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Abstract

This paper aims to establish existence and uniqueness results of weak and strong
solution to the three-dimensional periodic magnetization-variables formulation to
Navier-Stokes equations with damping term:

)tu − �Δu + (ℙu ⋅ ∇)u + (∇u)T u + �|u|�−1u = 0,

for the particular cases (� = 3 and � > 1
2� ) and � > 3. Authors in precedent

works addressed the question as to whether this model and similar ones possess a
weak solution for � = 0 (see7,8). In this vein, considering a damping term in the
magnetization-variable formulation turned to be consequential as it enforces exis-
tence and uniqueness results. Energy methods, compactness methods are the main
tools.
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1 INTRODUCTION

We consider the magnetization-variables formulation to Navier-Stokes equations:

)tu − �Δu + (ℙu ⋅ ∇)u + (∇u)T u + �|u|�−1u = 0, (t, x) ∈ ℝ+ × T 3 (1)
u|t=0 = u0(x), x ∈ T 3 , (2)

where � > 0 is the viscosity, � > 0 denotes the Darcy permeability of porous medium, u(t, x) is an unknown three-dimensional
vector-field which stands for velocity,ℙ is the Leray projection ofL2 onto the closure of free-divergence function, and the system
is subject to periodic boundary conditions with basic domain T 3 = [0, 2�L]3. In order to get it straight, we emphasize that u
does not fulfill the free-divergence property while ℙu does. In fact, the Navier-Stokes equations can be reformulated as a system
without a pressure term using the so-called magnetization-variable. In this formulation, previously discussed by Montgomery-
Smith and Pokornỳ in6, incompressibility is enforced explicitly via a Leray projection. The magnetization-variables formulation
is more well-known in the study of the Euler equations (see e.g.3). In this paper, in addition to the damping term, the original
system discussed in6 is slightly modified as was done by Pooley in7. In7, the author’s motivation behind modifying the original
system was approaching the Burgers equations, the solution of which satisfies a maximum principle (see8,10,11). The well-
posedness of (1-2) when � = 0 in critical Sobolev spaceH1∕2(T 3) was proved in7. It is worthwhile to note that when � = 0, the
fact that u does not fulfill the free-divergence condition prevents us from making the usual L2 energy estimates that would give
existence of weak solutions. The purpose of this paper is to establish the global in time existence of at least one weak solution
to (1-2) when (� = 3 and �� > 1∕2). We also prove the local in time existence of strong solution. Furthermore, we prove the
global in time existence of strong solution provided that theH1-norm of initial data satisfies a smallness condition. While in the
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case � > 3, we prove the global in time existence and uniqueness of weak and strong solution. Thus, introducing the damping
term �|u|�−1u in (1) turned to be consequential notably when � > 3, since it enforces existence and uniqueness of weak solution.
The more general case 1 ≤ � < 3 which was investigated when considering three-dimensional incompressible convective
Brinkman-Forchheimer equations or Navier-Stokes equation with damping (see e.g.2,4,13) cannot be tackled here. This is in fact
another consequence of the lack of free-divergence condition which prevents the L2-inner product of the term (∇u)T u against
the solution u from vanishing as was the case of the convective term in three-dimensional Navier-Stokes equation.
Let us pause here to comment on the case � = 3. Our motivation behind considering � = 3 separately is firstly, the fact that
it is critical case (not to be confused with the notion of critical spaces in which the norm of a solution is invariant under a
certain scaling). Here, the term critical should be understood in the sense that when Ω is the whole space ℝ3 or the torus T 3,
and if u satisfies equation (1) on ℝ+ × Ω then u� which is the usual parabolic rescaling of the velocity field u (i.e. u�(t, x) =
�u(�2t, �x), � > 0) solves

)tu� − �Δu� + (ℙu� ⋅ ∇)u� + (∇u�)T u� + �3−��|u�|�−1u� = 0.
Note that when � = 3 in the above equation, one obtains the damped magnetization-variables equation (1) for the rescaled
functions u�. Secondly, in order to ensure the existence of weak solutions when � = 3, and due to technical reasons we were
constrained to add the assumption �� > 1∕2. From a physical perspective, this is in consistency with the fact that when both the
viscosity of a fluid and the porosity of a porous medium are large enough, then the L2-norm of the velocity remains bounded.
In7, the author was using the fact that for � = 0, the system (1-2) exhibits conservation of momentum like the Navier-Stokes
equations. Here, the solution’s zero-mean property is not preserved due to the presence of the damping term. Therefore, the
Poincaré inequality is not applicable, and we have to control the full H1-norm instead. In fact, the damping term does not
preserve the zero-mean property even in the case of convective Brinkman-Forchheimer equations, and coordination between
weak and strong solution is necessary.

