Reference
[1] Iuliano AD, Roguski KM, Chang HH, et al; Global Seasonal
Influenza-Associated Mortality Collaborator Network.Estimates of global
seasonal influenza-associated respiratory mortality: a modelling study.
Lancet 2018; 391:1285–300.
[2] National Health Commission of the people’s Republic of China,
State Administration of Traditional Chinese Medicine. Protocol for
diagnosis and treatment of influenza (2019 version). Chinese Journal of
Clinical Infectious Diseases, 2019,12 (6): 451-455. DOI:
10.3760/cma.j.issn.1674-2397.2019.06.003
[3] Hopkins AL. Network pharmacology. Nat Biotechnol. 2007
Oct;25(10):1110-1. doi: 10.1038/nbt1007-1110. PMID: 17921993.
[4] Boezio B, Audouze K, Ducrot P, Taboureau O. Network-based
Approaches in Pharmacology. Mol Inform. 2017 Oct;36(10). doi:
10.1002/minf.201700048. Epub 2017 Jul 10. PMID: 28692140.
[5] Hopkins AL. Network pharmacology: the next paradigm in drug
discovery. Nat Chem Biol. 2008 Nov;4(11):682-90. doi:
10.1038/nchembio.118. PMID: 18936753.
[6] Li S, Zhang B. Traditional Chinese medicine network
pharmacology: theory, methodology and application. Chin J Nat Med. 2013
Mar;11(2):110-20. doi: 10.1016/S1875-5364(13)60037-0. PMID: 23787177.
[7] Lee WY, Lee CY, Kim YS, Kim CE. The Methodological Trends of
Traditional Herbal Medicine Employing Network Pharmacology.
Biomolecules. 2019 Aug 13;9(8):362. doi: 10.3390/biom9080362. PMID:
31412658; PMCID: PMC6723118.
[8] Liu J, Sun K, Zheng C, Chen X, Zhang W, Wang Z, Shar PA, Xiao W,
Wang Y. Pathway as a pharmacological target for herbal medicines: an
investigation from reduning injection. PLoS One. 2015 Apr
1;10(4):e0123109. doi: 10.1371/journal.pone.0123109. PMID: 25830385;
PMCID: PMC4382287.
[9] Kim M, Park KH, Kim YB. Identifying Active Compounds and Targets
of Fritillariae thunbergii against Influenza-Associated Inflammation by
Network Pharmacology Analysis and Molecular Docking. Molecules. 2020 Aug
25;25(17):3853. doi: 10.3390/molecules25173853. PMID: 32854331; PMCID:
PMC7504253.
[10] Han L, Wei XX, Zheng YJ, Zhang LL, Wang XM, Yang HY, Ma X, Zhao
LH, Tong XL. Potential mechanism prediction of Cold-Damp Plague Formula
against COVID-19 via network pharmacology analysis and molecular
docking. Chin Med. 2020 Jul 30;15:78. doi: 10.1186/s13020-020-00360-8.
PMID: 32754224; PMCID: PMC7391051.
[11] Yuriev E, Agostino M, Ramsland PA. Challenges and advances in
computational docking: 2009 in review. J Mol Recognit. 2011;24:149–64.
[12] Daina A, Michielin O, Zoete V. Swiss Target Prediction: updated
data and new features for efficient prediction of protein targets of
small molecules. Nucleic Acids Res. 2019 Jul 2;47(W1):W357-W364. doi:
10.1093/nar/gkz382. PMID: 31106366; PMCID: PMC6602486.
[13] Yu Ting, Liu Xinjuan, Liu Li,Gao Qi. Study on the Mechanism of
Jingyin granule in the treatment of viral Cold based on Network
Pharmacology. Chinese Traditional Patent Medicine.2020,
Feb,42(2):456-461.
[14] Xu Lü-jie, Jiang Wen, Pang Xiao-cong, Kang De, Xiong Wan-di,
LIU rui, Xing Jian-guo, Liu Ai-lin, Du Guan-hua. Network pharmacology
study of the effective constituents in the Compound Yizhihao against
influenza disease. Acta Pharmaceutica Sinica,2017 May,52(5):745-752.
[15]Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, Liu H, Yin Y.
Quercetin, Inflammation and Immunity. Nutrients. 2016 Mar 15;8(3):167.
doi: 10.3390/nu8030167. PMID: 26999194; PMCID: PMC4808895.
