− 4u log(v)),
h2(x, u, v) = (4v log(u)− 10v), α = 8, β = 4, c1 = 1, c2 = 1, d1 = 0 and d2 = 0. Exact solution of this
coupled IVP is (u(x), v(x)) = (e−x

2

, ex
2

). With the help of mathematica code we get Taylor series solution as
follows

uTaylor ≈ x12

720
− x10

120
+
x8

24
− x6

6
+
x4

2
− x2 + 1, (4.15)

vTaylor ≈ x12

720
+
x10

120
+
x8

24
+
x6

6
+
x4

2
+ x2 + 1. (4.16)

When n→∞, we have the exact system of solutions (e−x
2

, ex
2

).

4.4 Coupled BVP
4.4.1 Coupled BVP 1

Consider the system of differential equation (3.8), (3.9) and (3.10) where h1(x, u, v) = (18u− 4u log(v)), h2(x, u, v) =

(4v log(u)− 10v), α = 8, β = 4, c1 =
1

e
and c2 = e. Exact solution of this coupled BVP is (u(x), v(x)) =

(e−x
2

, ex
2

). Now using algorithm described in subsection 3.4 we compute the approximate Taylor series solution.
For n = 5, we have

uTaylor ≈ − x4

990

(
−20a log2(b) + 180a log(b)− 495a+ 36a log(a)

)
+

1

9
x2(2a log(b)− 9a) + a, (4.17)

vTaylor ≈ 1

630
x4
(
36b log2(a)− 180b log(a) + 315b− 20b log(b)

)
− 1

5
x2(2b log(a)− 5b) + b, (4.18)

where a = u(0) and b = v(0). For n = 10, we have computed the values of a and b by using boundary conditions

u(1) =
1

e
and v(1) = e which are

a = 1.00299 & b = 1.00156. (4.19)

Therefore, for n = 10 the system of Taylor series solutions are

uTaylor ≈ −0.00833149x10 + 0.0417031x8 − 0.166939x6 + 0.5011x4 − 1.00264x2 + 1.00299, (4.20)
vTaylor ≈ 1.00156 + 1.00037x2 + 0.499878x4 + 0.166539x6 + 0.0416179x8 + 0.00832063x10. (4.21)

Here in figure 5 we plot absolute error of Taylor series solution (4.20) and (4.21).

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0 0 0 0

0 . 0 0 0 5

0 . 0 0 1 0

0 . 0 0 1 5

0 . 0 0 2 0

0 . 0 0 2 5

0 . 0 0 3 0

Ab
so

lut
e e

rro
r

x

 u T a y l o r

 v T a y l o r

Figure 5: Absolute error of Taylor series method

4.4.2 Coupled BVP 2

We consider the system of differential equation (3.8), (3.9) and (3.10) with h1(x, u, v) = 8

eu−1 + 2e
−
v − 1

2

,

h2(x, u, v) = −8

e−(v−1) + e

u− 1

2

, α = 5, β = 3, c1 = 1 − 2 log(2) and c2 = 1 + 2 log(2). Exact solution
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of this coupled BVP is (u(x), v(x)) = (1 − 2 log(1 + x2), 1 + 2 log(1 + x2)). Now, using algorithm developed in
subsection 3.4, for n = 5, we have the following Taylor series approximation

uTaylor ≈ 1

12
x4
(
3e

a
2−

b
2 + 4ea−

b
2−

1
2 + 2e2a−2 + 3e

3
2−

3b
2

)
+

2

3
x2
(
ea−1 + 2e

1
2−

b
2

)
+ a, (4.22)

vTaylor ≈ 1

9
x4
(
−3e a

2−b+
1
2 − 2e

a
2−

b
2 − e 3a

2 −
3
2 − 3e2−2b

)
− e−b− 1

2x2
(
e

a
2+b + e3/2

)
+ b, (4.23)

where a = u(0) and b = v(0). Now from u(1) = 1−2 log(2) and v(1) = 1+2 log(2) we have two nonlinear system
of equations. Therefore, by using Newton Raphson method, we get the values of a and b which are given by

a = 1 & b = 1. (4.24)

Hence, for n = 5 Taylor series solution of this coupled system are

uTaylor ≈ x4 − 2x2 + 1, (4.25)
vTaylor ≈ −x4 + 2x2 + 1, (4.26)

and for n→∞ we get exact system of solutions.

5 Taylor Series Solution for PDE
In this section we derive analytical solution for three sets of problems. First is two Nonlinear PDEs with initial
condition and the second one is system of nonlinear PDEs subject to given initial conditions.

