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Abstract

Stable isotope analysis is a universally recognized and efficient method of indicating

trophic relationships that is widely applied in research. However, variations in natural

isotopic  abundance  may  lead  to  inaccuracies  due  to  the  effects  of  complex

environmental conditions. This research compared the carbon and nitrogen isotopic

niches of fish communities between diverse biotopes around the Yellow River estuary

and adjacent sea areas, with the aim of revealing distinctions in stable isotopic niche

metrics,  trophic  positions,  and  feeding  preferences.  Stable  isotopic  niche  results

indicated that the communities of estuarine habitants were compatible in most study

biotopes, and may provide a corridor for energy and material transportation between

Laizhou  Bay  and  the  open  water.  Local  biocoenosis  was  embodied  in  the  wider

isotopic niche corresponding to frequent environmental changes and abiotic gradients.

This implied that they used various food sources to adapt to the fickle environment,

including  marine-terrestrial  boundaries  and  the  estuary.  Our  analysis  of  the  food

source  contribution  indicated  that  allochthonous  sources  were  considered  major
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energy  sources  in  estuarine  areas  directly  affected  by  Yellow River-diluted  water,

while autochthonous benthic and pelagic producers dominated carbon input into the

food web in Laizhou Bay and the open water. A significant variation in the fish δ15N

characteristic  was  found  within  estuarine  adjacent  regions,  so,  together  with  the

results from previous studies, we deemed the local high concentration of dissolved

inorganic nitrogen as the original trigger of the abnormal δ15N characteristic in fishes

via a transport process along food chains. These results provide a new perspective on

the  natural  distinction  of  carbon  and  nitrogen  isotopic  niches.  The  detailed  data

reported  here  enhance  our  understanding  of  variations  in  fish  communities  in

estuarine ecosystems.

Key words:  stable isotopic niche; estuarine offshore biotope; food source; trophic

level, fish community

Introduction

Estuarine biotopes  display  distinct  trophic  structures  of  biocoenosis  driven by the

supply  and  transformation  of  multiple  energy  sources  (Underwood,  2010),  while

flowing  waters  sustain  riverine  and  marine  biodiversity,  and  make  important

contributions  to  global  biogeochemical  cycles  (Palmer  et  al.,  2019).  It  is  widely

believed that  most  adjacent  marine  ecosystems are  strongly  connected  due  to  the

water transference of organic matter and bioelements (Stasko et al., 2018; Sujitha et

al., 2019). Adjacent ecosystems also provide ecological corridors for animal migration

(Hastie et al., 2016). Numerous investigations have shown that transference of energy

and  materials  occurs  frequently  between  biotopes  influenced  by  strong  coastal

physical and biological dynamics (Livernois et al., 2019). This implies the potential

connectivity  of  trophic  niches  and  biocoenosis  structures  (Palmer  et  al.,  2019).

However, there is relatively little research on identifying discrepancies in fish trophic

niches caused by diverse marine biotopes around the estuary directly. These related

studies are limited to temporal and spatial heterogeneity in food sources (McMahon et

al.,  2015) and  the  complexity  of  marine  ecosystems  within  various  biotopes

(Christianen et al., 2017; Ramshaw et al., 2017). Investigations comparing the trophic

relationships  between  diverse  biotopes  in  estuarine  ecosystems  have  seldom been

performed,  and  this  has  hindered  our  understanding  of  the  energy  and  material
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transporting mechanisms in the food webs. 

Stable  isotopes  record  information  of  marine  lives  accumulating  nutrients  over

integrated time periods in lifecycles as opposed to a snapshot of food ingestion (Plass-

Johnson  et  al.,  2013).  They  can  be  used  to  reconstruct  the  trophic  structures  of

biocoenoses in marine food webs (Parnell et al.,  2010; Boecklen et al.,  2011; Fry,

2013). However, as reality is a bit more complicated, mixed models that take isotope

values of multiple food sources into account according to user-specified data have

been  developed  and  successfully  applied  to  food  web  studies  to  solve  complex

interpretation processes (Jackson et al.,  2011; Phillips et al.,  2012). Stable isotopic

analysis can greatly contribute to research on fish community connectivity in marine

ecosystems  on  account  of  isotopic  signatures  corresponding  to  estuarine  biotopes

(Selleslagh et al., 2015). As the trophic relationship can be concisely expounded using

stable isotope analysis together with advisable models, such as SIBER (Stable Isotope

Bayesian Ellipses in R, Jackson et al., 2011) and IsoSource (Layman et al., 2012), a

comparison  of  trophic  relationships  of  biocoenoses  between  diverse  biotopes,

including variations in trophic structures, can be further indicated.

The  Yellow River  is  the  second  longest  river  in  China  and its  input  routes  have

changed over time, leading to complicated biotopes in the estuary (Xu et al., 2013).

There  is  a  strong  interaction  between  ocean  and  land  as  with  many  large  river

estuaries, and the research value is significant in terms of the diverse marine food

webs within the Yellow River estuary. However, to date, few studies have compared

the  trophic  relationships  between  diverse  biotopes  in  Yellow  River  estuarine

ecosystems. This shortage of information hinders our understanding of the energy and

materials transportation mechanism in local food webs and impedes the restoration

and conservation process in estuarine Marine Protected Areas (MPAs).

This  research  aimed to  compare  the  isotopic  niches  of  fish communities  between

diverse biotopes in the Yellow River estuary with the main expectation of revealing

distinctions  in  stable  isotopic  niche  metrics,  trophic  positions,  and  feeding

preferences. These results provide new perspectives on trophic relationships, and they

provide detailed data that  can enhance our understanding of the variations in fish

communities  in  estuarine  ecosystems,  with  important  implications  for  fishery

conservation and the restoration of estuarine MPAs. 

