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considered as fractional order and the second as fractal dimension. We studied the effect

of the fractal-fractional derivative order as well as the nonlinear term order 1 < q ≤ 2

on the behavior of the numerical solutions of the fractal-fractional reaction diffusion

equations (FFRDE). The iterative approximations are constructed by applying the the-

ory of fractional calculus with the help of Lagrange polynomial functions. In the case

of β = k = 1 , all the numerical solutions based on power kernel, exponential kernel,

and the generalized Mittag-Leffler kernel are very close to each other and so one of the

kernel was compared with numerical methods like finite difference methods (FDM) and

an excellent agreement obtained. All calculations in this paper were done using the

mathematica package.
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1. Introduction, Definitions and Preliminaries

Fractional calculus is a generalization of classical calculus and many researchers have paid attention

to this science as they encounter many of these issues in the real world. Most of these issues do not

have analytical exact solution. Which made many researchers interest and search in numerical and

approximate methods to obtain solutions using these methods. There are many of these methods, such

as the homotopy analysis [1, 2, 3, 4] , He’s variational iteration method [5, 6] , Adomians decomposition

method [7, 8, 9] , Fourier spectral methods [10] , finite difference schemes [11], collocation methods

[12, 13, 14]. To find out more about the fractal calculus, refer to the following references [15, 16].

More recently, a new concept was introduced for the fractional operator, as this operator has two

orders, the first representing the fractional order, and the second representing the fractal dimension.
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In our work we aim to applied the idea of fractal-fractional derivative of orders β, k to a reaction-

diffusion equation with q-th nonlinear. To this end [17] , we replace the derivative with respect to t by

the fractal-fractional derivatives power (FFP) law, the fractal-fractional exponential(FFE) law and the

fractal-fractional Mittag-Leffler (FFM) law kernels which corresponds to the [18], Caputo-Fabrizio (CF)

[19] and the Atangana-Baleanu (AB) [20] fractional derivatives, respectively. This topic has attracted

many researchers and has been applied to research related to the real world, such as [21]–[26]. Some

recent developments in the area of numerical techniques can be found in [27]–[29].

Merkin and Needham [30] considered the reaction-diffusion travelling waves that can develop in a

coupled system involving simple isothermal autocatalysis kinetics. They assumed that reactions took

place in two separate and parallel regions, with, in I, the reaction being given by quadratic autocatalysis

F +G → 2G(rate k1f g), (1)

together with a linear decay step

G → H(rate k2 g) (2)

where f and g are the concentrations of reactant F and autocatalyst H, the ki(i = 1, 2) are the

rate constants and H is some inert product of reaction. The reaction in region II was the quadratic

autocatalytic step (1) only. The two regions were assumed to be coupled via a linear diffusive interchange

of the autocatalytic species G. We shall consider a similar system as I, but with cubic autocatalysis

F + 2G → 3G(rate k3 fg
2) (3)

together with a linear decay step

G → H(rate k4g). (4)

For q-th autocatalytic, we have

F + qG → (q + 1)G(rate k3fg
q), 1 ≤ q ≤ 2, (5)

together with a linear decay step

G → H(rate k4g). (6)

This yields to the following system

∂η1
∂η

=
∂2η1
∂ξ2

+ ν(η2 − η1)− η1ζ
q
1 , (7)

∂ζ1
∂η

=
∂2ζ1
∂ξ2

− κζ1 + η1ζ
q
1 , (8)

∂η2
∂η

=
∂2η2
∂ξ2

+ ν(η1 − η2)− η2ζ
q
2 , (9)

∂ζ2
∂η

=
∂2ζ2
∂ξ2

+ η2ζ
q
2 (10)

where ν represents the couple between (I) and (II) and κ represents the strength of the auto-catalyst

decay. For more details see [30].
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Omitting the diffusion terms in the system (7)–(10), one has the following ODE system

∂η1
∂η

= ν(η2 − η1)− η1ζ
q
1 , (11)

∂ζ1
∂η

= −κζ1 + η1ζ
q
1 , (12)

∂η2
∂η

= ν(η1 − η2)− η2ζ
q
2 , (13)

∂ζ2
∂η

= η2ζ
q
2 . (14)

Now we will provide some basic definitions that will be needed in our work. As for the theorems

and proofs related to the three fractal-fractional operators, they are found in details in [17], so we will

suffice in our work by constructing the algorithms and making the numerical simulations of the system

(7)–(10) with the three fractal-fractional operators.