[16] Kumar P, Sharma S, Khanna M, Raj HG. Effect of Quercetin on
lipid peroxidation and changes in lung morphology in experimental
influenza virus infection. Int J Exp Pathol. 2003 Jun;84(3):127-33. doi:
10.1046/j.1365-2613.2003.00344.x. PMID: 12974942; PMCID: PMC2517549.
[17] Liu Z, Zhao J, Li W, Shen L, Huang S, Tang J, Duan J, Fang F,
Huang Y, Chang H, Chen Z, Zhang R. Computational screen and experimental
validation of anti-influenza effects of quercetin and chlorogenic acid
from traditional Chinese medicine. Sci Rep. 2016 Jan 12;6:19095. doi:
10.1038/srep19095. PMID: 26754609; PMCID: PMC4709578.
[18] Nain Z, Rana HK, Liò P, Islam SMS, Summers MA, Moni MA.
Pathogenetic profiling of COVID-19 and SARS-like viruses. Brief
Bioinform. 2020 Aug 11:bbaa173. doi: 10.1093/bib/bbaa173. Epub ahead of
print. PMID: 32778874; PMCID: PMC7454314.
[19] Wu W, Li R, Li X, He J, Jiang S, Liu S, Yang J. Quercetin as an
Antiviral Agent Inhibits Influenza A Virus (IAV) Entry. Viruses. 2015
Dec 25;8(1):6. doi: 10.3390/v8010006. PMID: 26712783; PMCID: PMC4728566.
[20] Zima V, Radilová K, Kožíšek M, Albiñana CB, Karlukova E, Brynda
J, Fanfrlík J, Flieger M, Hodek J, Weber J, Majer P, Konvalinka J,
Machara A. Unraveling the anti-influenza effect of flavonoids:
Experimental validation of luteolin and its congeners as potent
influenza endonuclease inhibitors. Eur J Med Chem. 2020 Aug
22;208:112754. doi: 10.1016/j.ejmech.2020.112754. Epub ahead of print.
PMID: 32883638.
[21] Yan H, Ma L, Wang H, Wu S, Huang H, Gu Z, Jiang J, Li Y.
Luteolin decreases the yield of influenza A virus in vitro by
interfering with the coat protein I complex expression. J Nat Med. 2019
Jun;73(3):487-496. doi: 10.1007/s11418-019-01287-7. Epub 2019 Feb 13.
PMID: 30758716.
[22] Wu, W., Li, D., Zong, Y., Zhu, H., Pan, D., Xu, T., Wang, T.,
Wang, T., 2013. Luteolin inhibits inflammatory responses via
p38/MK2/TTP-mediated mRNA stability.Molecules 18, 8083–809.
[23] Xia, F., Wang, C., Jin, Y., Liu, Q., Meng, Q., Liu, K., Sun,
H., 2014. Luteolin protects HUVECs from TNF-alpha-induced oxidative
stress and inflammation via its effects on the Nox4/ROS-NF-kappaB and
MAPK pathways. J. Atheroscler. Thromb. 21,768–783.
[24] Choi, E.M., Lee, Y.S., 2010. Luteolin suppresses
IL-1beta-induced cytokines and MMPs production via p38 MAPK, JNK,
NF-kappaB and AP-1 activation in human synovial sarcoma cell line,
SW982. Food Chem. Toxicol. 48, 2607–2611.
[25] Li, Y.C., Yeh, C.H., Yang, M.L., Kuan, Y.H., 2012. Luteolin
suppresses inflammatory mediator expression by blocking the Akt/NFkappaB
pathway in acute lung injury induced by lipopolysaccharide in mice.
Evid. Based Complement. Altern. Med. 2012,383608.[26] Kuo, M.Y.,
Liao, M.F., Chen, F.L., Li, Y.C., Yang, M.L., Lin, R.H., Kuan, Y.H.,
2011.Luteolin attenuates the pulmonary inflammatory response involves
abilities of anti-oxidation and inhibition of MAPK and NFkappaB pathways
in mice with endotoxin-induced acute lung injury. Food Chem. Toxicol.
49, 2660–2666.
[27] Qing J, Zhang Y, Derynck R. Structural and functional
characterization of the transforming growth factor-beta -induced
Smad3/c-Jun transcriptional cooperativity. J Biol Chem. 2000 Dec
8;275(49):38802-12. doi: 10.1074/jbc.M004731200. PMID: 10995748.
