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Abstract: The helium burning phase represents the second stage that the star used to consume

nuclear  fuel  in  its  interior.  In  this  stage,  the  three  elements  carbon,  oxygen,  and  neon  are

synthesized. The present paper has two folds, the first is to develop an analytical solution to the

system of the conformable fractional differential equations of the helium burning network, where

we used for this purpose the series expansion method and obtained recurrence relations for the

product  abundances  i.e.   helium,  carbon,  oxygen,  and  neon.  Using  four  different  initial

abundances,  we  calculated  44  gas  models  covering  the  range  of  the  fractional  parameter

 with step .  We found that  the effects  of the fractional  parameter  on the

product abundances are small which coincides with the results obtained by a previous study.

Second, we introduced the mathematical model of the neural network (NN) and developed a

neural network algorithm to simulate the helium burning network using its feed-forward model

that is trained by the back propagation (BP) gradient descent delta rule algorithm. A comparison

between the NN and the analytical models revealed very good agreement for all gas models. We

found that  NN could  be  considered  as  a  powerful  tool  to  solve  and model  nuclear  burning

networks and could be applied to the other nuclear stellar burning networks.

Keywords: Conformable fractional derivative; Artificial neural network; Series expansion 
method; Stellar models: Helium burning phase

1. Introduction 

Nowadays,  applications  of  fractional  calculus  in  physics,  astrophysics,  and  related

science are widely used.  In astrophysics,  many problems have been handled using fractional
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models, examples of these studies are: El-Nabulsi [1] introduced an analytical solution to the

fractional white dwarf equation; Bayin and Krisch [2] analyzed the fractional incompressible gas

spheres; Abdel-Salam and Nouh [3] and Nouh and Abdel-Salam [4] introduced an analytical

solution to the first and second types of Lane-Emden equation in the sense of modified Riemann-

Liouville fractional derivative. Nouh [5] solved the fractional helium burning network using a

series expansion method. Abdel-Salam and Nouh [6] and Yousif et al. [7] introduced analytical

solutions 

to the conformable polytropic and isothermal gas spheres.

Simulation of ordinary (ODE) and partial differential (PDE) equations using an artificial neural

network (ANN) give very good accuracy when compared with both the numerical and analytical

methods. Many authors deal with this issue and developed many neural algorithms to solve ODE

and PDE. Dissanayake and Phan-Thien [8] first introduced the concept of approximating the

solutions  of  differential  equations  with  neural  networks,  where  training  was  carried  out  by

minimizing losses based on the satisfaction of the network with the boundary conditions and the

differential equations themselves. Lagaris et al. [9] demonstrated that the network shape could be

selected by construction to satisfy boundary conditions and that automatic differentiation could

be used to determine the derivatives that appear in the loss function. This approach has been

extended to irregular boundary systems [10,11], applied to the resolution of PDEs occurring in

fluid mechanics [12], and software packages have been developed to facilitate their application

[13-15]. Nouh et al. [16] and Azzam et al. [17] developed a neural network algorithm to solve

the first and second types of Lane-Emden equations arising in astrophysics.

The helium burning stage (also known as the triple-alpha process) represents the second

stage where the stars undergo transfer of nuclear energy from the interior to their surface. In this

stage, nuclear energy is almost converted to light when passing through the stellar atmosphere.

Helium burning (HB) releases energy per unit fuel of about 6 × 1023 MeV/g ≈ 1018 erg/g. The

reaction equations govern HB network may be written as [5]
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where the conversion process from helium to carbon needs 108 Ko.

Clayton [18] set up a model for the helium burning process by taking into account the

above reactions. If the number of atoms per unit of stellar material  mass for helium, carbon,

oxygen, and neon is represented by x, y, z, and r respectively, then the next four equations (also

may be called the kinetic equations) control the time-dependent change in abundance:

                                                                                                           (1)

where a, b, and c are the reaction rates.