Definition 1. If η(t) is continuous and fractal differentiable on (a, b) of order k, then the fractal-

fractional derivative of η(t) of order β in Riemann Liouville sense with power law is given by [17]:

FFP
0 Dβ,k

t η(t) =
1

Γ(1− β)

d

dtk

∫ t

0
(t− τ)−βη(τ)dτ, (0 < β, k ≤ 1), (15)

and the fractal-fractional integral of η(t) is given by

FFP
0I

β,k
t η(t) =

k

Γ(β)

∫ t

0
τk−1(t− τ)β−1η(τ)dτ. (16)

Definition 2. If η(t) is continuous in the (a, b) and fractal differentiable on (a, b) with order k, then

the fractal-fractional derivative of η(t) of order β in CF sense with the exponential decay kernel are

given by [18]:

FFE
0 Dβ,k

t η(t) =
M(β)

1− β

d

dtk

∫ t

0
e

−β
1−β

(t−τ)
η(τ)dτ, (0 < β, k ≤ 1), (17)

and the fractal-fractional integral of η(t) is given by

FFE
0I

α,k
t η(t) =

(1− β)ktk−1

M(β)
η(t) +

βk

M(β)

∫ t

0
τk−1η(τ)dτ. (18)

Definition 3. If η(t) is continuous in the (a, b) and fractal differentiable on (a, b) with order k, then

the fractal-fractional derivative of η(t) of order β in AB sense with the generalized Mittag-Leffler type

kernel are given by [18]:

FFE
0 Dβ,k

t η(t) =
A(β)

1− β

d

dtk

∫ t

0
Eβ

( −β

1− β
(t− τ)

)
η(τ)dτ, (0 < β, k ≤ 1), (19)

and the fractal-fractional integral of η(t) is given by

FFE
0I

β,k
t η(t) =

(1− β)ktk−1

A(β)
η(t) +

β k

A(β)Γ(β)

∫ t

0
τk−1(t− τ)β−1η(τ)dτ, (20)

where

dη(t)

dtk
= limτ→t

η(τ)− η(t)

τk − tk
. (21)
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Our contribution to this paper is to construct the successive approximations and evaluate the numerical

solutions of the FFRDE. These successive approximations allow us to study the behavior of numerical

solutions based on power kernel, exponential kernel, and the generalized Mittag-Leffler kernel. Also we

can study the behavior of approximate solutions in the case of nonlinearity of the FFRDE in general.

To our best knowledge, this is the first study of this the FFRDE using fractal-fractional with these

kernels. The structure of this paper is summarized as follows: In sections, two, three and four, the

FFRDE is presented with the three kernels that proposed in this work and construct the successive

approximations. In section Five, numerical solutions for the FFRDE are discussed with a study of their

behavior. Chapter Six the conclusion is presented.

2. Numerical scheme for FFRDE for q-th-order autocatalysis due the power law kernel

The new model is obtained by replacing the ordinary derivative with the the fractal-fractional deriv-

ative the power law kernel as [17]

FFP
0 Dβ

t ζ1(t) = ν(η2(t)− η1(t))− η1(t)ζ
q
1(t), (22)

FFP
0 Dβ

t η1(t) = −κζ1(t) + η1(t)ζ
q
1(t), (23)

FFP
0 Dβ

t ζ2(t) = ν(η1(t)− η2(t))− η2(t)ζ
q
2(t), (24)

FFP
0 Dβ

t η2(t) = η2(t)ζ
q
2(t). (25)

By following the procedure in [17], we can obtain the following successive approximations:

η1(t)− η1(0) =
k

Γ(β)

∫ t

0
τk−1(t− τ)β−1φ1(η1, ζ1, η2, ζ2, τ)dτ, (26)

ζ1(t)− ζ2(0) =
k

Γ(β)

∫ t

0
τk−1(t− τ)β−1φ2(η1, ζ1, η2, ζ2, τ)dτ, (27)

η2(t)− η3(0) =
k

Γ(β)

∫ t

0
τk−1(t− τ)β−1φ3(η1, ζ1, η2, ζ2, τ)dτ, (28)

ζ2(t)− ζ2(0) =
k

Γ(β)

∫ t

0
τk−1(t− η)α−1φ4(η1, ζ1, η2, ζ2, τ)dη (29)

where

φ1(η1, ζ1, η2, ζ2, τ) =
(
ν (η2(τ)− η1(τ))− η1(τ)ζ

n
1 (τ)

