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Abstract4

We consider a generalization of the standard Beris-Edwards system modeling incompress-5

ible liquid crystal flows of nematic type. This couples a Navier-Stokes system for the fluid6

velocity with an evolution equation for the Q-tensors variable describing the direction of7

liquid crystal molecules. The convergence at infinite time for global solutions is studied and8

we prove that whole trajectory goes to a single equilibrium by using a Lojasiewicz-Simon’s9

result.10

11
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1 Introduction14

We deal with a system, which contains the Navier-Stokes equations with an additional forcing15

term and an evolution equation of parabolic type for the unknowns velocity, u, pressure, p,16

and tensor parameter order, Q, satisfying: (u, p,Q) : (0, T )× Ω→ R3 × R× R3×3,17 
∂tu + (u · ∇)u− ν∆u +∇p = ∇ · τ(Q) +∇ · σ(H,Q)

∇ · u = 0

∂tQ+ (u · ∇)Q− S(∇u, Q) = −γ H(Q)

(1)

in the time-space cylinder Ω× (0, T ), subject to the initial and boundary conditions,18

u|t=0 = u0, Q|t=0 = Q0 in Ω, (2)

19

u|∂Ω = 0, ∂nQ|∂Ω = 0 in (0, T ). (3)

The set Ω ⊂ R3 is a smooth and bounded domain, the constant ν > 0 is the viscosity20

coefficient and γ > 0 is a material-dependent elastic constant. The tensors τ = τ(Q) ∈ R3×3
21

∗Departamento EDAN and IMUS. Facultad de Matemáticas, Universidad de Sevilla, Spain. E-mails:

bcliment@us.es, guillen@us.es. Partially supported by Ministerio de Ciencia, Innovación y Universidades,

grant PGC2018-098308-B-I00.

1



and σ = σ(H,Q) ∈ R3×3 are defined by1  τij(Q) := −ε (∂jQ : ∂iQ) = −ε ∂jQkl ∂iQkl,

σ(H,Q) := H Q−QH,

where ε > 0 and the tensor H = H(Q) is related to the variational derivative in L2(Ω) of a2

free energy functional, in fact3

E(Q) :=
ε

2
|∇Q|2 + F (Q), E(Q) :=

∫
Ω

E(Q) dx, H :=
δE(Q)

δQ
. (4)

Here, A : B = Aij Bij denote the scalar product of matrices (using the Einstein summa-4

tion convention over repeated indices) and the potential function F (Q) is defined by5

F (Q) :=
a

2
|Q|2 − b

3
(Q2 : Q) +

c

4
|Q|4, (5)

with a, b, c ∈ R and c > 0. We denote by |Q| = (Q : Q)1/2 the matrix euclidean norm.6

Then, from (4) and (5),7

H = H(Q) = −ε∆Q+ f(Q) (6)

where8

f(Q) =
∂F

∂Q
(Q) = aQ− b

3

(
Q2 +QQt +QtQ

)
+ c |Q|2Q.

Note that H uses the one-constant approximation for the Oseen-Frank energy of liquid9

crystals together with a Landau-DeGennes expression for the bulk energy given by f(Q).10

Finally,11

S(∇u, Q) = ∇uQt −Qt∇u

is the so-called stretching term.12

The vector n denotes the normal outwards vector on the boundary ∂Ω,13

The configurations of liquid crystals can be described by a director field as minimizers14

of an energy functional following the Ossen-Frank theory. In an Ericksen-Leslie model the15

dynamic of the problem is considered, the evolution of the director field is coupled with a16

Navier-Stokes-type equation for the underlying flow field. In the Landau-De Gennes theory,17

the director vector is replaced by a symmetric and traceless matrix Q, which measures the18

deviation of the second moment tensor from its isotropic value. Different expressions of the19

Q-tensor order parameter allows to represent a uniaxial, biaxial or isotropic behavior of the20

molecules of the nematic crystal. The corresponding dynamic model is called Beris-Edwards21

model. The system (1)-(3) is a modified version of this type of models studied by Paicu22