[28] Ji Z, Donaldson IJ, Liu J, Hayes A, Zeef LA, Sharrocks AD. The
forkhead transcription factor FOXK2 promotes AP-1-mediated
transcriptional regulation. Mol Cell Biol. 2012 Jan;32(2):385-98. doi:
10.1128/MCB.05504-11. Epub 2011 Nov 14. Erratum in: Mol Cell Biol. 2014
May;34(10):1892. PMID: 22083952; PMCID: PMC3255788.
[29] Lan HC, Li HJ, Lin G, Lai PY, Chung BC. Cyclic AMP stimulates
SF-1-dependent CYP11A1 expression through homeodomain-interacting
protein kinase 3-mediated Jun N-terminal kinase and c-Jun
phosphorylation. Mol Cell Biol. 2007 Mar;27(6):2027-36. doi:
10.1128/MCB.02253-06. Epub 2007 Jan 8. PMID: 17210646; PMCID:
PMC1820514.
[30] Lin Z, Guo Z, Xu Y, Zhao X. Identification of a secondary
promoter of CASP8 and its related transcription factor PURα. Int J
Oncol. 2014 Jul;45(1):57-66. doi: 10.3892/ijo.2014.2436. Epub 2014 May
9. PMID: 24819879; PMCID: PMC4079158.
[31] Ghanekar Y, Sadasivam S. In silico analysis reveals a shared
immune signature in CASP8-mutated carcinomas with varying correlations
to prognosis. PeerJ. 2019 Feb 11;7:e6402. doi: 10.7717/peerj.6402. PMID:
30775178; PMCID: PMC6375258.
[32]Chiaretti A, Pulitanò S, Barone G, Ferrara P, Romano V, Capozzi
D, Riccardi R. IL-1 β and IL-6 upregulation in children with H1N1
influenza virus infection. Mediators Inflamm. 2013;2013:495848. doi:
10.1155/2013/495848. Epub 2013 Apr 29. PMID: 23737648; PMCID:
PMC3657430.
[33]Sichelstiel A, Yadava K, Trompette A, Salami O, Iwakura Y, Nicod
LP, Marsland BJ. Targeting IL-1β and IL-17A driven inflammation during
influenza-induced exacerbations of chronic lung inflammation. PLoS One.
2014 Jun 11;9(2):e98440. doi: 10.1371/journal.pone.0098440. PMID:
24918427; PMCID: PMC4053370.
[34]Rodriguez AE, Bogart C, Gilbert CM, McCullers JA, Smith AM,
Kanneganti TD, Lupfer CR. Enhanced IL-1β production is mediated by a
TLR2-MYD88-NLRP3 signaling axis during coinfection with influenza A
virus and Streptococcus pneumoniae. PLoS One. 2019 Feb
22;14(2):e0212236. doi: 10.1371/journal.pone.0212236. PMID: 30794604;
PMCID: PMC6386446.
[35] Uyeki TM, Bernstein HH, Bradley JS, Englund JA, File TM, Fry
AM, Gravenstein S, Hayden FG, Harper SA, Hirshon JM, Ison MG, Johnston
BL, Knight SL, McGeer A, Riley LE, Wolfe CR, Alexander PE, Pavia AT.
Clinical Practice Guidelines by the Infectious Diseases Society of
America: 2018 Update on Diagnosis, Treatment, Chemoprophylaxis, and
Institutional Outbreak Management of Seasonal Influenzaa. Clin Infect
Dis. 2019 Mar 5;68(6):e1-e47. doi: 10.1093/cid/ciy866. Erratum in: Clin
Infect Dis. 2019 May 2;68(10):1790. PMID: 30566567; PMCID: PMC6653685.
[36]To KK, Hung IF, Li IW, Lee KL, Koo CK, Yan WW, Liu R, Ho KY, Chu
KH, Watt CL, Luk WK, Lai KY, Chow FL, Mok T, Buckley T, Chan JF, Wong
SS, Zheng B, Chen H, Lau CC, Tse H, Cheng VC, Chan KH, Yuen KY. Delayed
clearance of viral load and marked cytokine activation in severe cases
of pandemic H1N1 2009 influenza virus infection. Clin Infect Dis.
2010;50:850–859. doi: 10.1086/650581.
[37]Li, C., Yang, P., Sun, Y., Li, T., Wang, C., Wang, Z., Zou, Z.,
Yan, Y., Wang, W., Wang, C., Chen, Z., Xing, L., Tang, C., Ju, X., Guo,
F., Deng, J., Zhao, Y., Yang, P., Tang, J., Wang, H., … Jiang, C.