5

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

6



Method

Research area and sampling methods

Two sampling cruises were launched in September 2017 and September 2018. Study

areas were the coastal sea located from 118.5°E to 119.5°E and 37.0°N to 38.4°N

around the Yellow River estuary (Figure 1). The location included five MPAs: Yellow

River Estuary MPA, Lijin MPA, Hekou MPA, Laizhou MPA, and Guangrao MPA.

MPAs are considered ideal experimental systems in which to obtain environmental

background values in areas that restrict human activities. The inherent variety of fish

communities in a stable isotopic niche caused by a diverse marine biotope can be

compared with different biotopes that exclude direct human exploitation. 

Selection of survey biotopes mainly considered the diversity between typical estuarine

and gulf ecosystems, as well as subtidal zones and deeper water. Five biotopes (Figure

1)  with  unique  individual  characteristics  were  selected.  All  five  biotopes  were

separated by the Yellow River estuary and differentiated by intertidal and subtidal

zones, and represented environment characteristic data, such as salinity around the

Yellow River estuary,  which were synthetically used to distinguish the influencing

scope of diluted water from the river. Each of these five biotopes had discriminative

marine  ecosystem characteristics.  Biotope-H,  located  at  the  intertidal  and subtidal

zone of the recent Yellow River estuary, was directly affected by the abundant diluted

water from the Yellow River, and characterized by typical estuarine features, such as

abundance of terrestrial  organic matters,  lower salinity,  and depth.  Biotope-C was

located at the intertidal and subtidal zone of the southern branch of the Yellow River

estuary that was almost blocked in the 1990s. Biotope-D was located at the subtidal

zone facing open water and featured deeper water and higher salinity. Biotope-B was

located at the intertidal and subtidal zone near the ancient Yellow River estuary facing

open  water.  Biotope-S,  which  was  located  at  the  intertidal  and  subtidal  zone  in

Laizhou Bay, was closer to the mainland and influenced more by the weaker diluted

water  from the bottom of Laizhou Bay rather  than diluted water from the Yellow

River. Five evenly spaced sites were chosen from each biotope for comparison; thus,

in  total,  twenty-five  sites  were  selected  for  collecting  fish  specimens  for  stable

isotopic analysis. After the summer fishing moratorium ended in September 2017 and

September 2018, a fishing boat trawled at 2 kn for 30 min (Choy et al., 2015) at each

site. Specimens were weighed and frozen at -20 °C after species identification. Three
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replicates of stable isotope analysis were carried out on each species. Zooplankton

specimens  were  collected  as  an  assemblage  of  communities  using  a  200-µm

zooplankton net that was horizontally trawled at  2 kn for 10 min.  Three replicate

samples were taken, filtered using a pump system and 200-µm bolting silk filters,

wrapped in foil, placed in sealed bags, and then stored at -20 °C until further analysis.

Suspended particulate organic matter (POM), which mainly contained phytoplankton

and  organic  detritus,  was  collected  by  filtering  seawater  through  pre-combusted

Whatman GF/F glass fiber filters (Kohlbach et al., 2016), and subsequent methods

were  the  same  with  zooplankton  sample  collection.  Microscopic  photosynthetic

organisms living on the sediment surface were referred to as microphythobenthos,

mainly  comprising  diatoms  and  cyanobacteria  (Christianen  et  al.,  2017),  which

compose  the  sedimental  organic  matter  (SOM) with  other  organic  detritus.  SOM

specimens were collected using a clam grab bucket. The surface layers (< 5 mm) of

the sediment were scraped off, foil-wrapped, and then frozen at -20 °C for further

processing.  Enteromorpha and spartina were,  respectively,  collected and then  foil-

wrapped  and  frozen  as  a  proxy  for  macroalgae  and  cordgrass,  because  of  their

dominating position in local biotopes. 

Figure 1. Research area off the Yellow River estuary and adjacent sea areas

Sample treatment and stable isotope analysis

In this study, local dominating fish species (average site biomass > 90%), from the

five research biotopes, were collected for δ13C and δ15N analysis. The dorsal muscle

tissues  of  fishes  were  used  for  stable  isotope  analysis,  which  reflects  long-term
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information  about  nutrient  accumulation  (McIntyre  and  Flecker,  2006).  Mixed

zooplankton samples  composed of  several  species  were analyzed together  to  gain

nitrogen stable isotope data for the TL baseline (Hoen et al., 2014). Each specimen

was separated into two equal quantity samples. One sample was treated with 1 mol/L

hydrochloric acid to remove inorganic carbon for δ13C analysis (Kanaya et al., 2007),

while the non-acidified one was used directly for δ15N analysis.  All  samples were

oven  dried  for  approximately  24  to  48  h  at  70  °C  until  a  constant  weight  was

achieved, and then homogenized into uniform particle size powder using a triturator.

After pretreatment,  the main process of carbon and nitrogen isotopic analysis  was

performed  using  an  isotope  ratio  mass  spectrometer  (Delta  VTM,  Thermo  Fisher,

Germany). Stable isotope ratios were expressed in standard δ unit notation (δ13C and

δ15N), and defined as follows:

  (1)

   (2)

where 13C/12Cs and 15N/14Ns are the ratios of heavy isotopes to light isotopes from the

samples and  13C/12CVPDB and  15N/14Nair are  the Vienna Pee Dee Belemnite  (VPDB)

standard and atmospheric N2 standard for  13C and  15N, respectively (Jeglinski et al.,

2013).