& Zarnescu in [13] and Abels et al. in [1] and was introduced in [10] and [11]. This model23

retains the essential difficulties of the models in [13] and [1]. In fact, the results obtained24

here can be extended to those models.25

The large-time behavior of some models for Nematic liquid crystals with unknown vector26

director are studied in [16], [9] (without stretching terms), in [12], [8], [15] (with stretching27

terms) and in [14] (where different results are deduced depending on considering or not the28

stretching terms).29
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On the other hand, the large-time behavior is also analyzed for others related models,1

for example in [7] for a Cahn-Hilliard-Navier-Stokes system in 2D domains, in [6] for a2

chemotaxis model, and in [4] and [3], where a Cahn-Hilliard-Navier-Stokes vesicle model and3

a smectic-A liquid crystals model are studied respectively. In these articles, the variables4

phase field, orientation vector in the liquid crystal case or chemical density in the chemotaxis5

case are unidimensional. The model presented in [3] of liquid crystals follows the Ossen-Frank6

theory.7

In [11], some results of local in time regularity and uniqueness of the model (1)-(3) are8

proved.9

In the present paper we study the large-time behavior for a system when the variable10

Q which models the orientation of the molecules of the crystal, is a tensor following the11

Landau-De Gennes theory.12

Sections 2 and 3 describe the model and the weak solution concept (more details can be13

seen in [10]). In Section 3, two suitable energy inequalities are proved, a time-integral version14

for all time t and a time-differential version for almost every time. These inequalities as far15

as we know, have not been proved before in the liquid crystal case and they will be essential16

in the proof (they are cited in [14], [2] but do not proved). The used argument is valid only17

for weak solutions. In fact, the standard argument of obtaining regularity for big viscosity is18

not clear in this case. In section 4 the convergence at infinite time for global weak solutions19

is studied. Firstly, we prove that the ω-limit set defined only for weak solutions (strong20

solution is necessary in standard methods) consists of critical points of the free-energy. In21

the last section, the convergence of the whole trajectory to a single equilibrium as time goes22

to infinity is proved via a Lojasiewicz-Simon’s lemma.23

A first reduced version of this paper appears in [5]. We prove moreover now the existence24

of a special regularized energy satisfying the energy’s law inequality for all interval of time25

without which it is not possible to prove the convergence of the trajectory to a unique point.26

Notations27

The notation can be abridged. We set Lp = Lp(Ω), p ≥ 1, H1 = H1(Ω), etc. If X = X(Ω)28

is a space of functions defined in the open set Ω, we denote by Lp(0, T ;X) the Banach29

space Lp(0, T ;X(Ω)). Also, boldface letters will be used for vectorial spaces, for instance30

L2 = L2(Ω)N , and the type L2 = L2(Ω)N×N for the tensors.31

We set V the space formed by all fields u ∈ C∞0 (Ω)N satisfying ∇ · u = 0. We denote H32

(respectively V ) the closure of V in L2 (respectively H1). H and V are Hilbert spaces for33

the norms | · |2 and ‖ · ‖1, respectively. Furthermore,34

H = {u ∈ L2; ∇ · u = 0, u · n = 0 on ∂Ω}, V = {u ∈ H1; ∇ · u = 0, u = 0 on ∂Ω}.

From now on, C > 0 will denote different constants, depending only on data of the35

problem.36
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2 Weak solutions1

We start arguing in a formal manner, assuming a regular enough solution (u, p,Q) of (1)-(3).2

For more detailed calculations in this section, see [10].3

Variational formulation4

By testing (1) by any ũ : Ω → R3 with ũ|∂Ω = 0 and ∇ · ũ = 0 in Ω, we arrive at the5

following variational formulation of (1):6

〈∂tu, ũ〉+ ((u · ∇)u, ũ) + ν(∇u,∇ũ)− ((ũ · ∇)Q,H) + (σ(H,Q),∇ũ) = 0, (7)

where 〈·, ·〉 is the duality product between V ′ and V and (·, ·) denotes the inner product in7

L2(Ω).8

On the other hand, testing the Q-equation of (1) by any H̃ and the system −ε∆Q +9

f(Q) = H by any Q̃, we get the following variational formulation:10  (∂tQ, H̃) + ((u · ∇)Q, H̃)− (S(∇u, Q), H̃) + γ (H, H̃) = 0,