)
, (30)

φ2(η1, ζ1, η2, ζ2, τ) =
(
− κ ζ1(t) + η1(t)ζ

n
1 (t)

)
, (31)

φ3(η1, ζ1, η2, ζ2, τ) =
(
ν(η1(t)− η2(t))− η2(t)ζ

n
2 (t)

)
, (32)

φ4(η1, ζ1, η2, ζ2, τ) = η2(t)ζ
n
2 (t). (33)

Equation (26)–(29) can be reformulated as

η1(t)− η1(0) =
k

Γ(β)

∞∑
m=0

∫ tm+1

tm

τk−1(t− τ)β−1φ1(η1, ζ1, η2, ζ2, τ)dτ, (34)



Fractal Fractional Reaction Diffusion Equations with General Nonlinear 5

ζ1(t)− ζ1(0) =
k

Γ(β)

∞∑
m=0

∫ tm+1

tm

τk−1(t− τ)β−1φ2(η1(τ), ζ1(τ), η2(τ), ζ2(τ), τ)dτ, (35)

η2(t)− η2(0) =
k

Γ(β)

∞∑
m=0

∫ tm+1

tm

τk−1(t− τ)β−1φ3(η1, ζ1, η2, ζ2, τ)dτ, (36)

ζ2(t)− ζ2(0) =
k

Γ(β)

∞∑
m=0

∫ tm+1

tm

τk−1(t− τ)β−1φ4(η1, ζ1, η2, ζ2, τ)dτ. (37)

Using the two-step Lagrange polynomial interpolation, we obtain

η1(t)− η1(0) =
k

Γ(β)

∞∑
m=0

∫ tm+1

tm

τk−1(t− τ)β−1Q1,m(τ)dτ, (38)

ζ1(t)− ζ1(0) =
k

Γ(β)

∞∑
m=0

∫ tm+1

tm

τk−1(t− τ)β−1Q2,m(τ)dτ, (39)

η2(t)− η2(0) =
k

Γ(β)

∞∑
m=0

∫ tm+1

tm

τk−1(t− τ)β−1Q3,m(τ)dτ, (40)

ζ2(t)− ζ2(0) =
k

Γ(β)

∞∑
m=0

∫ tm+1

tm

τk−1(t− τ)β−1Q4,m(τ)dτ, (41)

where,

Q1,m(τ) =
τ − tm−1

tm − tm−1
tk−1
m φ1(η1(τm), ζ1(τm), η2(τm), ζ2(τm), τm)− τ − tm

tm − tm−1

×tk−1
m−1φ1(η1(τm−1), ζ1(τm−1), η2(τm−1), ζ2(τm−1), τm−1) (42)

Q2,m(τ) =
τ − tm−1

tm − tm−1
tk−1
m φ2(η1(τm), ζ1(τm), η2(τm), ζ2(τm), τm)− τ − tm

tm − tm−1

×tk−1
m−1φ2(η1(τm−1), ζ1(τm−1), η2(τm−1), ζ2(τm−1), τm−1) (43)

Q3,m(τ) =
τ − tm−1

tm − tm−1
tk−1
m φ3(η1(τm), ζ1(τm), η2(τm), ζ2(τm), τm)− τ − tm

tm − tm−1

×tk−1
m−1φ3(η1(τm−1), ζ1(τm−1), η2(τm−1), ζ2(τm−1), τm−1) (44)

Q4,m(τ) =
τ − tm−1

tm − tm−1
tk−1
m φ4(η4(τm), ζ1(τm), η2(τm), ζ2(τm), τm)− τ − tm

tm − tm−1

×tk−1
m−1φ4(η1(τm−1), ζ1(τm−1), η2(τm−1), ζ2(τm−1), τm−1) (45)

These integrals are evaluated directly and the numerical solutions of (22)–(25) involving the FFP

derivative are given by

η1(tn+1) = η1(0) +
khβ

Γ(β + 2)

n∑
m=0

tk−1
m φ1(η1(tm), ζ1(tm), η2(tm), ζ2(tm), tm)Ξ1(n,m)

− tk−1
m−1φ1(η1(τm−1), ζ1(tm−1), η2(tm−1), ζ2(tm−1), tm−1)Ξ2(n,m)

)
, (46)