Data analysis

δ13C and δ15N were analyzed using the current most efficient procedures, including

SIBER metrics (Stable Isotope Bayesian Ellipses in R version 3.6.1), SIAR package

(Stable  Isotope  Analysis  in  R),  IsoSource  (Phillips  et  al.,  2012,

www.epa.gov/wed/pages/  models.htm),  and  the  TL model  (Post,  2002;  Du  et  al.,

2020). SPSS Statistics Subscription (IBM Inc., Armonk, NY, USA) was also used to

determine how similar  isotopic signatures  were,  and to  distinguish the  sources  of

identical stable isotope characteristics. 
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Isotopic niche analysis

SIBER is a multivariate ellipse-based model available in an R statistical computing

package,  which  can  reformulate  metrics  in  a  Bayesian  framework  for  direct

comparison  of  isotopic  niches  across  biocoenosis  (Jackson  et  al.,  2011).  When

comparing individual groups with each other, either within a single community or in

groups of communities, the Standard Ellipse Area (SEA) was recommended by the

program author. With the SIBER object created, isotope biplots could be displayed

using stated  functions,  and some summary statistics  could  be  calculated  for  each

group  in  the  dataset.  In  this  study,  a  pairwise  comparison  of  biotopes  was

implemented using SIBER. The stable isotopic niche areas of each group, which were

determined by the SEA, represented the trophic niche of respective fish communities

plotted on a δ13C-δ15N dot plot. The ellipse area corrected for the small sample size

(SEAc) and the stable isotopic niche width of each fish community was computed for

comparison. 

Trophic level calculation

Seven common fish species were collected to calculate and compare their TLs in each

biotope.  TLs were determined based on the nitrogen isotopic fractionation for  15N

enrichment through the food chains considering the consumer ingestion and metabolic

process  (Caut  et  al.,  2009,  2010),  undergoing  predictable  changes  with  each

successive level  up the trophic ladder  (Smit  et  al.,  2005).  The recognized trophic

fractionation factor of  δ15N (Δ15N) was 3.4‰ between contiguous TLs (Post, 2002).

TLs could be calculated using the traditional model formula, as follows:

            (3)

where TL is the consumer trophic level, TLbase is the baseline trophic level, δ15Nc is the

consumer  nitrogen  isotope  ratio,  δ15Nb is  the  marine  primary  consumer  nitrogen

isotope ratio, and Δ15N is the trophic fractionation factor. Primary consumers occupied

the 2nd TL at the base of the trophic ladder, so the δ15N value of zooplankton was

considered the baseline in this study.

13

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

14



Food source analysis

In  this  study,  we  identified  five  paralic  organisms  as  the  original  food  sources,

including autochthonous primary producers (phytoplankton and microphytobenthos)

and allochthonous food sources (macroalgae, cordgrass, and organic matter from the

Yellow River (YROM)), which were the primary energy providers for local paralic

food  webs,  as  the  potential  primary  food  sources  of  fish  species,  analyzed  the

contributions of each potential food source using IsoSource and SIAR, and then drew

block diagrams illustrating the results with SIAR. According to Wang et al. (2018),

estuarine  organic  matter  is  predominately  from  autochthonous  sources,  and  the

estimated autochthonous organic carbon is approximately 58 to 82% of total organic

carbon.  Therefore,  POM  with  a  diameter  between  20  and  200  μm  was  deemed

representative of estuarine-marine phytoplankton and the associated isotope values

were used in food source analysis. Surface SOM (< 5 mm) excluded inorganic carbon

and was represented by microphytobenthos in local research areas. Enteromorpha and

spartina were represented by macroalgae and cordgrass in the subtidal and intertidal

zone, respectively. Since the diluted water directly influenced Biotope-H and Biotope-

C  more  than  Biotope-B,  Biotope-D,  and  Biotope-S,  YROM  in  Biotope-H  and

Biotope-C was included in the food source analysis, while that in Biotope-B, Biotope-

D, and Biotope-S was not. The results from previous study indicated that there was no

significant difference between YROM and primary terrestrial vegetation in the Yellow

River Delta (Qu et al., 2019), so YROM was suitable for representing delta vegetation

in a local  finite  area.  Consequently,  five potential  food sources  were identified in

Biotope-H  and  Biotope-C,  corresponding  to  a  20%  average  contribution  for  fish

species,  while  four  potential  food  sources  corresponding  to  a  25%  average

contribution  were  identified  in  Biotope-B,  Biotope-D,  and  Biotope-S.  The

contribution of each potential carbon source to fish communities was estimated using

SIAR (Jackson et al., 2009 and 2011), while the contribution of each potential carbon

source to the seven fish species was analyzed using IsoSource (Philips et al., 2012). 
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Results

Variation in δ13C and δ15N

Seventeen common fish species involving 168 specimens were randomly collected

from the five local research biotopes using a consistent sampling method for δ13C and

δ15N analysis (Biomass proportions are shown in  Appendix Table S1). The average

δ13C values for each species in the five survey areas are shown in Table 1. Biotope-H

was located  at  the  subtidal  zone  of  the  northern  Yellow  River  estuary,  and  was

affected most by the abundant diluted water from the Yellow River. In our study, δ13C

values for fish in this biotope had the broadest range, from -22.17‰ to -16.94‰ with

an average of -19.52‰.  Biotope-C was located at the subtidal zone of the southern

Yellow River estuary, where the effect of diluted water was weaker than the northern

area because of silting at  the southern river mouth.  The δ13C values for fish here

ranged from -21.50‰ to -17.48‰ with an average of -19.63‰. Biotope-D，which

was located further north of the Yellow River estuary, approaching open water, had

less of a diluted water effect. The δ13C values for fish here ranged from -23.30‰ to -

20.00‰ and the average was -21.40‰. Biotope-B, located at the edge of the intertidal

zone northwest of the Yellow River estuary, was strongly influenced by local diluted

water from river branching rather than the Yellow River mainstream. The δ13C values

for fish here ranged from -19.80‰ to -17.87‰ and the average was -18.87‰. For

Biotope-S, which was located near the intertidal zone of Laizhou Bay, south of the

Yellow River, the most influential factor was local land input instead of diluted water

from the  Yellow River.  The  δ13C values  for  fish  here  ranged  from -21.56‰ to  -

18.68‰ with an average of -20.02‰. 