ε (∇Q,∇Q̃) + (f(Q), Q̃)− (H, Q̃) = 0,

(8)

for any H̃, Q̃ : Ω→ R3×3.11

From (8), we obtain, in particular that:12

(∂tQ, Q̃) + ((u · ∇)Q, Q̃)− (S(∇u, Q), H̃)− ε γ (∆Q, Q̃) + γ (f(Q), Q̃) = 0. (9)

Dissipative energy law and global in time a priori estimates13

By taking ũ = u in (7) and (H̃, Q̃) = (H, ∂tQ) in (8) the following “energy equality” holds:14

d

dt

(
1

2
‖u‖2L2(Ω) +

∫
Ω

E(Q) dx

)
+ ν‖∇u‖2L2 + γ‖H‖2L2 = 0. (10)

Observe that

∫
Ω

E(Q) dx is not a positive term due to F (Q). However, it is possible to15

find a large enough constant µ > 0 depending on parameters a, b and c given in the definition16

of F (Q) in (5), such that17

Fµ(Q) := F (Q) + µ ≥ c

8
|Q|4. (11)

By replacing E(Q) in (10) by Eµ(Q) :=
1

2
|∇Q|2 + Fµ(Q) ≥ 0, and denoting the kinetic and18

the free energy of Q-tensor as19

Ek(u(t)) :=
1

2
‖u‖2L2 and Eµ(Q) :=

∫
Ω

Eµ(Q) dx

and the total energy as E(u, Q) := Ek(u) + Eµ(Q), then (10) implies20

d

dt
E(u(t), Q(t)) + ν‖∇u‖2L2 + γ‖H‖2L2 = 0. (12)
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This energy equality shows the dissipative character of the model with respect to the total21

free-energy E(u(t), Q(t)). In fact, assuming finite total energy of initial data, i.e.1 ∫
Ω

Eµ(Q0) dx +
1

2
‖u0‖2L2(Ω) < +∞,

then the following regularity hold:2

u ∈ L∞(0,+∞;L2(Ω)) ∩ L2(0,+∞; H1(Ω)),

∇Q ∈ L∞(0,+∞;L2(Ω)), Fµ(Q) ∈ L∞(0,+∞;L1(Ω)),

H ∈ L2(0,+∞;L2(Ω)).

(13)

From (11) and (13), we deduce that Q ∈ L∞(0,+∞;L4(Ω)), Q ∈ L∞(0,+∞;H1(Ω)) and,3

in particular4

Q ∈ L∞(0,+∞;L6(Ω)). (14)

Since f(Q) is a third order polynomial function, |f(Q)| ≤ C(a, b, c)
(
|Q|+ |Q|2 + |Q|3

)
5

which, together with (14), gives f(Q) ∈ L∞(0,+∞;L2(Ω)).6

From H(Q) = −ε∆Q + f(Q) we obtain that ∆Q ∈ L2(0, T ;L2(Ω)) for all T > 0. Finally,7

by using the H2-regularity of the Poisson problem:8  −ε∆Q+Q = f(Q) +Q in Ω,

∂nQ|Γ = 0

we deduce that:9

Q ∈ L2(0, T ;H2(Ω)) ∀T > 0.

Definition 1 (Weak solution) It will be said that (u, Q) is a weak solution in (0,+∞) of10

problem (1)-(3) if11  u ∈ L∞(0,+∞; H) ∩ L2(0,+∞; V),

Q ∈ L∞(0,+∞;H1(Ω)) ∩ L2
loc(0; +∞;H2(Ω)) ∀T > 0,

(15)

satisfies the variational formulation (7) and (8), the initial conditions (2), the boundary12

conditions (3) and the following energy inequality a.e. t1, t0; t1 ≥ t0 ≥ 0:13

E(u(t1), Q(t1))− E(u(t0), Q(t0)) +

∫ t1

t0

(ν‖∇u(s)‖2L2 + γ‖H(s)‖2L2) ds ≤ 0 (16)

for the total energy.14

Note that the regularity imposed in (15) is satisfied up to infinite time excepting the15

H2(Ω)-regularity for Q.16

By applying the regularity (15) to the systems (7) and (9), we have17

∂tu ∈ L4/3
loc ([0,+∞); V′) and ∂tQ ∈ L4/3

loc ([0,+∞);L2(Ω)).