The system of equations (1) represents the integer version of the helium burning network

and  solved  simultaneously  by  computational  or  analytical  methods  [18-21].   The  fractional

kinetic equation (like helium burning network) has been solved by many authors. In terms of H-

functions,  [22]  presented  a  solution  to  the  fractional  generalized  kinetic  equation.  The

generalized fractional kinetic equations have been solved by [23]. Chaurasia and Pandey [24]

solved the fractional kinetic equations in a series form of the Lorenzo-Hartley function. 

In the present article, we developed a neural network algorithm to solve the fractional

system of differential equations describing the helium burning network. We use the principles of

the conformable fractional derivative for the mathematical modeling of the ANN. We used in

this research an architecture of ANN which is the feed-forward network having three-layers and

trained using the algorithm of back-propagation (BP) based on the gradient descent delta rule. 

 The analytical solution is developed using the series expansion method and a comparison

between the ANN and analytical models is performed to declare the efficiency and applicability

of the ANN for solving the conformable helium burning network. The paper is organized as

follows: section 2 introduces the details  of the analytical solution of the conformable helium

burning  model  using  the  series  expansion  method.  Section  3  deals  with  the  mathematical

modeling of the neural network technique with its gradient computations and back propagation

training algorithm. Section 4 discuss the results obtained and the comparison between the NN

and analytical models. Section 5 gives the details of the conclusion.  
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2. Analytical Solution to the Conformable Helium Burning Model

The fractional form of Equation (1) is given by [5]

                                                                                                     (8)

If , then x, y, z, r could be represented by

                                                                           (9)

where are constants to be determined.

Using the series expansion method, we obtained the recurrence relation of the term  by the 

following

Let ,       with        

that is

.
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or

.                                                                                                                     (10)

Performing the fractional derivative to Equation (10) k timed we get

,

or

put , we get

Since  

 so we have

After some manipulations we get

.

(11)

put  and  in Equation (11) we have
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If , then

Add the zero value to the second summation of the last equation, we get

From the last equation, we can write the coefficients  as

                                                                 (12)

Put  Equation (12), we have

                                                                    (13)
where X0= A0  and Xi= Ai

and 

taking fractional differentiation -derivatives to Equation (9) we get

                                                                                                                  (14)

inserting Equations (9) and (14) into Equation (8),  the series coefficients   and

 could be obtained from
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,

(15)

,
and 

The recurrence relations corresponding to the integer model could be obtained by putting 
in the last four equations [21].

At n=0 and with the initial values of the chemical composition,

where are arbitrary constants, we get

and 

at n=1 we get
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And by applying the same scheme we can determine the rest of the series terms. So, the series 

solution of Equation (8) is written as:
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3. Neural network algorithm 

3.1 Mathematical modeling of the problem

To simulate the conformable fractional helium burning network represented by Equation (8), we

use the neural network architecture shown in Figure 1. 
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Fig. 1. ANN architecture proposed to simulate conformable fractional helium burning
network

Considering the initial conditions , the neural network could be

obtained following the next steps [25]:

The form of  the  neural  approximate  solution  of  Equation  (8)  will  have  two terms,  the  first

represents the initial values and the second represents the feed-forward neural network, where x

is the input vector and p is the corresponding vector of adjustable weight parameters. Then the

output of the neural network  is written as
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(16)

Then neural network output  is given by

                                                                                      (17)

where and is the weight from the input unit j to the hidden unit i,  is the

weight from the hidden unit  i to the output,   represents the bias of the  ith hidden unit and

 is  the  sigmoid  activation  function  that  has  the  form  .

and 

by differentiating the networks output N with respect to the vector , we get:

                  (18)

Differentiate Equation (17) n times gives

                  (19)

As a result, the solution of the helium burning network is given as

                                                                    (20)

which fulfills the initial conditions as:
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(21)

and

,                                                                              (22)

3.2 Gradient Computations and Parameter Updating

Using Equation (20) to update the network parameters and computing the gradient,  the error

quantity needed to be minimized is given by

(23) 

 where

  (24)

where  is given by Equation (18). So, the problem is converted to an unconstrained

optimization problem.

