Acknowledgments
We thank all authors who published the information on their intensive urban avian surveys. We are also indebted to Dario Moreira for helping assemble the dataset. We finally thank Phillip Clergeau, Mariana Villegas and Ivan Diaz for providing unpublished data, María Moirón, Gabriel Garcıa-Peña, Miquel Vall-llosera and Louis Lefebvre for insightful comments, Liam Revell for sharing scripts to plot phylogenies, and the R-team and package contributors for the R free software. We are also grateful to Natural History Museum Tring, American Museum of Natural History and numerous other research collections for access to specimens. Collection of functional trait data was supported by Natural Environment Research Council grants NE/I028068/1 and NE/P004512/1 (to JAT). This paper is part of the project CGL2013-47448-P from the Spanish Government (to DS). CG-L was supported by FONDECYT 11160271 and PIA/BASAL FB0002 from ANID, Chile. JGP was supported by a Juan de la Cierva Fellowship from the Ministry of Economy, Industry and Competitivity of Spain (FJCI‐2014‐20380).
Adams, D.C. (2014). A Generalized K Statistic for Estimating Phylogenetic Signal from Shape and Other High-Dimensional Multivariate Data. Syst Biol , 63, 685–697.
Adams, D.C. & Otárola-Castillo, E. (2013). Geomorph: an r package for the collection and analysis of geometric morphometric shape data.Methods Ecol Evol , 4, 393–399.
Bartomeus, I., Sol, D., Pino, J., Vicente, P. & Font, X. (2012). Deconstructing the native-exotic richness relationship in plants.Glob Ecol Biogeogr , 21, 524–533.
Blackburn, T.M., Lockwood, J.L. & Cassey, P. (2009). Avian Invasions . Avian Invasions Ecol Evol Exot Birds . Oxford University Press.
Bürkner, P.-C. (2017). Brms: An R Package for Bayesian Multilevel Models Using Stan. J Stat Softw , 80, 1–28.
De Cáceres, M., Sol, D., Lapiedra, O. & Legendre, P. (2011). A framework for estimating niche metrics using the resemblance between qualitative resources. Oikos , 120, 1341–1350.
Cadotte, M.W., Campbell, S.E., Li, S.-P., Sodhi, D.S. & Mandrak, N.E. (2018). Preadaptation and Naturalization of Nonnative Species: Darwin’s Two Fundamental Insights into Species Invasion. Annu Rev Plant Biol , 69, 661–684.
Cadotte, M.W., Yasui, S.L.E., Livingstone, S. & MacIvor, J.S. (2017). Are urban systems beneficial, detrimental, or indifferent for biological invasion? Biol Invasions , 19, 3489–3503.
Daehler, C.C. (2001). Darwin’s Naturalization Hypothesis Revisited.Am Nat , 158, 324–330.
Darwin, C. (1859). On the Origin of Species by Means of Natural Selection . D Applet Co .
Diez, J.M., Sullivan, J.J., Hulme, P.E., Edwards, G. & Duncan, R.P. (2008). Darwin’s naturalization conundrum: Dissecting taxonomic patterns of species invasions. Ecol Lett , 11, 674–681.
Drummond, A.J., Suchard, M.A., Xie, D. & Rambaut, A. (2012). Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol , 29, 1969–1973.
Duncan, R.P., Blackburn, T.M. & Sol, D. (2003). The Ecology of Bird Introductions. Annu Rev Ecol Evol Syst , 34, 71–98.
Dyer, E.E., Redding, D.W. & Blackburn, T.M. (2017). The global avian invasions atlas, a database of alien bird distributions worldwide.Sci Data , 4, 170041.
Elton, C. (1958). The ecology of invasions by animals and plants . Chapman and Hall, London.
Ericson, P.G.P., Zuccon, D., Ohlson, J.I., Johansson, U.S., Alvarenga, H. & Prum, R.O. (2006). Higher-level phylogeny and morphological evolution of tyrant flycatchers, cotingas, manakins, and their allies (Aves: Tyrannida). Mol Phylogenet Evol , 40, 471–483.
Gower, J.C. (1971). A General Coefficient of Similarity and Some of Its Properties. Biometrics , 27, 857.
Hackett, S.J., Kimball, R.T., Reddy, S., Bowie, R.C.K., Braun, E.L., Braun, M.J., et al. (2008). A Phylogenomic Study of Birds Reveals Their Evolutionary History. Science (80- ) , 320, 1763–1768.
Hadfield, J.D. (2010). MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package. J Stat Softw , 33, 1–22.
Hulme, P.E., Bacher, S., Kenis, M., Klotz, S., Kühn, I., Minchin, D.,et al. (2008). Grasping at the routes of biological invasions: A framework for integrating pathways into policy. J Appl Ecol , 45, 403–414.
Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K. & Mooers, A.O. (2012). The global diversity of birds in space and time. Nature , 491, 444–448.
Jiang, L., Tan, J. & Pu, Z. (2010). An Experimental Test of Darwin’s Naturalization Hypothesis. Am Nat , 175, 415–423.
Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., et al. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics , 26, 1463–1464.
Lambdon, P.W. & Hulme, P.E. (2006). How strongly do interactions with closely-related native species influence plant invasions? Darwin’s naturalization hypothesis assessed on Mediterranean islands. J Biogeogr , 33, 1116–1125.
Levine, J.M., Adler, P.B. & Yelenik, S.G. (2004). A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett , 7, 975–989.