Before we state the main results, we give some notations that will be useful throughout this paper. The non-homogeneous
Sobolev space is defined, for all r ∈ ℝ, by

H r = {f ∈ L2(T 3); u =
∑

k∈ℤ3
f̂ke

ik⋅x, ‖f‖H r <∞},

here theH r norm is given as

‖f‖H r = ‖f‖L2 + ‖Λrf‖L2 =

(

∑

k∈ℤ3
|f̂k|

2

)1∕2

+

(

∑

k∈ℤ3
|k|2r|f̂k|

2

)1∕2

,

where Λ stands for the fractional Laplacian (−Δ)1∕2. Naturally, the homogeneous one is given by

Ḣ r = {f ∈ L2(T 3); u =
∑

k∈ℤ3
f̂ke

ik⋅x, ‖f‖Ḣ r <∞}

and endowed with the norm

‖f‖Ḣ r = ‖Λrf‖L2 =

(

∑

k∈ℤ3
|k|2r|f̂k|

2

)1∕2

,

where f̂k is the ktℎ-Fourier coefficient of f . We give here the definition of weak solution for (1-2)

Definition 1. A function u is said to be a weak solution to the system (1-2) on [0, T ) with the initial condition u0 ∈ L2(T 3), if

u ∈ L∞(0, T ;L2) ∩ L�+1(0, T ;L�+1) ∩ L2(0, T ; Ḣ1)

and

−

t

∫
0

⟨u(�), )t'(�)⟩d� + �

t

∫
0

⟨∇u(�),∇'(�)⟩d� +

t

∫
0

⟨(ℙu(�) ⋅ ∇)u(�), '(�)⟩d�

+

t

∫
0

⟨(∇u(�))T u(�), '(�)⟩d� + �

t

∫
0

⟨|u(�)|�−1u(�), '(�)⟩d� = −⟨u(t), '(t)⟩ + ⟨u(0), '(0)⟩, (3)

for almost every 0 < t < T and all test functions ' ∈ ∞([0, T ) × T 3).
A function u is called a global weak solution if it is a weak solution for all T > 0.
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At this point, we are ready to state the main results. Our first result is the following theorem

Theorem 1. Having � = 3 and �� > 1∕2, then

• Given u0 in L2(T 3), then there exist at least a global in time weak solution u to the system (1-2) such that

u ∈ L∞([0,∞);L2(T 3)) ∩ L2(0,∞; Ḣ1(T 3)) ∩ L�+1(0,∞;L�+1(T 3)).

• Given u0 inH1(T 3), then there exist at least a local in time strong solution u to the system (1-2) such that

u ∈ L∞([0, T );H1(T 3)) ∩ L2(0, T ;H2(T 3)).

• There exists a constant c > 0, such that, if ‖u0‖H1 ≤ c∕�, then a strong solution of (1) exists for all times t ≥ 0

Our second result concerns the case � > 3, it reads

Theorem 2. Having � > 3, then

• Given u0 in L2(T 3), then there exists a unique global in time weak solution u to (1-2) such that

u ∈ L∞([0,∞);L2(T 3)) ∩ L2(0,∞; Ḣ1(T 3)) ∩ L�+1(0,∞;L�+1(T 3)).

• Given u0 inH1(T 3), then there exists a unique global in time strong solution u to the the system (1-2) such that

u ∈ L∞([0,∞);H1(T 3)) ∩ L2(0,∞;H2(T 3)).

In order to prove the existence of strong solutions, we will make use of the following lemma, the proof of which can be found
in9:

Lemma 1. For � ≥ 1, if u ∈ H2(T 3), then it holds that

∫
T 3

−Δu|u|�−1udx ≥ ∫
T 3

|∇u|2|u|�−1dx.

Explicitly, the left-hand side of the above yields by integrating by parts:

∫
T 3

−Δu|u|�−1udx = ∫
T 3

|∇u|2|u|�−1dx +
� − 1
4 ∫

T 3

|

|

|

∇|u|2||
|

2
|u|�−1dx.

To prove our results, the main difficulty stems from the nonlinear terms, and more precisely the fact that in contrast with the
convective Brinkman-Forchheimer the L2-inner product of the second nonlinear term (∇u)T u against the solution u does not
vanish. This issue constituted a constraint to prove existence of weak solution surmountable when � ≥ 3 and insurmountable
when � < 3. Another issue consists of establishing an a priori estimate for the time derivative of the approximate solution. This
issue comes from the introduction of the damping term. To beat the odds, we use functional analysis, compactness methods,
and when dealing with uniqueness problem we resort to Fourier analysis to handle the second nonlinear term.
The remainder of the paper is organized as follows; the second section is assigned to provide the proof of Theorem 1, while the
third one is dedicated to prove Theorem 2.

2 WELL-POSEDNESS RESULTS FOR � = 3

2.1 Existence of weak solution
We will use the Galerkin approximation scheme. Let aj be an orthonormal basis in L2 made up of eigenfunctions of the Stokes
operator −Δ. The set {aj} is an orthogonal basis inH1. We call the function

un(t, x) ∶=
∑

j≤n
cnj aj(x),

the ntℎ Galerkin approximation of the solution for Eq. (1), if it satisfies the following system of equations ∀j = 1, ..., n
d
dt
⟨un(t), aj⟩ = −�⟨∇un(t),∇aj⟩ − ⟨(ℙun(t) ⋅ ∇)un(t), aj⟩

−⟨(∇un(t))T un(t), aj⟩ − �⟨|un(t)|2un(t), aj⟩ (4)
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with the initial condition
un(0, x) = Pnu0 =

∑

j≤n
⟨u0, aj⟩aj .