To  update  the  network  parameters,  we  train  the  neural  network  for  the  optimized

parameter values. After the training process, we obtained the network parameters and computed

the following 
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Now,  N with  one  hidden  layer  is  analogous  to  the  conformable  fractional  derivative.  By

replacing the hidden unit transfer function with the nth order fractional derivative, the fractional N

gradient differentiating with respect to ,  and  could be written as

.                                                           (25)

The network parameters updating rule can be given as,

,                                                                                            (26)

,                                                                                           (27)

,                                                                                        (28)

where are learning rates, and .

In the  stellar helium burning model based on ANN, the neuron is the fundamental processing

unit that can process a local memory and carry out localised information. At each neuron, the net

input (z) is calculated by supplementing the received weights to obtain an aggregate weight of

those inputs and add it to a bias ( ).  The net input (z ) is then passed by a nonlinear activation

function, which results in the neuron output  (as is seen in Figure 1) [26].

3.3 Training of BP Algorithm

The back-propagation (BP) training algorithm is a gradient algorithm aimed to minimize the 

average square error between the desired output and the actual output of a feed-forward network.
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It requires continuously differentiable non-linearity. Fig 2 displays a flow chart of a back-

propagation off-line learning algorithm [27]:

Fig 2. Flowchart of an off-line back-propagation training algorithm 
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The algorithm is a recursive algorithm that starts at the output units and working back to the first 

hidden layer. A comparison of the output at the output layer with the desired 

outputs  are performed using an error function which has the following form:

       (29)

For the hidden layer, the error function takes the form:

.                                           (30)

where δ j is the error term of the output layer, and w k is the weight between the output and hidden

layers. The update of the weight of each connection is implemented by replicating the error in a 

backward direction from the output layer to the input layer as follows:

                 (31)

The value of learning rate η is chosen such that it is neither too large leading to overshooting nor

very small leading to a slow convergence rate. The value of the momentum term found in the last

part in Equation (31) which is affixed with a constant   (momentum) is used to accelerate the

error convergence of the back-propagation learning algorithm and also to assist in pushing the

changes of the energy function over local increases and boosting the weights in the direction of

the overall  downhill  [28]. This term adds a fraction of the most recent  weight values to the

current weight values. Both  and  terms are set at the start of the training phase and determine

the network speed and stability [26], [30].

The process is repeated for each input pattern until the output error of the network is decreased to

a pre-specified threshold value.  The final weight values are frozen and utilized to get the precise 

product abundances during the test session. The quality and success of training of ANN are 

assessed by calculating the error for the whole batch of training patterns using the normalized 

RMS error that is defined as:

    ,                         

(32) 
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where J  is the number of output units, P is the number of training patterns, , ,  and

 are the desired outputs at unit j, whereas , , , and  are the actual outputs at the

same unit  j.  A zero error denotes that all the output patterns computed by the  stellar helium

burning model match the expected values perfectly and that the stellar helium burning model is

fully trained.  Similarly, internal unit thresholds are adjusted by supposing they are connection

weights on links from the input with an auxiliary constant-value. The previous algorithm has

been programmed using C++ programming language running on Windows 7 of a CORE i7 PC. 

4. Results and discussions

4.1 Data Preparation 

Based on the recurrence relations (Equation (15)), we computed one pure helium gas model;

X0=1, Y0=0,  Z0=0,  R0=0 and three  rich helium gas  models;  X0=0.95, Y0=0.05,  Z0=0,  R0=0;

X0=0.9,  Y0=0.1,  Z0=0,  R0=0;  and  X0=0.85,  Y0=0.15,  Z0=0,  R0=0.  The  fractional  parameter

covers  the  range  with  a  step  of  0.05.  The  calculations  are  performed  for  a  time

s. Consequently, we have a total sum of 44 fractional helium burning models. 

Figure (3) plots the two product abundances from gas models calculated at  ,

where the solid lines are for the pure helium model with initial abundance X0=1, Y0=0, Z0=0,

R0=0;  and the  dashed lines  are  for  the  rich  helium model  with  initial  abundances  X0=0.95,

Y0=0.05,  Z0=0,  R0=0.  The  effects  of  changing  the  composition  of  the  gas  are  remarkable,

especially for the carbon C12. 