Hence, the following time-continuity can be deduced:18

u ∈ C([0,+∞); V′) ∩ Cw([0,+∞); H), Q ∈ C([0,+∞);L2(Ω)) ∩ Cw([0,+∞);H1).

In particular, the initial conditions (2) have sense.19
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Theorem 2 (Existence of weak solutions) If (u0, Q0) ∈ H×H1(Ω), there exists a weak20

solution (u, Q) of system (1)-(3) in (0,+∞).1

Proof : The first part of this theorem is proved in [10] by means of a Galerkin approximation.2

Therefore, we only going to prove (16). We start from the following energy equality satisfied3

by the Galerkin approximate solutions (see [10]) for all t, t0 with t ≥ t0 ≥ 0:4

E(um(t), Qm(t))− E(um(t0), Qm(t0)) +

∫ t

t0

(ν‖∇um(s)‖2L2 + γ‖Hm(s)‖2L2) ds ≤ 0. (17)

Moreover, um(t) and Qm(t) have sufficient estimates to obtain5

E(um(t), Qm(t))→ E(u(t), Q(t)) in L1(0, T ), and in particular a.e. t ≥ 0. (18)

Since um → u weakly in L2(0, T ;H1) and Hm → H weakly in L2(0, T ;L2),6

lim inf
m→+∞

∫ t1

t0

(ν‖∇um(s)‖2L2 + γ‖Hm(s)‖2L2) ds ≥
∫ t1

t0

(ν‖∇u(s)‖2L2 + γ‖H(s)‖2L2) ds (19)

for all t1, t0 : t1 ≥ t0 ≥ 0.7

By taking lim infm→+∞ in (17), we obtain that for all t1 ≥ t0 ≥ 0,8

lim inf
m→+∞

E(um(t), Qm(t)) + lim inf
m→+∞

∫ t1

t0

(ν‖∇um(s)‖2L2 + γ‖Hm(s)‖2L2) ds

≤ lim sup
m→+∞

E(um(t0), Qm(t0)).

(20)

By using (18) and (19) in (20), we obtain (16).9

3 An improved energy inequality10

In this section, we obtain an improved time-integral energy inequality for all time, in a11

rigorous manner, for the weak solutions got from the Galerkin approximations. From this12

integral version we also obtain a time-differential version for almost every time.13

Lemma 3 Let (u, Q) be a weak solution in (0,+∞) of problem (1)-(3) then, there exists an14

appropiate function Ẽ = Ẽ(t) ∈ R defined for all t ≥ 0, which satisfies the following integral15

inequality for all t1, t0 : t1 ≥ t0 ≥ 0:16

Ẽ(t1)− Ẽ(t0) +

∫ t1

t0

(ν‖∇u(s)‖2L2 + γ‖H(s)‖2L2) ds ≤ 0, (21)

and the following differential version a.e. t ≥ 0:17

d

dt
Ẽ(t) + ν‖∇u(t)‖2L2 + γ‖H(t)‖2L2 ≤ 0. (22)

Proof : Since the inequality (16) is satisfied for all t0, t1 ∈ [0,+∞)\N , where N is a set of18

null Lebesgue measure, then the map t ∈ [0,+∞)\N → E(u(t), Q(t)) ∈ R is a real decreasing19

(and bounded) function. Then, we can define a special function Ẽ(t) for all t ∈ [0,+∞) as:20

Ẽ(0) := E(u0, Q0), Ẽ(t) := lim
s→t−

s∈[0,+∞)\N

E(u(s), Q(s)).
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The function Ẽ , thus defined, is “continuous from the left” and decreasing for all t ≥ 0.21

Indeed, for any t1, t2 ∈ [0,+∞), for instance t1 < t2, we can choose sequences {s1
n}, {s2

n} ⊂1

[0,+∞)\N such that s1
n → t−1 , s2

n → t−2 and, s1
n ≤ s2

n for all n ≥ n0. Since s1
n and s2

n are2

not in N , we know that E(u(s1
n), Q(s1

n)) ≥ E(u(s2
n), Q(s2

n)). By taking limit as s1
n → t−1 and3

s2
n → t−2 , we obtain that Ẽ(t1) ≥ Ẽ(t2).4

Since Ẽ(t) is decreasing for all t ∈ [0,+∞), it is differentiable almost everywhere t ∈5

(0,+∞).6

Since the inequality (16) is satisfied for all t0, t1 ∈ [0,+∞) \N where the measure of N7

is zero, given any t0 < t1, we can take δn > 0 and ηn > 0 such that t0 − δn, t1 − ηn 6∈ N and8

δn, ηn → 0, hence9

Ẽ(t1 − ηn)− Ẽ(t0 − δn) +

∫ t1−ηn

t0−δn
(ν‖∇u(s)‖2L2 + γ‖∇H(s)‖2L2) ds ≤ 0.