ζ1(tn+1) = ζ1(0) +
khβ

Γ(β + 2)

n∑
m=0

tk−1
m φ2(η1(tm), ζ1(tm), η2(tm), ζ2(tm), tm)Ξ1(n,m)

− tk−1
m−1φ2(η1(τm−1), ζ1(tm−1), η2(tm−1), ζ2(tm−1), tm−1)Ξ2(n,m)

)
, (47)
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η2(tn+1) = η2(0) +
khβ

Γ(β + 2)

n∑
m=0

tk−1
m φ3(η1(tm), ζ1(tm), η2(tm), ζ2(tm), tm)Ξ1(n,m)

− tk−1
m−1φ4(η1(τm−1), ζ1(tm−1), η2(tm−1), ζ2(tm−1), tm−1)Ξ2(n,m)

)
, (48)

ζ2(tn+1) = ζ2(0) +
khβ

Γ(β + 2)

n∑
m=0

tk−1
m φ4(η1(tm), ζ1(tm), η2(tm), ζ2(tm), tm)Ξ1(n,m)

− tk−1
m−1φ4(η1(τm−1), ζ1(tm−1), η2(tm−1), ζ2(tm−1), tm−1)Ξ2(n,m)

)
, (49)

Ξ1(n,m) =
(
(n+ 1−m)β(n−m+ 2 + β)− (n−m)β × (n−m+ 2 + 2β)

)
, (50)

Ξ2(n,m) =
(
(n+ 1−m)β+1 − (n−m)β(n−m+ 1 + β)

)
. (51)

3. Numerical scheme for FFRDE for q-th-order autocatalysis due the exponential

decay kernel

Considering the FFE derivative, we have from [17]

FFE
0 Dβ

t ζ1(t) = ν(η2(t)− η1(t))− η1(t)ζ
q
1(t), (52)

FFE
0 Dβ

t η1(t) = −κζ1(t) + η1(t)ζ
q
1(t), (53)

FFE
0 Dβ

t ζ2(t) = ν(η1(t)− η2(t))− η2(t)ζ
q
2(t), (54)

FFE
0 Dβ

t η2(t) = η2(t)ζ
q
2(t). (55)

For the successive approximations of the system (52)–(55), we follow the same procedures as in [17], we

obtain

η1(t)− η1(0) =
ktk−1(1− β)

M(β)
φ1(η1, ζ1, η2, ζ2, t)

+
β

M(β)

∫ t

0
k τk−1φ1(η1, ζ1, η2, ζ2, τ)dτ, (56)

ζ1(t)− ζ1(0) =
ktk−1(1− β)

M(β)
φ2(η1, ζ1, η2, ζ2, t)

+
β

M(β)

∫ t

0
k τk−1φ2(η1, ζ1, η2, ζ2, τ)dτ, (57)

η2(t)− η2(0) =
ktk−1(1− β)

M(β)
φ3(η1, ζ1, η2, ζ2, t)

+
β

M(β)

∫ t

0
k τk−1φ3(η1, ζ1, η2, ζ2, τ)dτ, (58)

ζ2(t)− ζ2(0) =
ktk−1(1− β)

M(β)
φ4(η1, ζ1, η2, ζ2, t)

+
β

M(β)

∫ t

0
k τk−1φ4(η1, ζ1, η2, ζ2, τ)dτ. (59)
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Using t = tn+1 the following is established

η1(tn+1)− η1(tn) =
ktk−1(1− β)

M(β)
φ1(η1, ζ1, η2, ζ2, t)

+
β

M(β)

∫ tn+1

0
k τk−1φ1(η1, ζ1, η2, ζ2, τ)dτ, (60)

ζ1(tn+1)− ζ1(tn) =
ktk−1(1− β)

M(β)
φ2(η1, ζ1, η2, ζ2, t)

+
β

M(β)

∫ tn+1

0
k τk−1φ2(η1, ζ1, η2, ζ2, τ)dτ, (61)

η2(tn+1)− η2(tn) =
ktk−1(1− β)

M(β)
φ3(η1, ζ1, η2, ζ2, t)

+
β

M(β)

∫ tn+1

0
k τk−1φ3(η1, ζ1, η2, ζ2, τ)dτ, (62)

ζ2(tn+1)− ζ2(tn) =
ktk−1(1− β)

M(β)
φ4(η1, ζ1, η2, ζ2, t)

+
β

M(β)

∫ tn+1

0
k τk−1φ4(η1, ζ1, η2, ζ2, τ)dτ. (63)

Further, we have the following:

η1(tn+1)− η1(tn) =
ktk−1

n (1− β)

M(β)
φ1(η1, ζ1, η2, ζ2, tn)

−
ktk−1

n−1(1− β)

M(β)
φ1(η1, ζ1, η2, ζ2, tn−1)

+
β

M(β)

∫ tn+1

tn

k ηk−1φ1(η1, ζ1, η2, ζ2, τ)dτ, (64)

ζ1(tn+1)− ζ1(tn) =
ktk−1

n (1− β)

M(β)
φ2(η1, ζ1, η2, ζ2, tn)

−
ktk−1

n−1(1− β)

M(β)
φ2(η1, ζ1, η2, ζ2, tn−1)

+
β

M(β)

∫ tn+1

tn

k ηk−1φ2(η1, ζ1, η2, ζ2, τ)dτ, (65)

η2(tn+1)− η2(tn) =
ktk−1

n (1− β)

M(β)
φ3(η1, ζ1, η2, ζ2, tn)

−
ktk−1

n−1(1− β)

M(β)
φ3(η1, ζ1, η2, ζ2, tn−1)

+
β

M(β)

∫ tn+1

tn

k ηk−1φ3(η1, ζ1, η2, ζ2, τ)dτ, (66)
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ζ2(tn+1)− ζ2(tn) =
ktk−1

n (1− β)

M(β)
φ4(η1, ζ1, η2, ζ2, tn)

−
ktk−1

n−1(1− β)

M(β)
φ4(η1, ζ1, η2, ζ2, tn−1)

+
β

M(β)

∫ tn+1

tn

k ηk−1φ4(η1, ζ1, η2, ζ2, τ)dτ. (67)

It follows from the Lagrange polynomial interpolation and integrating the following expressions:

η1(tn+1)− η1(tn) =
ktk−1

n (1− β)

M(β)
φ1(η1, ζ1, η2, ζ2, tn)

−
ktk−1

n−1(1− β)

M(β)
φ1(η1, ζ1, η2, ζ2, tn−1) +

khβ

2M(β)

×
(
3tk−1

n φ1(η1, ζ1, η2, ζ2, tn)− tk−1
n−1φ1(η1, ζ1, η2, ζ2, tn−1), (68)

ζ1(tn+1)− ζ1(tn) =
ktk−1

n (1− β)

M(β)
φ2(η1, ζ1, η2, ζ2, tn)

−
ktk−1

n−1(1− β)

M(β)
φ2(η1, ζ1, η2, ζ2, tn−1) +

khβ

2M(β)

×
(
3tk−1

n φ2(η1, ζ1, η2, ζ2, tn)− tk−1
n−1φ2(η1, ζ1, η2, ζ2, tn−1), (69)

η2(tn+1)− η2(tn) =
ktk−1

n (1− β)

M(β)
φ3(η1, ζ1, η2, ζ2, tn)

−
ktk−1

n−1(1− β)

M(β)
φ3(η1, ζ1, η2, ζ2, tn−1) +

khβ

2M(β)

×
(
3tk−1

n φ3(η1, ζ1, η2, ζ2, tn)− tk−1
n−1φ3(η1, ζ1, η2, ζ2, tn−1), (70)

ζ2(tn+1)− ζ2(tn) =
ktk−1

n (1− β)

M(β)
φ4(η1, ζ1, η2, ζ2, tn)

−
ktk−1

n−1(1− β)

M(β)
φ4(η1, ζ1, η2, ζ2, tn−1) +

khβ

2M(β)

×
(
3tk−1

n φ4(η1, ζ1, η2, ζ2, tn)− tk−1
n−1φ4(η1, ζ1, η2, ζ2, tn−1). (71)

Finally, it is appropriate to write the successive approximations of the system (52)–(55) as follows:

η1(tn+1)− η1(tn) = ktk−1
n

((1− β)

M(β)
+

3hβ

2M

)
φ1(η1, ζ1, η2, ζ2, tn)

− ktk−1
n−1

((1− β)

M(β)
+

hβ

2M(β)

)
φ1(η1, ζ1, η2, ζ2, tn−1), (72)

ζ1(tn+1)− ζ1(tn) = ktk−1
n

((1− β)

M(β)
+

3hβ

2M

)
φ2(η1, ζ1, η2, ζ2, tn)

− ktk−1
n−1

((1− β)

M(β)
+

hβ

2M(β)