In  figure  (4),  we illustrated  the  effects  of  changing  the  fractional  parameters  on  the

product abundances calculated for a gas model with initial abundance X0=0.85, Y0=0.15, Z0=0,

R0=0.  It is clear that the effects of the change of the fractional parameter on the behavior of the

product abundances are small. This result is similar to the results obtained by [5] for the models

computed in the sense of modified Riemann-Liouville fractional derivative.
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Figure 3. The product abundance (C12,  O16 and Ne20) computed analytically at  

for the two different abundances. The solid lines represent the helium network with X0=1, 

Y0=0, Z0=0, R0=0, and the dashed lines represent the helium network X0=0.95, Y0=0.05, 

Z0=0, R0=0. 
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Figure 4. The product abundance (C12,  O16, and Ne20) computed analytically at X0=0.85,

Y0=0.15, Z0=0, R0=0  and for two different fractional parameters. The solid lines represent

the helium network with and the dashed lines represent the helium network .

4.2 ANN training

The training of NN used to simulate the helium burning network is implemented by using part of

the data calculated in the previous subsection.  The data used for training of the ANN are as

shown in the second column of Table (1).

Table 1: Training and testing data for the helium burning network

Training phase Testing phase
 0.5, 0.6, 0.7, 0.8, 0.9, 1 0.55, 0.65, 0.75, 0.85, 0.95

Time 0 - 2100 sec (∆t= 3) 0 - 2100 sec (∆t= 3)
Initial

abundances
of the HB

X0=0.85, Y0=0.15, Z0=0, R0=0 X0=0.85, Y0=0.15, Z0=0, R0=0
X0=0.90, Y0=0.1, Z0=0, R0=0 X0=0.90, Y0=0.1, Z0=0, R0=0
X0=0.95, Y0=0.05, Z0=0, R0=0 X0=0.95, Y0=0.05, Z0=0, R0=0

X0=1, Y0=0, Z0=0, R0=0 X0=1, Y0=0, Z0=0, R0=0

The neural network (NN) architecture used in this paper for the  helium burning network has

three layers as shown in Figure 1. These layers are the input layer, hidden layer, and output layer.

Different  configurations  of  hidden  neurons  of  10,  20,  and  40  have  been  tested,  where  we
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concluded that 20 neurons in a single hidden layer are giving the best model of the network to

simulate the helium burning network. This number of neurons in the hidden layer was found to

give the minimum value of RMS error of 0.000005 in an almost similar number of training

iterations. As a result, the configuration of the NN we used was 4-20-4, where the input layer has

four inputs which are the fractional parameter , the time t (t takes values from 3 to 2100 in steps

of 3 seconds), two of the initial abundances which are the helium (X0), and carbon (Y0). We

excluded the other two initial abundances (Z0  and R0) because their values are always zero as

indicated  in  Table  1.  The  output  layer  has  4  nodes  which  are  the  time  dependent  product

abundances for helium (X), carbon (Y), oxygen (Z), and neon (R). 

During the training of the NN, we used a value for the learning rate ( = 0.035) and for

the momentum (  = 0.5). Those values for  and  were proved to quicken the convergence of

the back-propagation training algorithm without exceeding the solution. For the demonstration of

the convergence and stability of the values computed for weight parameters of network layers,

the behaviors of the convergence of the input layer weights, bias, and output layer weights ( w i ,

βi, and νi ) for the helium burning network are as displayed in Fig. 5. As these figures show, the

weight values are initialized to random values and after somewhat considerable iterations they

converged to stable values.
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Figure 5:  Convergence of the weights of input, bias, and output layers for the training of

the NN used to simulate helium burning network 

4.3 Comparison between the NN model and analytical model
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After the end of the training phase of NN, we used the final frozen weight values in the test

phase to predict the time dependent product abundances for helium (X), carbon (Y), oxygen (Z),

and neon (R). In this test phase, we used values for a fractional parameter  not being used in the

training phase to predict the helium burning network model. These values are shown in the third

column of Table 1.  The results  of the predicted values show very good agreement  with the

analytical values for different helium modes. A comparison between the predicted NN model

values and analytical model for two values of the fractional parameters ( =0.55 and  =0.95)

along with different helium modes shown in Table 1 are displayed in the range of figures from