The average δ15N values are shown in Table 2. Similar to δ13C values, the δ15N range

for fish in  Biotope-H was the broadest, from 7.05‰ to  14.30‰ with an average of

12.08‰. The δ15N for fish in  Biotope-B ranged from  10.62‰ to  13.16‰ with an

average of 11.97‰. The δ15N for fish in Biotope-D ranged from 10.08‰ to 13.12‰

with an average of  11.57‰. The δ15N for fish in  Biotope-C ranged from 10.20‰ to

15.28‰ with an average of 12.57‰, and the δ15N for fish in Biotope-S ranged from

11.89‰ to  17.09‰ with an average of 14.80‰. The δ15N data for Biotope-S were

significantly higher than all other biotopes (P < 0.01), while the δ15N data for Biotope-

C  were  significantly  higher  than  those  for  Biotope-B  and  Biotope-D  (P <  0.05,

Appendix Table S2).
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Table 1. δ13C (mean values ± SD, n = 3) of seventeen fish species in five survey areas in 2017 and 2018

No. Species B: δ13C (‰) D: δ13C (‰) H: δ13C (‰) C: δ13C (‰) S: δ13C (‰)

1 Argyrosomus argentatus -18.02 ± 0.03 -20.70 ± 0.78 -19.31 ± 0.32 -18.27 ± 0.72 -20.87 ± 0.24

2 Konosirus punctatus -18.70 ± 0.06 -21.33 ± 0.64 -19.90 ± 0.13 -19.36 ± 0.06 -21.09 ± 0.03

3 Cynoglossus semilaevis -19.01 ± 0.30 -20.60 ± 0.78 -19.02 ± 0.38 -19.71 ± 0.41 -19.38 ± 0.26 

4 Thryssa kammalensis -19.19 ± 0.26 -20.80 ± 0.70 -22.01 ± 0.24 -20.88 ± 0.55 -20.34 ± 1.06 

5 Amblychaeturichthys hexanema -19.70 ± 0.07 -20.57 ± 0.81 -20.42 ± 0.43 -19.52 ± 0.70 -19.11 ± 0.00 

6 Sardinella zunasi -19.14 ± 0.12 -21.77 ± 0.90 -20.20 ± 0.30 -19.69 ± 0.54 -20.95 ± 0.32

7 Platycephalus indicus -18.49 ± 0.07 -22.97 ± 0.21 -19.20 ± 0.09 -19.66 ± 0.07 -19.11 ± 0.71

8 Synechogobius hasta -18.35 ± 0.31 -20.87 ± 0.72 -20.14 ± 0.34 -19.25 ± 0.23 —

9 Triaenopogon barbatus -19.38 ± 0.50 -21.27 ± 0.67 — — —

10 Thryssa mystax -19.29 ± 0.51 — -20.16 ± 0.82 -20.15 ± 0.29 —

11 Cynoglossus joyneri  -18.28 ± 0.36 — -17.60 ± 0.81 — —

12 Enedrias fangi — -23.10 ± 0.20 — — —

13 Sillago japonica — — -18.99 ± 0.48 — —

14 Eupleurogrammus muticus — — -19.58 ± 0.04 — —

15 Odontamblyopus rubicundus — — -18.28 ± 0.01 -19.79 ± 0.01 —

16 Setipinna tenuifilis — — -18.44 ± 0.37 -19.72 ± 1.27 -19.39 ± 0.22

17 Pampus echinogaster — — -19.61 ± 0.30 — -19.93 ± 0.19
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Table 2. δ15N (mean values ± SD, n = 3) of seventeen fish species in five survey areas in 2017 and 2018

No. Species B: δ15N (‰) D: δ15N (‰) H: δ15N (‰) C: δ15N (‰) S: δ15N (‰)

1 Argyrosomus argentatus 12.96 ± 0.04 11.15 ± 0.82 12.70 ± 1.21 12.58 ± 0.57 15.36 ± 0.77

2 Konosirus punctatus 11.24 ± 0.22 11.76 ± 0.89 10.97 ± 0.53 10.38 ± 0.16 11.93 ± 0.07

3 Cynoglossus semilaevis 11.31 ± 0.60 10.84 ± 0.90 12.16 ± 0.48 12.36 ± 0.30 13.58 ± 0.06

4 Thryssa kammalensis 11.80 ± 0.08 11.27 ± 0.85 12.57 ± 0.06 13.66 ± 0.31 14.94 ± 0.14

5 Amblychaeturichthys hexanema 11.62 ± 0.23 10.75 ± 0.94 12.18 ± 0.10 12.39 ± 0.25 15.75 ± 0.17

6 Sardinella zunasi 13.01 ± 0.03 11.91 ± 0.84 7.89 ± 0.80 11.46 ± 0.97 15.89 ± 0.09

7 Platycephalus indicus 12.30 ± 0.58 12.07 ± 0.56 13.48 ± 0.24 13.57 ± 0.30 14.09 ± 0.03

8 Synechogobius hasta 10.98 ± 0.07 11.47 ± 0.51 13.52 ± 0.01 12.70 ± 0.58 —

9 Triaenopogon barbatus 11.91 ± 0.06 11.53 ± 0.82 — — —

10 Thryssa mystax 11.52 ± 0.26 — 11.52 ± 0.17 11.95 ± 0.25 —

11 Cynoglossus joyneri  13.03 ± 0.12 — 13.52 ± 0.45 — —

12 Enedrias fangi — 12.99 ± 0.11 — — —

13 Sillago japonica — — 9.79 ± 0.56 — —

14 Eupleurogrammus muticus — — 11.82 ± 0.83 — —

15 Odontamblyopus rubicundus — — 12.40 ± 0.67 12.26 ± 0.03 —

16 Setipinna tenuifilis — — 13.85 ± 0.41 14.90 ± 0.41 14.69 ± 0.16

17 Pampus echinogaster — — 12.81 ± 0.42 — 16.94 ± 0.15
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Comparing stable isotopic niches using SIBER