)
φ2(η1, ζ1, η2, ζ2, tn−1), (73)
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η2(tn+1)− η2(tn) = ktk−1
n

((1− β)

M(β)
+

3hβ

2M

)
φ3(η1, ζ1, η2, ζ2, tn)

− ktk−1
n−1

((1− β)

M(β)
+

hβ

2M(β)

)
φ3(η1, ζ1, η2, ζ2, tn−1), (74)

ζ2(tn+1)− ζ2(tn) = ktk−1
n

((1− β)

M(β)
+

3hβ

2M

)
φ4(η1, ζ1, η2, ζ2, tn)

− ktk−1
n−1

((1− β)

M(β)
+

hβ

2M(β)

)
φ4(η1, ζ1, η2, ζ2, tn−1). (75)

4. Numerical scheme for FFRDE for q-th-order autocatalysis due the generalized Mittag

Lefller kernel

Considering the FFM derivative, we have [18]

FFM
0 Dβ

t ζ1(t) = ν(η2(t)− η1(t))− η1(t)ζ
q
1(t), (76)

FFM
0 Dβ

t η1(t) = −κζ1(t) + η1(t)ζ
q
1(t), (77)

FFM
0 Dβ

t ζ2(t) = ν(η1(t)− η2(t))− η2(t)ζ
q
2(t), (78)

FFM
0 Dβ

t η2(t) = η2(t)ζ
q
2(t). (79)

Also, for this system (76)–(77), we follow the same treatment that was done in [17] to obtain the

successive approximate solutions as follows:

η1(t)− η1(0) =
ktk−1(1− β)

A(β)
φ1(η1, ζ1, η2, ζ2, t)

+
β

A(β)Γ(β)

∫ t

0
k τk−1(t− τ)β−1φ1(η1, ζ1, η2, ζ2, τ)dτ, (80)

ζ1(t)− ζ1(0) =
ktk−1(1− β)

A(β)
φ2(η1, ζ1, η2, ζ2, t)

+
β

A(β)Γ(β)

∫ t

0
k τk−1(t− τ)β−1φ2(η1, ζ1, η2, ζ2, τ)dτ, (81)

η2(t)− η2(0) =
ktk−1(1− β)

A(β)
φ3(η1, ζ1, η2, ζ2, t)

+
β

A(β)Γ(β)

∫ t

0
k τk−1(t− τ)β−1φ3(η1, ζ1, η2, ζ2, τ)dτ, (82)

ζ2(t)− ζ2(0) =
ktk−1(1− β)

A(β)
φ4(η1, ζ1, η2, ζ2, t)

+
β

A(β)Γ(β)

∫ t

0
k τk−1(t− τ)β−1φ4(η1, ζ1, η2, ζ2, τ)dτ. (83)
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At tn+1 we obtain the following

η1(tn+1)− η1(0) =
ktk−1

n (1− β)

A(β)
φ1(η1(tn), ζ1(tn), η2(tn), ζ2(tn), tn)

+
β

A(β)Γ(β)

∫ tn+1

0
k τk−1(tn+1 − τ)β−1φ1(η1, ζ1, η2, ζ2, τ)dτ, (84)

ζ1(tn+1)− ζ1(0) =
ktk−1

n (1− β)

A(β)
φ2(η1(tn), ζ1(tn), η2(tn), ζ2(tn), tn)

+
β

A(β)Γ(β)

∫ tn+1

0
k τk−1(tn+1 − τ)β−1φ2(η1, ζ1, η2, ζ2, τ)dτ, (85)

η2(tn+1)− η2(0) =
ktk−1

n (1− β)

A(β)
φ3(η1(tn), ζ1(tn), η2(tn), ζ2(tn), tn)

+
β

A(β)Γ(β)

∫ tn+1

0
k τk−1(tn+1 − τ)β−1φ3(η1, ζ1, η2, ζ2, τ)dτ, (86)

ζ2(tn+1)− ζ2(0) =
ktk−1

n (1− β)

A(β)
φ4(η1(tn), ζ1(tn), η2(tn), ζ2(tn), tn)

+
β

A(β)Γ(β)

∫ tn+1

0
k τk−1(tn+1 − τ)β−1φ4(η1, ζ1, η2, ζ2, τ)dτ, (87)

The integrals involving in (84)–(87) can be approximated as:

η1(tn+1)− η1(0) =
ktk−1

n (1− β)

A(β)
φ1(η1(tn), ζ1(tn), η2(tn), ζ2(tn), tn)