By taking δn → 0 and ηn → 0, we obtain (21).10

In particular, by choosing t0 = t and t1 = t+ h in (21), we obtain11

Ẽ(t+ h)− Ẽ(t)

h
+

1

h

∫ t+h

t

(ν‖∇u(s)‖2L2 + γ‖∇H(s)‖2L2) ds ≤ 0, ∀ t, h ≥ 0. (23)

Observe that12

lim
h→0

1

h

∫ t+h

t

(ν‖∇u(s)‖2L2 + γ‖∇H(s)‖2L2) ds = ν‖∇u(t)‖2L2 + γ‖∇H(t)‖2L2 ,

a.e. t ≥ 0 because the map, s ∈ [0,+∞) → ν‖∇u(s)‖2L2 + γ‖∇H(s)‖2L2 ∈ R, belongs to13

L1(0,+∞). Accordingly, by taking h→ 0 in (23), we obtain (22) a.e. t ≥ 0. �14

4 Convergence at infinite time.15

Let (u, Q) be a weak solution of (1)-(3) in (0,+∞) associated to an initial data (u0, Q0) ∈ H×16

H1(Ω) (see Definition 1) satisfying Lemma 3. From the energy inequality (16), there exists17

a real number E∞ ≥ 0 such that the total energy evaluated in the trajectory (u(t), Q(t))18

satisfies19

E(u(t), Q(t))↘ E∞ in R as t ↑ +∞. (24)

Let us define the ω-limit set of this global weak solution (u, Q) as follows:20

ω(u, Q) = {(u∞, Q∞) ∈ H×H1 : ∃{tn} ↑ +∞ s.t.

(u(tn), Q(tn))→ (u∞, Q∞) weakly in L2 ×H1}.

Observe that this ω-limit set is defined with a weak convergence.21

Let S be the set of critical points of the energy E(Q) defined in (4), that is22

S = {Q ∈ H2 : −ε∆Q+ f(Q) = 0 in Ω, ∂nQ|Γ = 0}.

Theorem 4 Assume that (u0, Q0) ∈ H × H1. Fixed (u, Q) a weak solution of (1)-(3) in23

(0,+∞) satisfying Lemma 3, then ω(u, Q) is nonempty and ω(u, Q) ⊂ {0} × S. Moreover,24

for any Q∞ ∈ S such that (0, Q∞) ∈ ω(u, Q), it holds25

Eµ(Q∞) = E∞.
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In particular, u(t)→ 0 weakly in L2 and Eµ(Q(t))→ Eµ(Q∞) in R as t ↑ +∞.26

Proof: Observe that since1

(u, Q) ∈ L∞(0,+∞;H×H1),

for any sequence {tn} ↑ +∞ there exists a subsequence (equally denoted) and suitable limit2

functions (u∞, Q∞) ∈ H×H1, such that3

u(tn)→ u∞ weakly in H, Q(tn)→ Q∞ weakly in H1. (25)

We consider the initial and boundary-value problem associated to (1)-(3) restricted on the4

time interval [tn, tn + 1] with initial values u(tn) and Q(tn). If we define5

un(s) := u(s+ tn), Qn(s) := Q(s+ tn), Hn(s) := H(s+ tn)

for a.e. s ∈ [0, 1], then, (un, Qn) is a weak solution to the problem (1)-(3) in the time interval6

[0, 1]. From the energy inequality (16), we have that7 ∫ 1

0

(ν‖∇un(s)‖2L2 + γ‖Hn(s)‖2L2) ds =

∫ tn+1

tn

(ν|‖∇u(t)‖2L2 + γ‖H(t)‖2L2) dt

≤ Eµ(Q(tn))− Eµ(Q(tn + 1)) −→ 0 as n→∞,

hence,8

∇un → 0 strongly in L2(0, 1;L2)

and9

Hn → 0 strongly in L2(0, 1;L2).