Biotope-H was most influenced by diluted water from the Yellow River, so it was

chosen as the object of comparison with the other biotopes (B, D, C, and S), avoiding

too complex and mixed-up dots with their SEA in a single plot using SIBER (Figure

2). The niche width of δ13C and δ15N for fish is shown in Table 3. In Biotope-H, the

niche width of δ13C and δ15N was 7.24 and 5.24, respectively, and both had the widest

niche of all selected biotopes (Table 3). Niche widths in Biotope-B were the narrowest

at 1.93 for δ13C and 2.53 for δ15N. Accordingly, Biotope-H had the highest SEAc of

5.38 followed by Biotope-S (4.10) and Biotope-C (2.98), while Biotope-B had the

lowest  SEAc of  1.36.  The isotopic  niche  area  of  Biotope-H contained  Biotope-B

(Figure 2A), while similarly Biotope-H almost included Biotope-C except for one dot

(Figure 2C, δ13C of -21.18, δ15N of 14.96). The SEAc of Biotope-D was 2.83, and its

δ13C value was significantly lower than that of  Biotope-H (t-test,  P < 0.01, n = 33)

(Figure 2B). The SEAc of Biotope-S was 4.10, and its δ15N was significantly higher

than that of Biotope-H (t-test, P < 0.01, n = 27) (Figure 2D). 
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Figure 2. A dot plot of  δ13C-δ15N with the standard ellipse area (SEAc) illustrating

comparisons between Biotope-H and other biotopes (Biotope-B, Biotope-D, Biotope-

C, and Biotope-S corresponding to inset A, B, C and D, respectively)  using the SIBER

package. (Biotope-H was drawn as red triangles, and the other biotopes were drawn

as black circles)

Table 3. Sampling number (n), niche width (δ13C and δ15N) and SIBER analysis results

including the total area (TA), standard Bayesian Ellipse Area (SEA), and ellipse area

corrected for small sample size (SEAc) in five different biotopes.

Biotope
s n δ13C niche width δ15N niche width TA SEA SEAc

B 3
3 1.93 2.53 3.68 1.32 1.36

D 3
0 3.30 3.04 7.38 2.73 2.83

H 4
5 5.24 7.24 20.27 5.26 5.38

C 3
3 4.02 5.08 13.36 2.89 2.98

S 2
7 2.88 5.21 9.35 3.94 4.10

Trophic levels

As  seven  common  fish  species  (Argyrosomus  argentatus,  Amblychaeturichthys

hexanema,  Cynoglossus  semilaevis,  Thryssa  kammalensis,  Konosirus  punctatus,

Platycephalus indicus, and Sardinella zunasi) appeared in all five biotopes, they were

chosen for TL and food source comparisons in this study. The TLs of these seven

species in each biotope were calculated using a unique baseline. Figure 3 shows the

average TL of the seven representative fishes in each biotope. Agreeing with δ15N

data, the highest average TL of 4.0 was found for Biotope-S, while the lowest average

of 3.1 was found for Biotope-D. The TL of Biotope-S was significantly higher than

any other biotope (P < 0.01, Appendix Table S3). Biotope-H had the highest standard

deviation (0.5), while Biotope-D had the lowest standard deviation (0.2). For single

species, the highest TL was 4.5 (Sardinella zunasi) in Biotope-S, while the lowest TL

was 2.1 (also Sardinella zunasi) in Biotope-H. 
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Figure 3. TLs of the seven common fish species (average labeled) in the five biotopes 

Food source analysis

As shown in Figure 4, the contribution of the five potential food sources showed a

similar  distribution  tendency  in  Biotope-H  and  Biotope-C  (Appendix  Table  S4).

Allochthonous  food  sources  (macroalgae,  cordgrass,  and  YROM)  showed  higher

proportional  contributions  to  local  fish  communities  than  autochthonous  sources

(POM and SOM) (Figure 4). The 95% confidence intervals (CIs) were 0.01 to 0.44 for

macroalgae, 0.04 to 0.43 for cordgrass, and 0.10 to 0.40 for YROM, and 0 to 0.37 for

POM  and  0  to  0.24  for  SOM  in  Biotope-H.  The  95%  CIs  were  0  to  0.47  for

macroalgae, 0.03 to 0.44 for cordgrass, and 0.17 to 0.43 for YROM, and 0 to 0.37 for

POM and 0 to 0.12 for SOM in Biotope-C. The 95% CIs for macroalgae showed the

widest distribution, which was 0.43 in Biotope-H and 0.47 in Biotope-C, respectively.

YROM demonstrated less  variation  in  the  confidence  interval,  which  was 0.30 in

Biotope-H and 0.16 in Biotope-C. Conversely, SOM showed the lowest contribution,

with a 95% CI of 0 to 0.24 in Biotope-H and 0 to 0.12 in Biotope-C, respectively. For

single  species,  both  macroalgae  and  cordgrass  contributed  relatively  more  to

Argyrosomus  argentatus  (mean  =  0.33  and  0.30  in  Biotope-H;  0.32  and  0.33  in

Biotope-C),  while  YROM  contributed  a  0.37  mean  proportion  for  Thryssa

kammalensis  in  Biotope-H.  More  detailed  food  source  contribution  data  for  fish

species are shown in Appendix Table S4 and S5.