For some Tn, there exists a solution un ∈ C∞([0, Tn) × T 3) to this finite-dimensional locally-Lipschitz system of ODEs. Let
us begin by proving the existence of the global in time solution when � > 1

2�
. To do so, let us multiply (2.1) by cnj , add these

equations with respect to j from 1 to n to obtain
1
2
d
dt
‖un‖

2
L2 + �‖un‖

2
Ḣ1 + �⟨|un|2un, un⟩L2 ≤ |⟨(ℙun ⋅ ∇)un, un⟩L2(T 3)| + |⟨(∇un)T un, un⟩L2(T 3)|.

By employing the anti-symmetry rule:

⟨(ℙun ⋅ ∇)v1, v2⟩L2(T 3) = −⟨(ℙun ⋅ ∇)v2, v1⟩L2(T 3),

we deduce that
⟨(ℙun ⋅ ∇)un, un⟩L2(T 3) = 0.

Thus, it remains to control the second nonlinear term in the right hand side, which can be done the following way

|⟨(∇un)T un, un⟩L2(T 3)| ≤ ‖un‖
2
L4‖∇un‖L2

≤ �
2
‖un‖

4
L4 +

1
2�

‖∇un‖2L2 ,

where we used Hölder and Young inequalities. It follows that
1
2
d
dt
‖un(t)‖2L2 + �‖un(t)‖

2
Ḣ1 +

�
2
‖un‖

4
L4 ≤

1
2�

‖∇un‖2L2 .

Since � > 1
2�
, it turns out

1
2
d
dt
‖un(t)‖2L2 + (� −

1
2�
)‖un(t)‖2Ḣ1 +

�
2
‖un(t)‖4L4 ≤ 0. (5)

Integrating over (0,∞) implies that

‖un(t)‖2L2 + (2� −
1
�
)

∞

∫
0

‖un(t)‖2Ḣ1dt + �

∞

∫
0

‖un(t)‖4L4dt ≤ ‖un(0)‖2L2 ≤ ‖u0‖
2
L2 . (6)

From (6) and standard results from ordinary differential equations theory, it follows that we can take Tn = T for all n and for
every T > 0. Moreover, we obtain from (6) that un is uniformly bounded in

L∞(0, T ;L2) ∩ L4(0, T ;L4) ∩ L2(0, T ; Ḣ1).

Notice that
‖

‖

‖

|un|
2un

‖

‖

‖

4∕3

L4∕3
= ‖un‖

4
L4 . (7)

This yields that |un|2un is uniformly bounded in L4∕3(0, T ;L4∕3). It turns out then

)tun − �Δun + Pn[(ℙun ⋅ ∇)un + (∇un)T un + �|un|2un] = 0. (8)

In order to use the Aubin-Lions Lemma5, we find uniform bounds on )tun inL4∕3(0, T ;H−1). To do so, we assume that ' ∈ H1.
We take the L2-inner product of the equation (8) with Pn' to obtain

⟨)tun, Pn'⟩ = �⟨Δun, Pn'⟩L2 − ⟨(ℙun ⋅ ∇)un, Pn'⟩L2 − ⟨(∇un)T un, Pn'⟩L2 − �⟨|un|2u, Pn'⟩L2 , (9)

where ⟨⋅, ⋅⟩ denotes the duality pairing ofH−1 withH1. We will now estimate the norm ‖)tun‖H−1 by estimating the right-hand
side of (9). The first term can be estimated the following manner

|⟨Δun, Pn'⟩L2 | ≤ ‖un‖Ḣ1‖Pn'‖H1 .

The convective nonlinear term is to be dealt with, as follows

|⟨(ℙun ⋅ ∇)un, Pn'⟩L2 | ≤ ‖un‖L3‖∇un‖L2‖Pn'‖L6
≤ ‖un‖

1∕2
L2 ‖un‖

1∕2
L6 ‖∇un‖L2‖Pn'‖H1

≤ ‖un‖
1∕2
L2 ‖un‖

3∕2
H1 ‖Pn'‖H1
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where we used the fact that ‖f‖L6 ≤ ‖f‖H1 . Similarly, we have

|⟨(∇un)T un, Pn'⟩L2 | ≤ ‖un‖L3‖∇un‖L2‖Pn'‖L6
≤ ‖un‖

1∕2
L2 ‖un‖

3∕2
H1 ‖Pn'‖H1 .

To control the absorption term, we proceed as follows

|⟨|un|
2un, Pn'⟩L2 | ≤

‖

‖

‖

|un|
2un

‖

‖

‖L4∕3
‖Pn'‖L4

≤ ‖un‖
3
L4‖Pn'‖H1 ,

where we used Hölder’s inequality with exponents 4∕3 and 4, Eq. (7), and the fact that ‖Pn'‖L4 ≤ ‖Pn'‖
1∕4
L2 ‖Pn'‖

3∕4
H1 ≤

‖Pn'‖H1 . By (9), it turns out that

‖)tun‖H−1 = sup
‖Pn'‖H1=1

|⟨)tun, Pn'⟩| ≤ �‖un‖Ḣ1 + 2‖un‖
1∕2
L2 ‖un‖

3∕2
H1 + �‖un‖3L4 .