Fig. 6 till Fig. 9 for one pure helium gas model; X0=1, Y0=0, Z0=0, R0=0 and three rich helium

gas models;  X0=0.95, Y0=0.05, Z0=0, R0=0;  X0=0.9,  Y0=0.1,  Z0=0, R0=0; and X0=0.85,

Y0=0.15, Z0=0, R0=0. In all of these figures, it is clear the very good agreement between both of

NN model and analytical model, which elect the NN to be considered as a powerful tool to solve

and model nuclear burning networks and could be applied to the other nuclear stellar burning

networks.
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Figure 6:  The distribution of the product abundance with time for the rich helium burning

network, Xo=0.85, Yo=0.15, Zo=0, Ro=0.
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Figure 7:  The distribution of the product abundance with time for the rich helium burning

network, Xo=0.9, Yo=0.1, Zo=0, Ro=0.
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Figure 8:  The distribution of the product abundance with time for the rich helium burning

network, Xo=0.95, Yo=0.05, Zo=0, Ro=0.
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Figure 9:  The distribution of the product abundance with time for the pure helium

burning network, Xo=1, Yo=0, Zo=0, Ro=0.

5. Conclusion

In the current research, we introduced an analytical solution to the conformable fractional helium

burning network via a series expansion method where we obtained the product abundances of the

syntheses elements as a function of time. The calculations are performed for the four different

initial abundances; (X0=1, Y0=0, Z0=0, R0=0), (X0=0.95, Y0=0.05, Z0=0, R0=0); (X0=0.9, Y0=0.1,

Z0=0, R0=0); and (X0=0.85, Y0=0.15, Z0=0, R0=0). The results of the analytical solution revealed

that the conformable models have the same behaviors as the fractional models computed using

the  modified  Riemann-Liouville  fractional  derivative.  Second,  we  used  the  NN  in  its  feed

forward type to simulate  the system of the differential  equations of the HB. To do that,  we

performed the  mathematical  modeling  of  a  NN to simulate  the conformable  helium burning
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network. We trained the NN using back propagation delta rule algorithm and used training data

for models with the fractional parameter range   with step . We predicted the

fractional  models  for the range   with step .  The comparison with the

analytical solutions gives a very good agreement for most cases, a small difference obtained for

the model with fractional parameters . The results obtained in this research proves that

modeling of nuclear burning networks using NN give very good results and validates the NN to

be an accurate, robust, and trustworthy method to solve and model similar networks and could be

applied  to  other  nuclear  stellar  burning  networks comprised  of  conformable  fractional

differential equations.

Acknowledgments: The authors would like acknowledged the Academy of Scientific Research

& Technology (ASRT), Egypt Grant no. 6413 under the project Science Up.

References

[1] R.A. El-Nabulsi, Appl. Math. Comput. 218, 2837 (2011).

[2] S.S. Bayin, J.P. Krisch, Astrophys. Space Sci. 359, 58 (2015)

[3] E.A.-B. Abdel-Salam, M.I. Nouh, Astrophysics 59, 398 (2016)

[4] M. I. Nouh and E.A.-B. Abdel-Salam, EPJP, 133, 149.

[5] Nouh, M.I., 2019. New Astronomy 66, 40

[6] E.A.-B. Abdel-Salam, M.I. Nouh, 2020, New Astronomy, 76, 101322

[7] Yousif , E., Adam, A., Hassaballa, A. and Nouh, M. I., (2021), New Astronomy, 84, 101511

[8]M. W. M. G. Dissanayake and N. Phan-Thien.   Neural-network-based approximations for 
solving partial differential equations, Communications in Numerical Methods in 
Engineering,10(3):195–201, March 1994.

[9]I.E.  Lagaris,  A.  Likas,  and  D.I.  Fotiadis.   Artificial neural networks for solving ordinary 
and partial differential equations, IEEE Transactions on Neural Networks, 9(5):987–1000, 
September 1998.