In Biotope-D, which was the farthest offshore, POM showed a significantly higher

food source contribution, and its 95% CI was higher (0.26 to 0.79) than any other

potential  food sources  (Figure  5,  Appendix  Table S4),  and for  single  species,  the

highest mean contribution of POM was to  Konosirus punctatus  (0.76) in Biotope-D

(Appendix Table S5). The 95% CI for SOM was also higher (0.17 to 0.53) than for

macroalgae and cordgrass, which showed extremely low 95% CIs of 0 to 0.18 and 0
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to 0.11, respectively. In Biotope-S, POM and SOM were also considered to be the

primary food sources based on contribution results, which accounted for 0 to 0.61, but

with  high  distribution  indeterminacy  (0.61),  and  0.16  to  0.54  for  95%  CIs,

respectively.  In  Biotope-B,  the  contributions  of  each food source  were  in  relative

equilibrium,  while  for  single  species,  cordgrass  showed  a  0.48  contribution  to

Argyrosomus argentatus (Appendix Table S5). 

Figure 4. Relative contribution of the five potential food sources to the diet of fish

communities in Biotope-H and Biotope-C using SIAR. Grey shaded areas represent

95%, 75%, and 50% confidence intervals. (Food source containing POM = suspended

particulate organic matter, SOM = sedimental organic matter, macroalgae, cordgrass,

and YROM = Yellow River organic matter.) 

Figure 5. Relative contribution of the five potential food sources to the diet of fish

communities in Biotope-B, Biotope-D, and Biotope-S using SIAR. Grey shaded areas

represent 95%, 75%, and 50% confidence intervals. (Food source containing POM =

suspended particulate organic matter, SOM = sedimental organic matter, macroalgae

and cordgrass.)
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Discussion

Trophic niche variation

Increasing  numbers  of  studies  have  shown  that  coastal  and  estuarine  ecological

connectivity plays an essential role in ecosystem conservation and restoration (Du et

al.,  2015).  The stable  isotopic  niche  results  in  this  study indicated that  the  SEAc

(5.38) and total area (TA, 20.27) of estuarine Biotope-H covered the majority of the

other  research  areas  (Figure  2,  Table  3).  In  general,  the  results  showed  the

compatibility of communities among Yellow River estuarine habitants, and that the

area may be a corridor for energy and material transportation between Laizhou Bay

and the open water. Further, the results highlight the importance of terrestrial-marine

linkages for interpreting energy flow in estuarine ecosystems (Wai et al., 2011). Local

biocoenosis used various food sources to adapt to the fickle environment, including

marine-terrestrial  boundaries and the estuary,  and this  was embodied in the wider

isotopic niche corresponding to frequent environmental changes and abiotic gradients

(Lange et al., 2018). These marine-terrestrial linkages served as feeding and nursery

grounds  for  fish  biocoenosis,  where  even  top  predators  like  shark  species  gained

trophic  subsidies  along  food  chains  from land  (Wai  et  al.,  2012).  A comparative

analysis of stable isotopic niches was useful for detecting patterns in trophic structure

and  identifying  differences  or  similarities  in  trophic  organization  related  to

environmental conditions (Abrantes et al., 2014). It is evident that changes to the TLs

and food sources of fish communities in terms of δ13C and δ15N will have an effect on

conservation.

The δ13C data in our study indicated that all fish species were mainly corresponding to

benthic  diatoms,  macroalgae,  and  estuarine-marine  phytoplankton  (Cloern  et  al.,

2002), which occupy normal marine isotopic niches (Newsome et al., 2007). Beyond

macroalgae, our analysis of the food source contribution indicated that YROM and

cordgrass were major allochthonous energy sources in estuarine areas directly affected

by  Yellow  River-diluted  water,  while  local  autochthonous  primary  producers

(phytoplankton  and  microphytobenthos)  demonstrated  a  low contribution  in  those

specific  areas  (Figure  4).  Phytoplankton  produce  new  particles  that  drive  the

biological carbon pump, contributing to the global carbon cycle in the ocean, which

plays a disproportionately important role in the global climate on a range of time

scales  (Bolaños  et  al.,  2020;  Moreau  et  al.,  2020).  However,  it  is  susceptible  to
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environmental conditions relative to other primary producers, especially the variable

environment of estuaries. The bloom and extinction of phytoplankton is driven by

physical, chemical, and biological seasonality (Bolaños et al., 2020). Hydrology and

dissolved nutrients have been widely identified as the main drivers of phytoplankton

dynamics in estuarine ecosystems (Tao et al., 2020). Our investigation indicated that a

high concentration of chlorophyll-a, a representative of phytoplankton (Moreau et al.,

2020),  had  not  shown up in  estuarine  areas  with  a  direct  diluted  water  influence

(Appendix  1).  This  is  consistent  with  the  results  of  Ding  et  al.  (2020).

Microphytobenthic primary producers also demonstrated a low contribution, probably

due  to  their  dependency  on  light  (Haro  et  al.,  2019)  and  encounter  with  high-

suspended  solids  (Wang  et  al.,  2017).  On  the  other  hand,  besides  macroalgae,

allochthonous energy sources were identified as the main food sources supporting the

estuarine food web. In a previous study, most of the riverine organic carbon originated

from delta vegetation debris (Phragmites, Suaeda, and Tamarisk) in particulate form

(Wang et al., 2018). Suspended particulate matter acts as the main carrier of organic

matter, providing energy to the estuarine food web from upstream carrying, which

plays an important role in the conditioning of productivity and ecosystem functions in

estuaries  (Li  et  al.,  2020).  As a  representative of  cordgrass  in  the intertidal  zone,

spartina  provided  a  considerable  food  contribution  proportion  for  estuarine  fish

communities in this study. However, it was recognized as the main invasive plant in

the Yellow River estuarine area, so its contribution to the local estuarine food web is

still controversial (Chen et al., 2020). Spartina alterniflora was first introduced to the

coastal wetlands of China from the United States in 1979 for the purpose of ecological

restoration. From 1985 to 2015, it continued to spread across the coast of mainland

China as a typical invasive species (Meng et al., 2020). 