Therefore we obtain
T

∫
0

‖)tun(t)‖
4∕3
H−1dt ≤ �4∕3

T

∫
0

‖un(t)‖
4∕3
Ḣ1 dt

+2 sup
[0,T ]

‖un(t)‖
2∕3
L2

T

∫
0

‖un(t)‖2H1dt + �4∕3
T

∫
0

‖un‖
4
L4dt

≤ �4∕3T 1∕3
⎧

⎪

⎨

⎪

⎩

T

∫
0

‖un(t)‖2Ḣ1dt

⎫

⎪

⎬

⎪

⎭

2∕3

+ 2 sup
[0,T ]

‖un(t)‖
2∕3
L2

T

∫
0

‖un(t)‖2H1dt + �4∕3
T

∫
0

‖un(t)‖2H1dt

≤ �4∕3T 4∕3‖un‖
4∕3
L2T (Ḣ1)

+ 2‖un‖
2∕3
L∞T (L2)

‖un‖
2
L2T (H1)

+ �4∕3‖un(t)‖L4T (L4) (10)

From (6) and (2.1), there exist functions u and v, and a subsequence of (un) which we relabel also un, such that

un → u weakly-⋆ in L∞(0, T ;L2) (11)
un → u weakly in L∞(0, T ;H1) (12)
un → u weakly in L4(0, T ;L4) (13)

|un|
2un → v weakly in L4∕3(0, T ;L4∕3) (14)

)tun → )tu weakly in L4∕3(0, T ;H−1), (15)

as n→∞. Then, Aubin-Lions lemma5 allows to extract a subsequence of un such that

un → u strongly in L2(0, T ;L2), (16)

as n → ∞. Now, we multiply (2.1) by ' ∈ 1([0, T ]), with '(T ) = 0, and then we integrate these equations over the interval
(0, T ) to obtain

−

T

∫
0

⟨un(t), aj⟩'′(t)dt + �

T

∫
0

⟨∇un(t),∇aj⟩'(t)dt +

T

∫
0

⟨(ℙun(t) ⋅ ∇)un(t), aj⟩'(t)dt

+

T

∫
0

⟨(∇un(t))T un(t), aj⟩'(t)dt + �

T

∫
0

⟨|un(t)|2un(t), aj⟩'(t)dt = ⟨un(0), aj⟩'(0). (17)

Passing to the limit in the linear terms follows from the weak convergence in L2(0, T ;H1). Weak convergence in L2(0, T ;H1)
and strong convergence in L2(0, T ;L2) allow us to pass to the limit in the first and the second nonlinear terms. As for the
convergence in the damping term, we notice that by taking a new subsequence, we may assume that un → u a.e. in [0, T ) × T 3.
This implies that

|un|
2un → |u|2u a.e. in [0, T ) × T 3.
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Using Lemma 1.3 in5, the above convergence and (14) yield that v = |u|�−1u. At this point, we are allowed to pass to the limit
as n→∞ in (2.1) to obtain

−

t

∫
0

⟨u(�), )t'(�)⟩d� + �

t

∫
0

⟨∇u(�),∇'(�)⟩d� +

t

∫
0

⟨(ℙu(�) ⋅ ∇)u(�), '(�)⟩d�

+

t

∫
0

⟨(∇u(�))T u(�), '(�)⟩d� + �

t

∫
0

⟨|u(�)|2u(�), '(�)⟩d� = −⟨u(t), '(t)⟩ + ⟨u(0), '(0)⟩.

This finishes the proof of existence of at least one weak solution.

2.2 Existence of strong solution
Multiplying (8) by −Δun and integrating over T 3 to obtain

1
2
d
dt
‖∇un‖2L2 + �‖Δun‖

2
L2 + � ∫

T 3

−Δun|un|2undx

≤ |⟨(ℙun ⋅ ∇)un,−Δun⟩L2(T 3)| + |⟨(∇un)T un,−Δun⟩L2(T 3)|.

By using lemma 1, it turns out that

1
2
d
dt
‖∇un‖2L2 + �‖Δun‖

2
L2 + � ∫

T 3

|∇un|2|un|2dx ≤ |⟨(ℙun ⋅ ∇)un,−Δun⟩L2(T 3)| + |⟨(∇un)T un,−Δun⟩L2(T 3)|. (18)

To control the first nonlinear term in the right-hand side of the above inequality, we use Hölder and Young inequalities to get

|⟨(ℙun ⋅ ∇)un,−Δun⟩L2(T 3)| ≤ ‖un‖L6‖∇un‖L3‖Δun‖L2
≤ ‖un‖H1‖∇un‖

1∕2
L2 ‖∇un‖

1∕2
L6 ‖Δun‖L2

≤ ‖un‖
3∕2
H1 ‖Δun‖

3∕2
L2

≤ c‖un‖
6
H1 +

�
4
‖Δun‖2L2 .

Similarly, we get

|⟨(∇un)T un,−Δun⟩L2(T 3)| ≤ ‖un‖L6‖∇un‖L3‖Δun‖L2
≤ c‖un‖

6
H1 +

�
4
‖Δun‖2L2 .