In particular, by using Poincaré inequality, one has10

un → 0 strongly in L2(0, 1;V)

and11

Hn → 0 strongly in L2(0, 1;L2).

Moreover, since un and ∂tun are bounded in L∞(0, 1;H) and L4/3(0, 1;V′) respectively, then12

un → 0 in C([0, 1];V′). In particular, u(tn) = un(0) → 0 in V′, hence u∞ = 0 (owing to13

(25)). Consequently, the whole trajectory u(t)→ 0 as t→ +∞.14

Furthermore, Qn is bounded in L2(0, 1;H2)
⋂
L∞(0, 1;H1) and ∂tQn is bounded in15

L4/3(0, 1;L2). Therefore, there exists a subsequence of Qn (equally denoted) and a limit func-16

tion Q such that Qn → Q strongly in C0([0, 1];L2)∩L2(0, 1;H1) and weakly in L2(0, 1;H2).17

In particular, Q(tn) = Qn(0) → Q(0) in C0(L2), hence Q(0) = Q∞ (owing to (25)) in18

H1. On the other hand, ∂tQn converges weakly to ∂tQ in L4/3(0, 1;L2), hence taking limits19

in the variational formulation:20

(∂tQn, Q̃) + ((un · ∇)Qn, Q̃)− (S(∇un, Qn), Q̃)

−ε γ (∆Qn, Q̃) + γ (f(Qn), Q̃) = 0.
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for all Q̃ ∈ L2, we have that ∂tQn → 0 in L4/3(0, 1;L2) weakly. Therefore, ∂tQ = 0 and Q(t)21

is a constant function of L1 for all t ∈ [0, 1], hence since Q(0) = Q∞, we have1

Q(t) = Q∞ ∈ H1 for all t ∈ [0, 1]. (26)

Finally, since f(Qn) converges weakly in L∞(0, 1;L2), by taking limit as n → +∞ in the2

variational formulation (Hn, Q̃) = ε (∇Qn,∇Q̃) + (f(Qn), Q̃) for all Q̃ ∈ H1, we deduce3

ε (∇Q,∇Q̃) + (f(Q), Q̃) = 0, ∀ Q̃ ∈ H1, a.e. t ∈ (0, 1).

Then, from (26), Q∞ ∈ H1 and ε (∇Q∞,∇Q̃) + (f(Q∞), Q̃) = 0, ∀ Q̃ ∈ H1, a.e. t ∈ (0, 1).4

Finally, by applying H2-regularity of the Poisson problem:5  −ε∆Q+Q = f(Q) +Q in Ω,

∂nQ|Γ = 0

we deduce that Q∞ ∈ H2, hence Q∞ ∈ S and the proof is finished. �6

7

In the next theorem we apply the following Lojasiewicz-Simon’s result that can be found8

in [14].9

Lemma 5 (Lojasiewicz-Simon inequality) Let Q∗ ∈ S and K > 0 fixed. Then, there10

exists positive constants β1, β2 and C and θ ∈ (0, 1/2], such that for all Q ∈ H2 with11

‖Q‖H1 ≤ K, ‖Q−Q∗‖L2 ≤ β1 and |E(Q)− E(Q∗)| ≤ β2, it holds12

|E(Q)− E(Q∗)|1−θ ≤ C ‖H‖H−1

where H = H(Q) is defined in (6).13

Theorem 6 Assume that Ẽ(t) belongs to the equivalence class of the energy function14

E(u(t), Q(t)), that is, Ẽ(t) = E(u(t), Q(t)) almost everywhere t ≥ 0. Then, under the hypothe-15

ses of Theorem 4, there exists a unique limit Q∞ ∈ S such that Q(t)→ Q∞ in H1-weakly as16

t ↑ +∞, i.e. ω(u, Q) = {(0, Q∞)}.17

Proof: Let Q∞ ∈ S such that (0, Q∞) ∈ ω(u, Q), i.e. there exists tn ↑ +∞ such that18

u(tn)→ 0 weakly in L2 and Q(tn)→ Q∞ weakly in H1 (and strongly in L2).19

It can be assumed that Ẽ(t) > Eµ(Q∞)(= E∞) for all t > 0, because otherwise, if it exists20

some t̃ > 0 such that Ẽ(t̃) = E∞, then the energy inequality (21) implies21

Ẽ(t) = E∞, ‖∇u(t)‖2L2 = 0 and ‖H(t)‖2L2 = 0, ∀ t ≥ t̃.