+
β

A(β)Γ(β)

n∑
j=0

∫ tj+1

tj

k τk−1(tn+1 − τ)β−1φ1(η1, ζ1, η2, ζ2, τ)dτ, (88)

ζ1(tn+1)− ζ1(0) =
ktk−1

n (1− β)

A(β)
φ2(η1(tn), ζ1(tn), η2(tn), ζ2(tn), tn)

+
β

A(β)Γ(β)

n∑
j=0

∫ tj+1

tj

k τk−1(tn+1 − τ)β−1φ2(η1, ζ1, η2, ζ2, τ)dτ, (89)

η2(tn+1)− η2(0) =
ktk−1

n (1− β)

A(β)
φ3(η1(tn), ζ1(tn), η2(tn), ζ2(tn), tn)

+
β

A(β)Γ(β)

n∑
j=0

∫ tj+1

tj

k τk−1(tn+1 − τ)β−1φ3(η1, ζ1, η2, ζ2, τ)dτ, (90)

ζ2(tn+1)− ζ2(0) =
ktk−1

n (1− β)

A(β)
φ4(η1(tn), ζ1(tn), η2(tn), ζ2(tn), tn)

+
β

A(β)Γ(β)

n∑
j=0

∫ tj+1

tj

k τk−1(tn+1 − τ)β−1φ4(η1, ζ1, η2, ζ2, τ)dτ. (91)

The following numerical schemes after approximating the expressions τk−1φi(η1, ζ1, η2, ζ2, τ), i = 1, 2, 3, 4

in the interval [tj , tj+1] in (88)-(91) are given by
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η1(tn+1)− η1(0) =
ktk−1

n (1− β)

A(β)
φ1(η1(tn), ζ1(tn), η2(tn), ζ2(tn), tn)

+
khβ

A(β)Γ(β + 2)

n∑
j=0

[
tk−1
j φ1(η1(tj), ζ1(tj), η2(tj), ζ2(tj), (tj))Ξ1(n,m)

− tk−1
j−1φ1(η1(tj−1), ζ1(tj−1), η2(tj−1), ζ2(tj−1), (tj−1))Ξ2(n,m)

]
, (92)

ζ1(tn+1)− ζ1(0) =
ktk−1

n (1− β)

A(β)
φ2(η1(tn), ζ1(tn), η2(tn), ζ2(tn), tn)

+
khβ

A(β)Γ(β + 2)

n∑
j=0

[
tk−1
j φ2(η1(tj), ζ1(tj), η2(tj), ζ2(tj), (tj))Ξ1(n,m)

− tk−1
j−1φ2(η1(tj−1), ζ1(tj−1), η2(tj−1), ζ2(tj−1), (tj−1))Ξ2(n,m)

]
, (93)

η2(tn+1)− η2(0) =
ktk−1

n (1− β)

A(β)
φ3(η1(tn), ζ1(tn), η2(tn), ζ2(tn), tn)

+
khβ

A(β)Γ(β + 2)

n∑
j=0

[
tk−1
j φ3(η1(tj), ζ1(tj), η2(tj), ζ2(tj), (tj))Ξ1(n,m)

− tk−1
j−1φ3(η1(tj−1), ζ1(tj−1), η2(tj−1), ζ2(tj−1), (tj−1))Ξ2(n,m)

]
, (94)

ζ2(tn+1)− ζ2(0) =
ktk−1

n (1− β)

A(β)
φ4(η1(tn), ζ1(tn), η2(tn), ζ2(tn), tn)

+
khβ

A(β)Γ(α+ 2)

n∑
j=0

[
tk−1
j φ4(η1(tj), ζ1(tj), η2(tj), ζ2(tj), (tj))Ξ1(n,m)

− tk−1
j−1φ4(η1(tj−1), ζ1(tj−1), η2(tj−1), ζ2(tj−1), (tj−1))Ξ2(n,m)

]
. (95)

5. Numerical results

In this section, we study in details the effect of the non-linear term in general, as well as the effect of the

fractal-fractional order on the numerical solutions that we obtained by using successive approximations

in the above sections. First we begin by satisfying the effective of the numerical solutions of the proposed

system when β = 1, k = 1.