Areas  away  from  the  Yellow  River  estuary  show  different  food  contribution

characteristics  compared with  the  estuarine  area.  As indicated  by  the  food source

contribution results, autochthonous benthic and pelagic producers (microphytobenthos

and  phytoplankton)  dominated  carbon  input  into  the  food  web  in  Biotope-S  and

Biotope-D, which conformed to the normal characteristics of an intertidal ecosystem

like the Wadden Sea (Christianen et  al.,  2017). Microphytobenthos form extensive

biofilms on the sediment surface conducive to its stabilization. They are not easily

disturbed and thus provide a more stable food source for local consumers (Hart and

Lovvorn, 2003; Miyatake et al., 2014). In contrast, phytoplankton are more vulnerable

to influence from environmental conditions (Armbrecht et al., 2015), while providing
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an  unstable  food  source  according  to  the  more  discrete  confidence  interval  of

contribution (Figure 5).

Majorization of the trophic model baseline

The δ15N data indicated that the fish species in our study system belonged to TL 2.1 to

4.5 using a unique baseline (Figure 3), covered a TL distance of 2.4, which differed

from the general trophic pattern of fish communities in Chinese coastal waters, such

as 3.0 to 4.1 for Changjiang Estuary at the junction of the Yellow Sea and the East

China Sea (Chang et al., 2014), 3.1 to 3.6 in the coastal water of the Yellow Sea (Feng

et al., 2014), and 2.9 to 3.9 at the junction of the East China Sea and South China Sea

(Du  et  al.,  2015).  Their  trophic  niche  was  also  wider  than  that  in  the  western

Mediterranean (2.9 to 4.0, Valls et al., 2014), but lower than that in the Gulf of Maine

(3.7 to 5.2, Schartup et al., 2019). From the above comparisons, the variation in TL in

our  research  area  (2.4)  was  much  wider  than  in  other  similar  coastal  areas.

Intriguingly,  this  variation  was  reflected  not  only  in  single  species,  but  also

significantly in the biotopes according to the results of this study (Appendix Table

S3). Our results demonstrated that the average fish TL was 3.3 in Biotope-B, 3.1 in

Biotope-B, 3.2 in Biotope-H, 3.4 in Biotope-C, and 4.0 in Biotope-S, giving the trend

of S > C > B > H > D. This tendency showed that the average TL was significantly

higher  in  Laizhou Bay than any other  biotope and decreased from the near  shore

biotope to the far shore, which meant significant variation in our original δ15N data. It

was an abnormal phenomenon that similar species had such a significantly different

δ15N characteristic between connected biotopes. 

δ15N can also be used to indicate scenopoetic dimensions, such as marine-terrestrial

(Lange  et  al.,  2018)  and  eutrophication  (Gooddy  et  al.,  2016).  Generally,  the

difference in habitat conditions is mainly related to the scenopoetic dimensions where

a  high  δ15N  value  indicate  a  marine  characteristic  while  a  low  value  indicate  a

terrestrial characteristic; a high value also indicates a eutrophic area while a low value

indicates  a  pristine  area  (Newsome et  al.,  2007).  The  environmental  condition  of

Laizhou Bay is closer to a mainland and it belongs more to a terrestrial rather than a

marine characteristic with its lower δ15N value, and thus the results in our study did

not  obey  the  marine-terrestrial  pattern.  We  also  suspected  that  local  aquaculture

activities might lead to a high δ15N value from wild marine lives by releasing organic

bait  based on similar conditions in the aquaculture water in Jiaozhou Bay, off  the

coast of China (Feng et al., 2014). Therefore, a field survey was conducted in May
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2020 and scallop culture was identified as the main local aquaculture with no release

of anthropogenic organic bait.  After  excluding the above conditions,  we needed a

more reasonable theory to explain the abnormal phenomenon in our study area. 

After the above analysis, we turned our attention to probing into the δ15N variation

based on the food source contribution. Whether in a high δ15N (Biotope-S) or low δ15N

(Biotope-D)  area,  the  autochthonous  food  source  demonstrated  a  relatively  high

contribution to the local fish communities, which implied that it is probably due to the

influence of  primary producers  at  the base  of  the food web (Oakes  et  al.,  2010).

However,  primary  producers  seldom directly  provide  energy to  high-TL predators

(Warne et al., 2010), so it does not adequately explain the δ15N variation in different

biotopes.  Therefore,  in  May  2020,  we  reanalyzed  the  zooplankton,  which  was

considered a mediator of energy-transfer from primary producers to high-TL predators

and tended to respond to variations in food source δ15N values (Schmidt et al., 2003),

and then recalculated the TL of fishes using zooplankton δ15N values as the baseline in

each biotope (Figure 6). Compared with the unique baseline, the differences in fish

TLs were smaller between each biotope (Figure 6 TLb). The fish TL in Biotope-C was

no longer significantly higher than that in Biotope-B and Biotope-D. Though the fish

TL in Biotope-S was still significantly higher than that in the other biotopes, the gaps

decreased from 0.83 to 0.42 with Biotope-B, from 0.95 to 0.69 with Biotope-D, from

0.80 to 0.33 with Biotope-H, and from 0.65 to 0.39 with Biotope-C (Appendix Table

S6). However, the bias caused by abnormally high δ15N still existed in the optimized

results. This method demonstrated a method for solving the disparity generated from

δ15N data in  spatial  distribution,  which implied a  tendency that  the δ15N variation

originated in a more fundamental part of the estuarine food web, such as nitrogen

cycling dynamics (Hetherington et al., 2017). 