Li, S. peng, Cadotte, M.W., Meiners, S.J., Hua, Z. shuang, Shu, H. yue, Li, J. tian, et al. (2015). The effects of phylogenetic relatedness on invasion success and impact: Deconstructing Darwin’s naturalisation conundrum. Ecol Lett , 18, 1285–1292.
Lovell, R.S.L., Blackburn, T.M., Dyer, E.E. & Pigot, A.L. (2021). Environmental resistance predicts the spread of alien species. Nat Ecol Evol .
Mouquet, N., Devictor, V., Meynard, C.N., Munoz, F., Bersier, L.-F.F., Chave, J., et al. (2012). Ecophylogenetics: Advances and perspectives. Biol Rev , 87, 769–785.
Park, D.S., Feng, X., Maitner, B.S., Ernst, K.C. & Enquist, B.J. (2020). Darwin’s naturalization conundrum can be explained by spatial scale. Proc Natl Acad Sci , 117, 10904–10910.
Penone, C., Davidson, A.D., Shoemaker, K.T., Di Marco, M., Rondinini, C., Brooks, T.M., et al. (2014). Imputation of missing data in life-history trait datasets: which approach performs the best?Methods Ecol Evol , 5, 961–970.
Pigot, A.L., Sheard, C., Miller, E.T., Bregman, T.P., Freeman, B.G., Roll, U., et al. (2020). Macroevolutionary convergence connects morphological form to ecological function in birds. Nat Ecol Evol , 4, 230–239.
Pysek, P., Jarosik, V., Hulme, P.E., Kuhn, I., Wild, J., Arianoutsou, M., et al. (2010). Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc Natl Acad Sci , 107, 12157–12162.
Pyšek, P. & Richardson, D.M. (2010). Invasive Species, Environmental Change and Management, and Health. Annu Rev Environ Resour , 35, 25–55.
Redding, D.W., Pigot, A.L., Dyer, E.E., Şekercioğlu, Ç.H., Kark, S. & Blackburn, T.M. (2019). Location-level processes drive the establishment of alien bird populations worldwide. Nature , 571, 103–106.
Romanuk, T.N., Zhou, Y., Brose, U., Berlow, E.L., Williams, R.J. & Martinez, N.D. (2009). Predicting invasion success in complex ecological networks. Philos Trans R Soc B Biol Sci , 364, 1743–1754.
Sax, D.F. & Brown, J.H. (2000). The paradox of invasion. Glob Ecol Biogeogr , 9, 363–371.
Sayol, F., Maspons, J., Lapiedra, O., Iwaniuk, A.N., Székely, T. & Sol, D. (2016). Environmental variation and the evolution of large brains in birds. Nat Commun , 7, 13971.
Shea, K. & Chesson, P. (2002). Community ecology theory as a framework for biological invasions. Trends Ecol Evol , 17, 170–176.
Sol, D., Bartomeus, I., González-Lagos, C. & Pavoine, S. (2017a). Urbanisation and the loss of phylogenetic diversity in birds. Ecol Lett , 20, 721–729.
Sol, D., Bartomeus, I. & Griffin, A.S. (2012a). The paradox of invasion in birds: Competitive superiority or ecological opportunism?Oecologia , 169, 553–564.
Sol, D., González-Lagos, C., Lapiedra, O. & Díaz, M. (2017b). Why Are Exotic Birds So Successful in Urbanized Environments? In: Ecology and Conservation of Birds in Urban Environments (eds. Murgui, E. & Hedblom, M.). Springer International Publishing, Cham, pp. 75–89.
Sol, D., Gonzalez-Lagos, C. & Moreira, D. (2020a). Worldwide bird assemblages across urban-wildland gradients. Dryad, Dataset, https://doi.org/10.5061/dryad.2rbnzs7jf .
Sol, D., González-Lagos, C., Moreira, D., Maspons, J. & Lapiedra, O. (2014a). Urbanisation tolerance and the loss of avian diversity.Ecol Lett , 17, 942–950.
Sol, D., Lapiedra, O. & Vilà, M. (2014b). Do close relatives make bad neighbors ? Proc Nat Acad Sci USA , 111, 534–535.
Sol, D. & Maspons, J. (2016). Life History, Behaviour and Invasion Success. In: Biological Invasions and Animal Behaviour (eds. Weis, J.S. & Sol, D.). Cambridge University Press, Cambridge, pp. 63–81.
Sol, D., Maspons, J., Vall-llosera, M., Bartomeus, I., Garcia-Pena, G.E., Piñol, J., et al. (2012b). Unraveling the life history of successful Invaders. Science (80- ) , 337, 580–583.
Sol, D., Trisos, C., Múrria, C., Jeliazkov, A., González‐Lagos, C., Pigot, A.L., et al. (2020b). The worldwide impact of urbanisation on avian functional diversity. Ecol Lett , 23, 962–972.
Sol, D., Trisos, C., Múrria, C., Jeliazkov, A., González‐Lagos, C., Pigot, A.L., et al. (2020c). Worldwide bird assemblages across urban-wildland gradients . Ecol Lett . John Wiley & Sons, Ltd.
Thuiller, W., Gallien, L., Boulangeat, I., de Bello, F., Münkemüller, T., Roquet, C., et al. (2010). Resolving Darwin’s naturalization conundrum: A quest for evidence. Divers Distrib , 16, 461–475.
Tucker, C.M., Cadotte, M.W., Carvalho, S.B., Davies, T.J., Ferrier, S., Fritz, S.A., et al. (2017). A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol Rev , 92, 698–715.
Wiens, J.J., Ackerly, D.D., Allen, A.P., Anacker, B.L., Buckley, L.B., Cornell, H. V., et al. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett , 13, 1310–1324.