Therefore, u(t) = 0 and H(t) = 0 for all t ≥ t̃, and by using the Q-equation of (1), ∂tQ(t) = 0,22

hence Q(t) = Q∞ for all t ≥ t̃. Then, the convergence of the whole Q-trajectory towards23

Q∞ is trivial and Ẽ(t) > E∞ is assumed for all t ≥ 0.24

The proof will be divided into three steps.25

Step 1: There exists a n0 such that ‖Q(t)−Q∞‖L2 ≤ β1 and |Eµ(Q(t))− Eµ(Q∗)| ≤ β2 for26

all t ≥ tn0
(β1, β2 given in Lemma 5).27
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Since Q(tn)→ Q∞ strongly in L2 and E(u(tn), Q(tn))↘ E∞ = Eµ(Q∞) in R (see (24)),28

then for any δ ∈ (0, β1), there exists an integer N(δ) such that, for all n ≥ N(δ),1

‖Q(tn)−Q∞‖L2 ≤ δ and
1

θ
(Eµ(Q(tn))− E∞)θ ≤ δ. (27)

For each n ≥ N(δ), we define2

tn := sup{t : t > tn, ‖Q(s)−Q∞‖L2 < β1 ∀s ∈ [tn, t)}.

It suffices to prove that tn0
= +∞ for some n0. Assume by contradiction that tn < tn < +∞3

for all n, hence ‖Q(tn) − Q∞‖L2 = β1 and ‖Q(t) − Q∞‖L2 < β1 for all t ∈ [tn, tn). By4

applying Step 1 for all t ∈ [tn, tn], from (29) and (27) we obtain,5 ∫ tn

tn

‖∂tQ‖H−1 ≤ Cδ, ∀n ≥ N(δ).

Therefore,6

‖Q(tn)−Q∞‖H−1 ≤ ‖Q(tn)−Q∞‖H−1 +

∫ tn

tn

‖∂tQ‖H−1 ≤ (1 + C)δ,

which implies that limn→+∞ ‖Q(tn)−Q∞‖H−1 = 0.7

On the other hand, Q(tn) is bounded in H1. Indeed, from (24), Ẽ(u(tn), Q(tn)) is bounded8

in R, therefore in particular9 ∫
Ω

Eµ(Q(tn)) dx =

∫ (ε
2
|∇Q(tn)|2 + Fµ(Q(tn))

)
dx

is bounded. But, since Fµ(Q) is bounded in L∞(L1), then ∇Q(tn) is bounded in L2(Ω) and10

Q(tn) is bounded in H1.11

Therefore, Q(tn) is relatively compact in L2. There exists a subsequence of Q(tn), also12

denoted Q(tn), that converges to Q∞ in L2-strong. Hence ‖Q(tn) − Q∞‖L2 < β1 for a13

sufficiently large n, which contradicts the definition of tn.14

Step 2: Under the conditions of step 1, the following inequalities hold:15

d

dt

(
(Ẽ(t)− E∞)θ

)
+ C θ (‖∇u(t)‖L2 + ‖H(t)‖L2) ≤ 0, (28)

a.e. t ∈ (t1,∞).16 ∫ t2

t1

‖∂tQ‖H−1 ≤ C

θ
(Ẽ(t1)− E∞)θ, (29)

for all t2 ∈ (t1,∞), where θ ∈ (0, 1/2] is the constant appearing in Lemma 5.17

In this step, the hypothesis E(u(t), Q(t)) = Ẽ(t) for almost every t is a key point. In18

particular, this hypothesis implies that the integral and differential versions of the energy19

law (21) and (22) are satisfied by E(u(t), Q(t)) a.e. in time. In fact, energy law (22), changing20

Ẽ(t) by E(u(t), Q(t)), is the crucial hypothesis imposed in Remark 2.4 of [14].21