To exclude possible  error introduced during the calculating process,  we also used

Hussey’s  equation  to  recalculate  the  TL (Hussey et  al.,  2014;  Reum et  al.,  2015,

method in Appendix 2). Based on the new equation, there were some changes in the

TL results, but they still retained the same trend in terms of the average biotope TL

(Figure 6, TLn). 
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Figure 6. Average TLs of fishes in each biotope using Post’s (TL) and Hussey’s (TLn)

methods,  and  revised  TLs  using  a  different  baseline  value  (δ15N  of  primary

consumers) Post’s method (TLb)

The inorganic nitrogen assimilation process is a key driver from primary producers in

the marine nitrogen cycle  (Hetherington et  al.,  2017).  Due to  the high and stable

contribution for fishes, SOM was considered a primary food source in Biotope-S. We

further investigated its δ15N distribution (Figure 7) and found a strong link between

the  high  δ15N  of  fish  and  the  distribution  of  dissolved  inorganic  nitrogen  (DIN)

(Appendix  3).  Nitrogen-fixing  microorganisms,  such  as  nitrospinae,  were  also

significantly  enriched  in  15N  under  conditions  of  a  high  inorganic  nitrogen

concentration (Kitzinger et al.,  2020). Therefore, the high δ15N value of SOM was

most probably caused by microorganisms and other primary producers assimilating

high-concentration DIN, which was likely the reason for the eutrophic pattern of δ15N

(Newsome  et  al.,  2007).  The  major  primary  consumers,  zooplankton,  tended  to

respond to this variation (Schmidt et al., 2003). This characteristic would translate to

high-TL consumers like fish communities via marine food chains leading to biases in

the statistical process (Auerswald et al., 2010; Layman et al., 2012). 
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Figure 7. The distribution of δ15N in organic sediment in August 2017 (A) and May

2020 (B). 

Hetherington et  al.  (2017) used linear mixed effects models (LMEs) to verify that

source amino acid δ15N values in marine lives were related to nitrate concentrations,

which pertained to fluctuations in biogeochemical cycling at the base of the food web.

Therefore,  if  we  intend  to  solve  this  issue  fundamentally,  the  baseline  should  be

optimized through comprehensive and integrated analysis  in further research.  This

conclusion will also promote our next step research with more specific verification to

explain the integrated transfer process. Although this conclusion connected a series of

transfer  processes  from high concentration  DIN to  primary  producers,  to  primary

consumers, and then to higher consumers like fishes, which were so complicated and

contained too many intermediate processes, it is the most likely reason to explain this

abnormal phenomenon based on a previous theory (Teichberge et al., 2010; Kitzinger

et al., 2020) combined with our results, which suggested highly connected food web

loops.

Many  previous  studies  found  that  their  application  was  further  complicated  by

potential  shifts  in  baseline  δ15N  for  many  specific  ecological  processes,  such  as

migration of marine nektons like bluefin tuna and swordfish (Schartup et al., 2019),

significant taxonomic variation in the composition of primary producers at the base of

the food webs (Ramshaw et al., 2017), and supply way of DIN sources (Kitzinger et

al., 2020). The δ15N characteristic of primary producers may vary by as much as 10‰

over a spatial and temporal scale (McMahon et al., 2015). Therefore, identifying an

43

518
519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

44



appropriate baseline requires not only considering migratory predators but also paying

more  attention  to  the  local  primary  producers  that  can  determine  the  baseline  of

marine trophic structures more directly. 

If our conclusion is right that the local high δ15N of fishes originated from the high

concentration of DIN in Biotope-S, a trophic model relying on the δ15N characteristic

would be further complicated by potential shifts in the baseline due to variations in

the  δ15N  characteristic  in  primary  producers  (Gutiérrez-Rodríguez  et  al.,  2014).

Regional δ15N diversity in primary producers should be considered not only between

broad oceans on a large spatial scale (Schmidt et al., 2003; Hetherington et al., 2017),

but also among adjacent coastal waters with high DIN variation, such as the estuary.

Though the research areas in our study were not significantly isolated, the bias of TLs

in fish communities still emerged between biotopes, which indicates the diversity of

matter and energy flows (Palmer et al., 2019).

Conclusion

Stable  isotopic  niche  results  indicated  that  estuarine  habitants  showed  the

compatibility  of  the  communities  of  most  study  biotopes,  which  may  provide  a

corridor for energy and material transportation between Laizhou Bay and the open

water. YROM and cordgrass were considered the major allochthonous energy sources

in  estuarine  areas  directly  affected  by  Yellow  River-diluted  water,  while

phytoplankton  and  microphytobenthos  demonstrated  a  low  contribution  as  local

autochthonous primary producers. Areas away from the Yellow River estuary showed

different food contribution characteristics compared with estuarine areas. As indicated

by the food source contribution results, autochthonous benthic and pelagic producers

(microphytobenthos and phytoplankton) dominated carbon input into food webs. Our

results showed that the significant variation in the fish δ15N characteristic presented

within  estuarine  adjacent  regions  (less  than  2  degrees  latitude),  led  to  significant

variation  in  TLs  in  the  same fish  species,  using  a  unique  baseline.  Although  the

research areas in our study were not significantly isolated,  the bias of TLs in fish

communities still  emerged between biotopes. This indicates the diversity of matter

and energy flows. Regional δ15N diversity in primary producers should be considered

not  only between broad oceans  on  a  large  spatial  scale,  but  also among adjacent

coastal  waters  with  high  DIN variation.  These  results  offer  a  new perspective  on

trophic  relationships,  and  provide  the  first  detailed  data  for  enhancing  our

understanding of the variations among fish communities in estuarine ecosystems. 
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