Summing up (5) and (18) and dropping some terms from the left-hand side yield

1
2
d
dt
‖un‖

2
H1 +

�
2
‖Δun‖2L2 + � ∫

T 3

|∇un|2|un|2dx ≤ c‖un‖
6
H1 . (19)

Now, we compare ‖un‖2H1 with the solution of the problem

dX
dt

= cX3, X(0) = ‖u0‖
2
H1 ,

and deduce that for all t such that 0 ≤ ct‖u0‖2H1 < 1, we have

‖un‖
2
H1 ≤

‖u0‖2H1
√

1 − ct‖u0‖4H1

.

In particular, if we choose T = 3∕4c‖u0‖4H1 , then for all t ∈ [0, T ] we have the uniform upper bound

sup
t∈[0,T ]

‖un(t)‖2H1 ≤ 2‖u0‖2H1 . (20)
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Now we integrate (19) over [0, t], where 0 ≤ t ≤ T , to obtain

‖un(t)‖2H1 + �

t

∫
0

‖Δun(�)‖2L2d� + �

t

∫
0

⎛

⎜

⎜

⎝

∫
T 3

|∇un(�)|2|un(�)|2dx
⎞

⎟

⎟

⎠

d� <∞. (21)

These are uniform bounds on the approximate solution un in L∞([0, T );H1(T 3)) ∩ L2(0, T ;H2(T 3)). Furthermore, we have
t

∫
0

⎛

⎜

⎜

⎝

∫
T 3

|∇un(�)|2|un(�)|2dx
⎞

⎟

⎟

⎠

d� <∞. (22)

Here, we have the same situation as for strong solutions of the Navier-Stokes equations. However, for the damped magnetization-
variables formulation, we have the additional bound (22). We turn now to the case when theH1-norm of initial data is small as
required. Specifically, we prove the global in time existence of strong solutions to the system (1-2), subject to small initial data.
Taking the inner product of (8) against −Δun to get

1
2
d
dt
‖∇un‖2L2 + �‖Δun‖

2
L2 + � ∫

T 3

|∇un|2|un|2dx ≤ |⟨(ℙun ⋅ ∇)un,−Δun⟩L2(T 3)| + |⟨(∇un)T un,−Δun⟩L2(T 3)|.

To control the first term in the right hand side, we write down the following steps

|⟨(ℙun ⋅ ∇)un,−Δun⟩L2(T 3)| ≤ ‖un‖L6‖∇un‖L3‖Δun‖L2
≤ c‖un‖H1‖∇un‖

1∕2
L2 ‖∇un‖

1∕2
L6 ‖Δun‖L2

≤ c‖un‖H1‖∇un‖
1∕2
L2 ‖∇un‖

1∕2
H1 ‖Δun‖L2

≤ c̃‖un‖H1‖Δun‖2L2 ,

where we used Hölder’s inequality, the interpolation argument ‖f‖L3 ≤ ‖f‖1∕2L2 ‖f‖
1∕2
L6 , the embeddingH1 → L6 and the facts

that (‖∇un‖L2 ≤ ‖Δun‖L2 , ‖∇un‖H1 ≤ c̃‖Δun‖L2). Similarly, we get

|⟨(∇un)T un,−Δun⟩L2(T 3)| ≤ ‖un‖L6‖∇un‖L3‖Δun‖L2
≤ c‖un‖H1‖Δun‖2L2 .

Consequently, we obtain
d
dt
‖∇un‖2L2 +

(

� − c‖un‖H1

)

‖Δun‖2L2 ≤ 0. (23)

Starting from an initial data such that ‖u0‖H1 ≤ �∕c, yields
d
dt
‖∇un‖2L2 ≤ 0,

which means that ‖∇un‖L2 is a non-increasing function of time. Hence, it is bounded for all times t ≥ 0 and the strong solution
u does not blow up.

3 WELL-POSEDNESS AND CONVERGENCE RESULTS FOR � > 3

3.1 Existence of weak solution
We consider the orthonormal in L2 basis aj that is made up of eigenfunctions of the Stokes operator −Δ. Here, the set {aj} is an
orthogonal basis in H2 rather than H1. In such a way, we can handle the damping term |u|�−1u for all exponents � > 3. Since
in three-dimensional torus, the embeddingH2 → Lp holds true for every p ≥ 1. We call the function

un(t, x) ∶=
∑

j≤n
cnj aj(x),

the ntℎ Galerkin approximation of the solution for Eq. (1), if it satisfies the following system of equations ∀j = 1, ..., n
d
dt
⟨un(t), aj⟩ = −�⟨∇un(t),∇aj⟩ − ⟨(ℙun(t) ⋅ ∇)un(t), aj⟩

−⟨(∇un(t))T un(t), aj⟩ − �⟨|un(t)|�−1un(t), aj⟩ (24)
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with the initial condition
un(0, x) = Pnu0 =

∑

j≤n
⟨u0, aj⟩aj .