From the inequalities:22

d

dt
(Ẽ(t)− E∞) + C

(
‖∇u(t)‖2L2 + ‖H(t)‖2L2

)
≤ 0, a.e. t ∈ (t1,∞),
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23

‖∇u(t)‖2L2 + ‖H(t)‖2L2 ≥
1

2
(‖∇u(t)‖L2 + ‖H(t)‖L2)

2

and1

1

2
(‖∇u(t)‖L2 + ‖H(t)‖L2) ≥ C(‖u(t)‖L2 + ‖H(t)‖H−1),

we obtain2

d

dt
(Ẽ(t)− E∞) + C(‖u(t)‖L2 + ‖H(t)‖H−1) (‖∇u(t)‖L2 + ‖H(t)‖L2) ≤ 0, a.e. t ≥ 0

and, using the time derivative of the (Ẽ(t)− E∞)θ, we get3

d

dt

(
(Ẽ(t)− E∞)θ

)
+θ(Ẽ(t)− E∞)θ−1C(‖u(t)‖L2 + ‖H(t)‖H−1) (‖∇u(t)‖L2 + ‖H(t)‖L2) ≤ 0.

(30)

almost everywhere t ≥ 0.4

On the other hand, since |Ek(u(t))| = 1

2
‖u(t)‖2L2 and ‖u(t)‖L2 ≤ K, we have that5

|Ek(u(t))|1−θ =
1

21−θ ‖u(t)‖2(1−θ)
L2 =

1

21−θ ‖u(t)‖1−2θ
L2 ‖u(t)‖L2 ≤ C‖u(t)‖L2 a.e. t ≥ 0.

This estimate together the Lojasiewicz-Simon inequality |Eµ(Q(t)) − E∞|1−θ ≤ C‖H‖H−1 ,6

give7

(E(u(t), Q(t))− E∞)1−θ ≤ |Ek(u(t))|1−θ + |Eµ(Q(t))− E∞|1−θ

≤ C(‖u(t)‖L2 + ‖H(t)‖H−1) a.e. t ≥ t1.

Therefore,8

(E(u(t), Q(t))− E∞)θ−1(‖u(t)‖L2 + ‖H(t)‖H−1) ≥ C (31)

almost every where t ≥ t1. By applying (31) in (30),9

d

dt

(
(E(u(t), Q(t))− E∞)θ

)
+ C θ (‖∇u(t)‖L2 + ‖H(t)‖L2) ≤ 0, a.e. t ≥ t1

and (28) is proved.10

Secondly, for any t2 ∈ (t1,+∞), since (E(u(t2), Q(t2))− E∞)θ > 0, integrating (28) into11

[t1, t2] we have12

θ C

∫ t2

t1

(‖∇u(t)‖L2 + ‖H(t)‖L2)dt ≤ (E(u(t1), Q(t1))− E∞)θ. (32)

From (9), by using the weak regularity Q ∈ L∞((0,+∞)× Ω), we achieve13

‖∂tQ(t)‖H−1 ≤ C(‖∇u(t)‖L2 + ‖H(t)‖L2) a.e. t ≥ 0.

By integrating this inequality into [t1, t2] and using (32), we attain (29).14

Step 3:There exists a unique Q∞ such that Q(t)→ Q∞ weakly in H1 as t ↑ +∞.15

By using (29) for any t1, t0 : t1 > t0 ≥ tn0
,16

‖Q(t1)−Q(t0)‖H−1 ≤
∫ t1

t0

‖∂tQ‖H−1 → 0, as t0, t1 → +∞.

11



Therefore, (Q(t))t≥tn0
is a Cauchy sequence in H−1 as t ↑ +∞, hence, there exists a unique17

Q∞ ∈ H−1 such that Q(t) → Q∞ in H−1 as t ↑ +∞. Finally, the convergence in H1-weak1

by sequences of Q(t) proved in Theorem 4, yields to Q(t)→ Q∞ in H1-weak, and the proof2

is finished.3
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[5] B. Climent-Ezquerra and F. Guillén-González. Convergence to equilibrium of global16

weak solutions for a Q-tensor problem related to liquid crystals Proceedings of XXV17

CEDYA/XV CMA (2017) 196-200.18
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