5.1 Burgers’ Equations
We consider the following class of Burgers’ equations

PDE: ut + uux = νuxx, 0 ≤ x ≤ 1, t > 0, (5.1)
Initial Condition: u(x, 0) = 2x, (5.2)

Exact Solution ([5]): u(x, t) =
2x

1 + 2t
. (5.3)

Using (5.1) and (5.2) we get

u(0, 0) = 0, ux(0, 0) = 2, uxx(0, 0) = 0, ut(0, 0) = 0. (5.4)

Differentiating (5.1) with respect to x and t, respectively, we get

uxt + (ux)
2 + uuxx = νuxxx, (5.5)

utt + utux + uutx = νutxx. (5.6)

Differentiating (5.5) with respect to x and t, and (5.6) with respect to t, we get the following three equations,

uxxt + 2uxuxx + uxuxx + uuxxx = νuxxxx, (5.7)
uxtt + 2uxutx + utuxx + uutxx = νutxxx, (5.8)
uttt + uttux + ututx + ututx + uuttx = νuttxx. (5.9)

Differentiating (5.7) with respect to x, we get

uxxxt + 2uxuxxx + 3u2xx + 2uxuxxx + uuxxxx = νuxxxxx. (5.10)

Therefore we get

uxt(0, 0) = −4, utt(0, 0) = 0, uxxx(0, 0) = 0, uxxt(0, 0) = 0, uxtt(0, 0) = 16, uttt(0, 0) = 0. (5.11)

Taylor series expansion of u(x, t) around the point (0, 0) can be written as

u(x, t) = u(0, 0) +
1

1!
(ux(0, 0)x+ ut(0, 0)t) +

1

2!

(
uxx(0, 0)x

2 + 2uxt(0, 0)xt+ utt(0, 0)t
2
)

+
1

3!

(
3x2tuxxt (0, 0) + 3xt2uxtt (0, 0) + x3uxxx (0, 0) + t3uttt (0, 0)

)
+ · · · . (5.12)
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Substituting the values of u(0, 0), ux(0, 0) and all other values from (5.4) and (5.11), in the (5.12) we get

u(x, t) = 0 + 2x+ 0× t+ 1

2

(
0× x2 + 2(−4)xt+ 0× t2

)
+

1

6

(
3x2t× 0 + 3xt2 × 16 + x3 × 0 + t3 × 0

)
+ · · · .(5.13)

Hence, we get

u(x, t) = 2x− 4xt+ 8xt2 + · · · = 2x
(
1− 2t+ 4t2 − · · ·

)
=

2x

1 + 2t
. (5.14)

Which is same as computed in [5, 19].

5.2 KDV equation
We consider KDV equation

ut − 6uux + uxxx = 0, 0 < x < 1, t > 0, (5.15)

u(x, 0) = −k
2

2
sech2

(
kx

2

)
. (5.16)

The exact solution of KDV equation is −k
2

2
sech2

(
k

2
(x− k2t)

)
.

By using equations (5.15) and (5.16), we have

u(0, 0) = −k
2

2
, ux(0, 0) = 0, uxx(0, 0) =

k4

4
, uxxx(0, 0) = 0 & ut(0, 0) = 0. (5.17)

Differentiating equation (5.15) with respect to x and t we have

uxt − 6uuxx − 6(ux)
2 + uxxxx = 0, (5.18)

utt − 6utux − 6uutx + utxxx = 0. (5.19)

To find the value of utxxx, we differentiate equation (5.18) with respect to x and we get

uxxt − 6uxuxx − 6uuxxx − 12uxuxx + uxxxxx = 0, (5.20)
uxxxt − 18(uxx)

2 − 24uxuxxx − 6uuxxxx + uxxxxxx = 0. (5.21)

By using eqautions (5.19), (5.20) and (5.21), we have

uxxxx(0, 0) = −
k6

2
, uxxxxx(0, 0) = 0, uxxxxxx(0, 0) =

17k8

8
, uxt(0, 0) = −

k6

4
& utt(0, 0) =

k8

4
. (5.22)

Therefore, first order Taylor series solution is

uTaylor(x, t) ≈ −k
2

2

(
1−

(
k

2
(x− k2t)

)2
)
. (5.23)

The KDV equation (5.15) and (5.16) have numerically solved by VIM in [54]. First approximation of VIM
solution is given by

uV IM1 (x, t) ≈ −k
2

2
sech2

(
kx

2

)
− k5

2
sech2

(
kx

2

)
tanh2

(
kx

2

)
t. (5.24)

From figure 6 we see that Taylor series solution provide better accuracy than VIM approximation.
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Figure 6: Absolute error of u(x, t) for t = 1 for KDV equation.
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5.3 System of Nonlinear PDEs
We consider the following system of nonlinear PDEs with given initial conditions

ut + uux + vuy =
1

Re
(uxx + uyy) , 0 ≤ x ≤ 1, t > 0, (5.25)

vt + uvx + vvy =
1

Re
(vxx + vyy) , 0 ≤ x ≤ 1, t > 0, (5.26)

Initial Conditions: u(x, y, 0) = x+ y, v(x, y, 0) = x− y, (5.27)

Exact Solution ([5]): u(x, y, t) =
x+ y − 2xt

1− 2t2
, (5.28)

v(x, y, t) =
x− y − 2yt

1− 2t2
. (5.29)