For some Tn, there exists a solution un ∈ C∞([0, Tn) × T 3) to this finite-dimensional locally-Lipschitz system of ODEs. Let
us begin by proving the existence of a global in time weak solution. To do so, let us multiply (3.1) for � > 3 by cnj , add these
equations with respect to j from 1 to n to obtain

1
2
d
dt
‖un‖

2
L2 + �‖un‖

2
Ḣ1 + �⟨|un|�−1un, un⟩L2 ≤ |⟨(∇un)T un, un⟩L2(T 3)|,

where we used the fact that ⟨(ℙun ⋅∇)un, un⟩L2(T 3) = 0. To control the nonlinear term in the right hand side of the above estimate,
we write down the following steps

|⟨(∇un)T un, un⟩L2(T 3)| ≤ ‖un‖L�+1‖∇un‖L2‖un‖L
2�+2
�−1

≤ ‖un‖L�+1‖∇un‖L2‖un‖


L2‖un‖

1−

L�+1

≤ ‖un‖
2−

L�+1‖un‖



L2‖∇un‖L2

≤ 1
2�

{

‖un‖
2−

L�+1‖un‖



L2

}2
+ �
2
‖∇un‖2L2

= 1
2�

‖un‖
4−2

L�+1 ‖un‖

2

L2 +

�
2
‖∇un‖2L2

≤ C̃(�, �, �)‖un‖2L2 +
�
2
‖un‖

�+1
L�+1 +

�
2
‖∇un‖2L2 ,

where we used Hölder’s inequality, the Lebesgue Interpolation argument ‖un‖L
2�+2
�−1

≤ ‖un‖


L2‖un‖

1−

L�+1 , where 
 =

�−3
�−1

, and
Young’s inequality (ab ≤ ap

p
+ bq

q
for 1

p
+ 1

q
= 1, 1 ≤ p ≤ q ≤∞) twice. It follows that

d
dt
‖un(t)‖2L2 + �‖un(t)‖

2
Ḣ1 + �‖un(t)‖

�+1
L�+1 ≤ C‖un(t)‖2L2 , (25)

where C is a positive constant that depends on �, � and �. By applying the Grönwall’s inequality, we get

‖un(t)‖2L2 ≤ ‖un(0)‖2L2 exp {Ct} ≤ ‖u0‖
2
L2 exp {Ct} . (26)

Integrating estimate (25) over [0, Tn] yields

sup
t∈[0,Tn]

‖un(t)‖2L2 + �

Tn

∫
0

‖un(t)‖2Ḣ1dt + �

Tn

∫
0

‖un(t)‖
�+1
L�+1dt

≤ ‖u0‖
2
L2 + C

⋆
‖u0‖

2
L2 exp

{

CTn
}

. (27)

From (3.1) and standard ODEs argument, it follows that we can take Tn = T for all n and for every T > 0. Moreover, we deduce
from (3.1) that un is uniformly bounded in

L∞(0, T ;L2) ∩ L�+1(0, T ;L�+1) ∩ L2(0, T ; Ḣ1).

Notice that
‖

‖

‖

|un|
�−1un

‖

‖

‖

(�+1)∗

L(�+1)∗
= ‖un‖

�+1
L�+1 , (28)

where (� + 1)∗ = (� + 1)∕�. It turns out that |un|�−1un is uniformly bounded in L(�+1)∗(0, T ;L(�+1)∗). It follows that

)tun − �Δun + Pn[(ℙun ⋅ ∇)un + (∇un)T un + �|un|�−1un] = 0. (29)

We need to find uniform bounds on )tun in L(�+1)
∗(0, T ;H−2). To do so, let us consider  ∈ H2(T 3). We take the L2-inner

product of the equation (29) against Pn to obtain

⟨)tun, Pn ⟩ = �⟨Δun, Pn ⟩L2 − ⟨(ℙun ⋅ ∇)un, Pn ⟩L2 − ⟨(∇un)T un, Pn ⟩L2 − �⟨|un|�−1un, Pn ⟩L2 , (30)

Controlling the linear terms as well as the terms (ℙun ⋅∇)un and (∇un)T un can be done the same as previously (i.e. as for � = 3).
So, let us turn our attention to our particular concern which is the damping term, it holds that

|⟨|un|
�−1un, Pn ⟩L2 | ≤

‖

‖

‖

|un|
�−1un

‖

‖

‖L(�+1)∗
‖Pn ‖L�+1

≤ c‖un‖
�
L�+1‖Pn ‖H2 ,
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where we used Hölder’s inequality with exponents (� + 1)∗ and � + 1, identity (28), and the embeddingH2 → L�+1. By using
(29), we deduce that )tun remains bounded in L(�+1)∗(0, T ;H−2). Thus, Aubin-Lions lemma5 allows to extract a subsequence
un that converges strongly to u in L2(0, T ;L2).
Now, we multiply (3.1) by  ∈ 1([0, T ]), with  (T ) = 0, and then we integrate these equations over the time interval (0, T )
to obtain

−

T

∫
0

⟨un(t), aj⟩ ′(t)dt + �

T

∫
0

⟨∇un(t),∇aj⟩ (t)dt +

T

∫
0

⟨(ℙun(t) ⋅ ∇)un(t), aj⟩ (t)dt

+

T

∫
0

⟨(∇un(t))T un(t), aj⟩ (t)dt + �

T

∫
0

⟨|un(t)|�−1un(t), aj⟩ (t)dt = ⟨un(0), aj⟩ (0). (31)

Passing to the limit in the above yields

−

t

∫
0

⟨u(�), )t'(�)⟩d� + �

t

∫
0

⟨∇u(�),∇'(�)⟩d� +

t

∫
0

⟨(ℙu(�) ⋅ ∇)u(�), '(�)⟩d�

+

t

∫
0

⟨(∇u(�))T u(�), '(�)⟩d� + �

t

∫
0

⟨|u(�)|�−1u(�), '(�)⟩d� = −⟨u(t), '(t)⟩ + ⟨u(0), '(0)⟩.