(2012). IL-17 response mediates acute lung injury induced by the 2009
pandemic influenza A (H1N1) virus. Cell research, 22(3), 528–538.
https://doi.org/10.1038/cr.2011.165
[38]Wang X, Chan CC, Yang M, Deng J, Poon VK, Leung VH, Ko KH, Zhou
J, Yuen KY, Zheng BJ, Lu L. A critical role of IL-17 in modulating the
B-cell response during H5N1 influenza virus infection. Cell Mol Immunol.
2011 Nov;8(6):462-8. doi: 10.1038/cmi.2011.38. Epub 2011 Sep 26. PMID:
21946434; PMCID: PMC4012931.
[39] Almansa R, Socias L, Ramirez P, Martin-Loeches I, Vallés J,
Loza A, Rello J, Kelvin DJ, León C, Blanco J, Andaluz D, Micheloud D,
Maraví E, Ortiz de Lejarazu R, Bermejo-Martin JF. Imbalanced pro- and
anti-Th17 responses (IL-17/granulocyte colony-stimulating factor)
predict fatal outcome in 2009 pandemic influenza. Crit Care.
2011;15(5):448. doi: 10.1186/cc10426. Epub 2011 Oct 20. PMID: 22040730;
PMCID: PMC3334743.
[40]Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A
distinct lineage of CD4 T cells regulates tissue inflammation by
producing interleukin 17. Nat Immunol. 2005;6:1133–1141.
[41] Pelletier M, Maggi L, Micheletti A, Lazzeri E, Tamassia N,
Costantini C, Cosmi L, Lunardi C, Annunziato F, Romagnani S, Cassatella
MA. Evidence for a cross-talk between human neutrophils and Th17 cells.
Blood. 2010 Jan 14;115(2):335-43. doi: 10.1182/blood-2009-04-216085.
Epub 2009 Nov 4. PMID: 19890092.
[42] Lindén A, Laan M, Anderson GP. Neutrophils, interleukin-17A and
lung disease. Eur Respir J. 2005 Jan;25(1):159-72. doi:
10.1183/09031936.04.00032904. PMID: 15640338.
[43]Srikiatkhachorn A, Chintapalli J, Liu J, Jamaluddin M, Harrod
KS, Whitsett JA, Enelow RI, Ramana CV. Interference with intraepithelial
TNF-α signaling inhibits CD8(+) T-cell-mediated lung injury in influenza
infection. Viral Immunol. 2010 Dec;23(6):639-45. doi:
10.1089/vim.2010.0076. PMID: 21142450; PMCID: PMC2991178.
[44]Aldridge JR Jr, Moseley CE, Boltz DA, Negovetich NJ, Reynolds C,
Franks J, Brown SA, Doherty PC, Webster RG, Thomas PG.
TNF/iNOS-producing dendritic cells are the necessary evil of lethal
influenza virus infection. Proc Natl Acad Sci U S A. 2009 Mar
31;106(13):5306-11. doi: 10.1073/pnas.0900655106. Epub 2009 Mar 11.
PMID: 19279209; PMCID: PMC2664048.
[45] Salmaso V, Moro S. Bridging Molecular Docking to Molecular
Dynamics in Exploring Ligand-Protein Recognition Process: An Overview.
Front Pharmacol. 2018 Aug 22;9:923. doi: 10.3389/fphar.2018.00923. PMID:
30186166; PMCID: PMC6113859.
[46] Lindström A, Edvinsson L, Johansson A, Andersson CD, Andersson
IE, Raubacher F, Linusson A. Postprocessing of docked protein-ligand
complexes using implicit solvation models. J Chem Inf Model. 2011 Feb
28;51(2):267-82. doi: 10.1021/ci100354x. Epub 2011 Feb 10. PMID:
21309544.
[47]Lu SJ, Chong FC. Combining molecular docking and molecular
dynamics to predict the binding modes of flavonoid derivatives with the
neuraminidase of the 2009 H1N1 influenza A virus. Int J Mol Sci.
2012;13(4):4496-507. doi: 10.3390/ijms13044496. Epub 2012 Apr 10. PMID:
22605992; PMCID: PMC3344228.
[48]Inamdar P, Bhandari S, Sonawane B, Hole A, Jadhav C. Structure
Optimization of Neuraminidase Inhibitors as Potential Anti-Influenza
(H1N1Inhibitors) Agents Using QSAR and Molecular Docking Studies. Iran J
Pharm Res. 2014 Winter;13(1):49-65. PMID: 24734056; PMCID: PMC3985258.