We compare only for the power kernel with a known numerical method which is the finite differences

method. This is because all numerical solutions based on the three fractal-fractional operators that

presented in this paper are very close each other when β = 1, k = 1. Figure 1 (a)-(c) illustrates the

comparison between numerical solutions (46)–(49) and numerical solutions computed by using the finite

differences method with β = 1, k = 1. The parameters that used are γ = 0.4, κ = 0.004, h = 0.02. From

this figure we note that an excellent agreement. And the accurate is increasing as we take small h.

From, Figure 1(a) and 1(c), we can see, that the profiles for η1 and η2 are very similar, but the profiles

of ζ1 and ζ2 are more distinct with ζ2 > ζ2. For Figure 1(b), the profiles of ζ1 and ζ2 are very close
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than in figures 1(a) and 1(c), also for ζ1 and ζ2. Figures 2–3 show that the behavior of the approximate

solutions based on FFP, FFE and FFM, when the degree of the non-linear term is cubic and for different

values of k, β. For the parameters γ, κ , we fixed them in all computations. The remain parameters are

the same as in Figure 1. Similarly, in Figures 4–5, the approximate solutions are plotted in the case

of a non-linear with quadratic degree and for different values of k, β. Finally in 6–7, the approximate

solutions are shown in the case of non-linear with fraction order and for different values for k, β. From

4–5, we can see in the case of fraction non-linear, the profiles of η1 and η2 are very close to each other

than the profiles of ζ1 and ζ2. For the figures 2–3 which the nonlinear is cubic, all the profiles are

distinct. Similarly with figures 6–7 when the nonlinear is quadratic.
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Figure 1. Comparison between the numerical solutions (46)–(49) and numer-

ical based on finite difference methods for β = 1, k = 1, γ = 0.4, κ = 0.001, h =

0.01. (a) q = 2; (b) q = 1; (c) q = 1.8; (Green solid color: Numerical solutions

(46)–(49); Red dashed color: FDM)
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Figure 2. Graph of the numerical solutions with q = 2 for β = 0.8, k = 1, γ =

0.4, κ = 0.001, h = 0.01 (a) FFP; (b) FFE; (c) FFM; (Red color: η1; Blue color:

ζ1; Green color: η2; Cyan color: ζ2).
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Figure 3. Graph of the numerical solutions with q = 2 for β = 0.7, k = 0.8, γ =

0.4, κ = 0.001, h = 0.01 (a) FFP; (b) FFE; (c) FFM; (Red color: η1; Blue color:

ζ1; Green color: η2; Cyan color: ζ2).
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Figure 4. Graph of the numerical solutions with q = 1 for β = 0.8, k = 1, γ =

0.4, κ = 0.001, h = 0.01 (a) FFP; (b) FFE; (c) FFM; (Red color: η1; Blue color:

ζ1; Green color: η2; Cyan color: ζ2).
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Figure 5. Graph of the numerical solutions with q = 1 for β = 0.7, k = 0.8, γ =

0.4, κ = 0.001, h = 0.01 (a) FFP; (b) FFE; (c) FFM; (Red color: η1; Blue color:

ζ1; Green color: η2; Cyan color: ζ2).
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Figure 6. Graph of the numerical solutions with q = 1, 8 for β = 0.8, k = 1, γ =

0.4, κ = 0.001, h = 0.01 (a) FFP; (b) FFE; (c) FFM; (Red color: η1; Blue color:

ζ1; Green color: η2; Cyan color: ζ2).
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Figure 7. Graph of the numerical solutions with q = 1.8 for β = 0.7, k = 0.8, γ =

0.4, κ = 0.001, h = 0.01 (a) FFP; (b) FFE; (c) FFM; (Red color: η1; Blue color:

ζ1; Green color: η2; Cyan color: ζ2).



Fractal Fractional Reaction Diffusion Equations with General Nonlinear 17

6. Conclusion

In this paper, numerical solutions of the of the fractal-fractional reaction diffusion equations with

general nonlinear have been studied. We introduced the FFRDE in three instances of fractional deriva-

tives based on power, exponential, and Mittag-Leffler kernels. After that, we used the fundamental

calculus, and with the help of Lagrange polynomial functions. We obtained the iterative and approx-

imate formulas in the three cases. We studied the effect of the non-linear term order, in the case of

cubic,quadratic, and fractional for different values of the fractal-fractional derivative order. The ac-

curacy of the numerical solutions in the classic case of the FFRDE was tested in the case of power

kernel, where all the numerical solutions in the classic case of integer order coincide to each other, and

the comparison result has excellent agreement . In all calculations we used the Mathematica Program

Package.
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