It should be pointed out that the main ingredients allowing us to pass to the limit were as in the previous case (i.e. � = 3), the
strong convergence in L2(0, T ;L2) and the fact that |un|�−1un → |u|�−1u, as n→∞ a.e. in [0, T ] × T 3. At this point, the global
in time existence of weak solution is established for � > 3.

3.2 Existence of strong solution
We take the inner product of (29) against −Δun to obtain

1
2
d
dt
‖∇un‖2L2 + �‖Δun‖

2
L2 + � ∫

T 3

−Δun|un|�−1undx ≤ |⟨(ℙun ⋅ ∇)un,Δun⟩L2(T 3)| + |⟨(∇un)T un,Δun⟩L2(T 3)|.

By using lemma 1, it turns out that

1
2
d
dt
‖∇un‖2L2 + �‖Δun‖

2
L2 + � ∫

T 3

|∇un|2|un|�−1dx ≤ |⟨(ℙun ⋅ ∇)un,Δun⟩L2(T 3)| + |⟨(∇un)T un,Δun⟩L2(T 3)|. (32)

To control the nonlinear term in the right-hand side of the above inequality, we use Hölder and Young inequalities to get

|⟨(ℙun ⋅ ∇)un,Δun⟩L2(T 3)| + |⟨(∇un)T un,Δun⟩L2(T 3)| ≤ 2∫
T 3

|un| |∇un| |Δun|dx

≤ 2
� ∫
T 3

|un|
2
|∇un|2dx +

�
2 ∫
T 3

|Δun|2dx.

It turns out

d
dt
‖∇un‖2L2 + �‖Δun‖

2
L2 + 2� ∫

T 3

|∇un|2|un|4dx ≤ 4
� ∫
T 3

|un|
2
|∇un|2dx. (33)
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Let us make the following observation

∫
T 3

|un|
2
|∇un|2dx = ∫

T 3

(

|un|
2
|∇un|

4
�−1

)(

|∇un|
2 �−3
�−1

)

dx

≤
⎛

⎜

⎜

⎝

∫
T 3

|un|
�−1

|∇un|2dx
⎞

⎟

⎟

⎠

2
�−1

⎛

⎜

⎜

⎝

∫
T 3

|∇un|2dx
⎞

⎟

⎟

⎠

�−3
�−1

≤ ��
4 ∫

T 3

|un|
�−1

|∇un|2dx + c(�, �, �)∫
T 3

|∇un|2dx, (34)

where we used Hölder’s and Young’s inequalities. By plugging the estimate (34) into (35), we obtain

d
dt
‖∇un‖2L2 + �‖Δun‖

2
L2 + � ∫

T 3

|un|
�−1

|∇un|2dx ≤ c
�
‖∇un‖2L2 . (35)

In particular, an application of Grönwall’s inequality yields

‖∇un(t)‖2L2 ≤
c
�
‖∇un(0)‖2L2 exp

{ct
�

}

.

Summing up (25) and (35) to get

d
dt
‖un‖

2
H1 + �

(

‖∇un‖2L2 + ‖Δun‖2L2
)

+ �
⎛

⎜

⎜

⎝

‖un‖
6
L6 + ∫

T 3

|un|
�−1

|∇un|2dx
⎞

⎟

⎟

⎠

≤ C‖un‖
2
L2 +

c
�
‖∇un‖2L2

≤ ‖u0‖
2
L2 + C

⋆
‖u0‖

2
L2 exp {Ct} +

c
�
‖∇u0‖2L2 exp

{ct
�

}

<∞. (36)

It follows in particular, that un is uniformly bounded in L∞(0, T ;H1). Then one infers from (3.2) that ∫ T
0 ‖Δun‖2L2dt < ∞.

Therefore, we deduce the existence of strong solution on the time interval [0, T ] for all T > 0.

3.3 Continuous dependence on initial data and uniqueness
We show the continuous dependence of the weak solutions on the initial data, in particular their uniqueness when � > 3. Let
u and v be two solutions to (1) associated to the initial data u0 and v0. More explicitly, u = u(t, x) and v = v(t, x) satisfy the
following two systems

{

)tu − �Δu + (ℙu ⋅ ∇)u + (∇u)T u + �|u|�−1u = 0,
u|t=0 = u0(x),

and
{

)tv − �Δv + (ℙv ⋅ ∇)v + (∇v)T v + �|v|�−1v = 0,
v|t=0 = v0(x).