Here Re is known as Reynold’s number which is related to viscous property of fluid.
We deduce the following:

ux(x, y, 0) = 1; uy(x, y, 0) = 1; uxx(x, y, 0) = 0; uyy(x, y, 0) = 0, (5.30)
vx(x, y, 0) = 1; vy(x, y, 0) = −1; vxx(x, y, 0) = 0; vyy(x, y, 0) = 0, (5.31)
u(0, 0, 0) = 0; v(0, 0, 0) = 0; ut(0, 0, 0) = 0. (5.32)

Differentiating (5.25) with respect to x, t and x twice we arrive at

uxt = −u2x − uuxx − vxuy − vuxy +
1

Re
(uxxx + uxyy) , (5.33)

utt = −utux − uutx − vtuy − vuty +
1

Re
(utxx + utyy) , (5.34)

uyt = −uyux − uuyx − vyuy − vuyy +
1

Re
(uyxx + uyyy) , (5.35)

uxxt = −2uxuxx − uxuxx − uuxxx − vxxuy − vxuxxy +
1

Re
(uxxxx + uxxyy) , (5.36)

uyyt = −uyyux − uyuyx − uyuyx − uuyyx − vyyuy − vyuyy − vyuyy − vuyyy +
1

Re
(uyyxx + uyyyy) ,(5.37)

uxtt = −2uxutx − utuxx − uutxx − vtxuy − vxuty − vtuxy − vutxy +
1

Re
(utxxx + utxyy) , (5.38)

uxyt = −uxyux − uyuxx − uxuyx − uuxyx − vxyuy − vyuxy − vxuyy − vuxyy +
1

Re
(uxyxx + uxyyy) ,(5.39)

uytt = −uytux − utuyx − uyutx − uuytx − vytuy − vtuyy − vyuty − vuyty +
1

Re
(uytxx + uytyy) . (5.40)

(5.41)

Hence, we deduce the following:

uxt(0, 0, 0) = −2, utt(0, 0, 0) = 0, uyt(0, 0, 0) = 0, (5.42)
uxxt(0, 0, 0) = 0, uyyt(0, 0, 0) = 0, (5.43)
uxyt(0, 0, 0) = 0, uxtt(0, 0, 0) = 4, uytt(0, 0, 0) = 4, (5.44)
uxxxt(0, 0, 0) = 0, uyyyt(0, 0, 0) = 0, uyyxt(0, 0, 0) = 0. (5.45)

Similarly, for v(x, y, t) we can calculate:

vxt(0, 0, 0) = −2, vtt(0, 0, 0) = 0, vyt(0, 0, 0) = 0, (5.46)
vxxt(0, 0, 0) = 0, vyyt(0, 0, 0) = 0, (5.47)
vxyt(0, 0, 0) = 0, vxtt(0, 0, 0) = 4, vytt(0, 0, 0) = −4, (5.48)
vxxxt(0, 0, 0) = 0, vyyyt(0, 0, 0) = 0, vyyxt(0, 0, 0) = 0. (5.49)

For brevity we are not providing calculations further. Taylor series expansion of u(x, y, t) and v(x, y, t) around
the point (0, 0, 0) can be written as

u(x, y, t) = u(0, 0, 0) +
1

1!
(ux(0, 0, 0)x+ uy(0, 0, 0)y + ut(0, 0, 0)t)

+
1

2!

(
uxx(0, 0, 0)x

2 + uyy(0, 0, 0)y
2 + utt(0, 0, 0)t

2 + 2uxy(0, 0, 0)xy + 2uxt(0, 0, 0)xt+ 2uyt(0, 0, 0)yt
)
+ · · · ,

(5.50)
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v(x, y, t) = v(0, 0, 0) +
1

1!
(vx(0, 0, 0)x+ vy(0, 0, 0)y + vt(0, 0, 0)t)

+
1

2!

(
vxx(0, 0, 0)x

2 + vyy(0, 0, 0)y
2 + vtt(0, 0, 0)t

2 + 2vxy(0, 0, 0)xy + 2vxt(0, 0, 0)xt+ 2vyt(0, 0, 0)yt
)
+ · · · .

(5.51)

Substituting the values of u, v and their derivatives at (0, 0, 0) in (5.50) and (5.51), we arrive at

u(x, y, t) = x+ y − 2xt+ 2xt2 + 2yt2 + · · · = x+ y − 2xt

1− 2t2
, (5.52)

v(x, y, t) = x− y − 2yt+ 2xt2 − 2yt2 + · · · = x− y − 2yt

1− 2t2
. (5.53)

Remark 5.1 These derivations are based on assumption that mixed derivatives uxy and uyx and all other higher
order derivatives all are same.

6 Conclusion
In this paper, we successfully extend the work of He et al. [31] to different real-life problems. We successfully
developed a few Mathematica codes to solve a class of singular nonlinear ODEs subject to initial conditions
and boundary conditions. We also develop codes for the system of nonlinear singular ODEs and solve them too
successfully. We also extend this approach to PDEs. This approach can further be extended to a different class
of problems that do not have exact solutions. Finally, we conclude that this simple technique is very useful for
engineering science, chemical, and physical science.
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