26



[10]I.E. Lagaris, A.C. Likas, and D.G. Papageorgiou. Neural-network methods for boundary 
valueproblems with irregular boundaries. IEEE Transactions on Neural Networks, 11(5):1041–
1049,September 2000. Conference Name: IEEE Transactions on Neural Networks.

[11]Kevin Stanley McFall and James Robert Mahan. Artificial Neural Network Method for 
Solution of Boundary Value Problems With Exact Satisfaction of Arbitrary Boundary 
Conditions, IEEE Transactions on Neural Networks, 20(8):1221–1233, August 2009. Conference
Name: IEEE Transactions on Neural Networks.

[12]Modjtaba  Baymani,  Asghar  Kerayechian,  and  Sohrab  Effati.   Artificial Neural Networks
Approach for Solving Stokes Problem, Applied Mathematics, 01(04):288–292, 2010.

[13] Lu Lu, Xuhui Meng, Zhiping Mao, and George E. Karniadakis. DeepXDE: A deep learning 
library for solving differential equations. arXiv:1907.04502 [physics, stat], February 2020.arXiv:
1907.04502.

[14]Alexander Koryagin, Roman Khudorozkov, and Sergey Tsimfer.  PyDEns: a Python Frame-
work for Solving Differential Equations with Neural Networks.arXiv:1909.11544 [cs,stat], 
September 2019. arXiv: 1909.11544.

[15]Feiyu Chen, David Sondak, Pavlos Protopapas, Marios Mattheakis, Shuheng Liu, Devansh 
Agarwal, and Marco Di Giovanni.  Neuro Diff Eq: A Python package for solving differential 
equations with neural networks, Journal of Open Source Software, 5(46):1931, February 2020.

[16] Nouh, M.I., Azzam, Y.A. & Abdel-Salam, E. A-B., 2020, Neural Comput & Applic,  

       https://doi.org/10.1007/s00521-020-05277-9

[17] Azzam, Y.  A.; Abdel-Salam, E. A. -B.; Nouh, M.  I., 2020, arXiv:2010.12768.

[18] Clayton, D.D., 1983. Principles of Stellar Evolution and Nucleosynthesis. University of
        Chicago Press, Chicago.

[19] Duorah, H.L., Kushwaha, R.S., 1963. Helium-Burning reaction products and the rate of
        energy generation. Astrophys. J. 137, 566

[20] Hix, W.R., Thielemann, F.-K., 1999. Computational methods for nucleosynthesis and
        nuclear energy generation. J. Comput. Appl. Math. 109, 321

[21] Nouh, M. I., Sharaf, M. A. and Saad, A. S., 2003, AN, 324, 432.

[22] Haubold, H.J., Mathai, A.M., 2000. The fractional kinetic equation and thermonuclear
         functions. Astrophys. Space Sci. 273, 53–63

27



[23] Saxena, R.K., Mathai, A.M., Haubold, H.J., 2002. On fractional kinetic equations,.
        Astrophys. Space Sci. 282, 281–287. 

[24] Chaurasia, V., Pandey, S., 2010. Research in Astron. Astrophys. 10, 22 

[25] Yadav N, Yadav A, Kumar M (2015) An introduction to neural network methods for 

differential equations, springer briefs in applied science and technology. Springer, Berlin

[26] Elminir Hamdy K, Azzam Yosry A, Younes Farag I (2007) Prediction of hourly and daily 

diffuse fraction using neural network, as compared to linear regression models. Energy
32:1513–1523

[27] Fukuda T, Hasegawa Y, Sekiyama K, Aoyama Tadayoshi (2012), Multi-Locomotion 
Robotic Systems: New Concepts of Bio-inspired Robotics. Springer, Berlin

[28] Cornelia Denz, 1998, Optical Neural Networks, Springer.

[29] Toshio Fukuda, Yasuhisa Hasegawa, Kosuke Sekiyama, Tadayoshi Aoyama, 2012, Multi-
Locomotion Robotic Systems: New Concepts of Bio-inspired Robotics, Springer.

[30] Basheer IA, Hajmeer M (2000) Artificial neural networks: fundamentals, computing, 
design, and application. J Microbiol Methods 43:3–31

28