Let w ∶= u − v, subtracting the equation satisfied by v from the one satisfied by u, and taking the inner product against w to
obtain

⟨)tw,w⟩ − �⟨Δw,w⟩L2 + � ∫
T 3

(

|u|�−1u − |v|�−1v
)

wdx

+⟨(ℙu ⋅ ∇)w + (∇u)Tw,w⟩L2 + ⟨(ℙw ⋅ ∇)v + (∇w)T v,w⟩L2 = 0. (37)

We need to use the following monotonicity inequality (see e.g.1):

c|u − v|2 (|u| + |v|)�−1 ≤
(

|u|�−1u − |v|�−1v
)

(u − v)

By employing the fact that ℙu fulfills the free-divergence property, we get

⟨(ℙu ⋅ ∇)w,w⟩L2 = 0.
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Let us control the second nonlinear term appearing in estimate (3.3) which involves (∇u)Tw. To do so, we write down the
following steps

|⟨(∇u)Tw,w⟩L2 | ≤
∑

k∈ℤ3

|

|

|


(

(∇u)Tw
)

(k)||
|

|

|

ŵk
|

|

.

Our strategy consists of transferring the gradient that is applied on u intow. It should be pointed out that in the case of convective
Brinkman-Forchheimer, damped NS equations, and MHD model in porous media (2,4,13,12), this problematic does not arise as
the solution is divergent-free. Indeed, we have

|

|

|


(

(∇u)Tw
)

(k)||
|

= |( (∇u) ∗  (w)) (k)|

=
|

|

|

|

|

|

i
∑

p
ŵp(k − p)û(k−p)

|

|

|

|

|

|

≤
∑

p
|ŵp||k − p||û(k−p)|

≤
∑

p
|ŵp| (|k| + |p|) |û(k−p)|

≤ |k|
∑

p
|ŵp||û(k−p)|

+
∑

p
|p||ŵp||û(k−p)|

≤ |k| (#1) ∗  (#2) +  (#3) ∗  (#2),

where #1 = −1(|ŵk|), #2 = −1(|ûk|), and #3 = −1(|k| |ŵk|). It turns out

|⟨(∇u)Tw,w⟩L2 | ≤
∑

k∈ℤ3

(

#1 ⋅ #2
)

(k) |k| |ŵk|

+
∑

k∈ℤ3

(

#3 ⋅ #2
)

(k) |
|

ŵk
|

|

≤ |⟨#1 ⋅ #2, #3⟩L2 | + |⟨#3 ⋅ #2, #1⟩L2 |
≤ 2‖#3‖L2‖#1 ⋅ #2‖L2
≤ 2‖∇w‖L2‖|u| |w|‖L2

≤ 2‖∇w‖L2‖|u| |w|
2
�−1
|w|1−

2
�−1
‖L2

≤ 2‖∇w‖L2‖|u| |w|
2
�−1
‖L�−1‖|w|

1− 2
�−1
‖

L2
�−1
�−3

≤ �
6
‖∇w‖2L2 +

6
�
‖|u| |w|

2
�−1
‖

2
L�−1‖|w|

1− 2
�−1
‖

2

L2
�−1
�−3

= �
6
‖∇w‖2L2 +

6
�
‖|u|

�−1
2
|w|‖

4
�−1

L2 ‖w‖
2 �−3
�−1

L2

≤ �
6
‖∇w‖2L2 +

c�
6
‖|u|

�−1
2
|w|‖2L2 + C(�, �, �)‖w‖

2
L2

≤ �
6
‖∇w‖2L2 +

c�
6 ∫

T 3

|u − v|2 (|u| + |v|)�−1 dx + C‖w‖2L2 ,
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where we employed Hölder inequality and Young inequality several times. By using the anti-symmetry rule, we get

|⟨(ℙw ⋅ ∇)v,w⟩L2 | = |⟨(ℙw ⋅ ∇)w, v⟩L2 |
≤ ‖∇w‖L2‖|v| |w|‖L2

≤ ‖∇w‖L2‖|v| |w|
2
�−1
|w|1−

2
�−1
‖L2

≤ ‖∇w‖L2‖|v| |w|
2
�−1
‖L�−1‖|w|

1− 2
�−1
‖

L2
�−1
�−3

≤ �
6
‖∇w‖2L2 +

3
2�

‖|v| |w|
2
�−1
‖

2
L�−1‖|w|

1− 2
�−1
‖

2

L2
�−1
�−3

= �
6
‖∇w‖2L2 +

3
2�

‖|v|
�−1
2
|w|‖

4
�−1

L2 ‖w‖
2 �−3
�−1

L2

≤ �
6
‖∇w‖2L2 +

c�
6
‖|v|

�−1
2
|w|‖2L2 + C̃(�, �, �)‖w‖

2
L2

≤ �
6
‖∇w‖2L2 +

c�
6 ∫

T 3

|u − v|2 (|u| + |v|)�−1 dx + C̃‖w‖2L2 .

Similarly, we have

|⟨(∇w)T v,w⟩L2 | ≤ ‖∇w‖L2‖|v| |w|‖L2

≤ �
6
‖∇w‖2L2 +

c�
6 ∫

T 3

|u − v|2 (|u| + |v|)�−1 dx + C̃‖w‖2L2 .

In particular, we get by applying the Gronwall’s inequality

‖w(t)‖2L2 ≤ ‖w(0)‖2L2 exp
{

C⋆t
}

. (38)

Hence, the continuous dependence of the weak solution on the initial data follows, in particular we get uniqueness when u0 = v0.
We have already proved that weak solution is unique. As strong solutions are also weak, one deduces uniqueness of strong
solution. This finishes the proof of theorem 2.
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