References
Albert, T. J., Molla, M. N., Muzny, D. M., Nazareth, L., Wheeler, D.,
Song, X., … Gibbs, R. A. (2007). Direct selection of human genomic
loci by microarray hybridization. Nature Methods , 4 (11),
903–905. https://doi:10.1038/nmeth1111
Allen, J. M., Boyd, B., Nguyen, N. P., Vachaspati, P., Warnow, T.,
Huang, D. I., … Johnson, K. P. (2017). Phylogenomics from whole genome
sequences using aTRAM. Systematic Biology , 66 (5),
786–798. https://doi.org/10.1093/sysbio/syw105
Allio, R., Scornavacca, C., Nabholz, B., Clamens, A. L., Sperling, F.
A., Condamine, F. L. (2019). Whole genome shotgun phylogenomics resolves
the pattern and timing of swallowtail butterfly evolution.Systematic Biology , 69 (1), 38–60.
https://doi:10.1093/sysbio/syz030
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M.,
Kulikov, A. S., … Pevzner, P. A. (2012). SPAdes: A new genome assembly
algorithm and its applications to single-cell sequencing. Journal
of Computational Biology , 19 (5), 455–477.
https://doi:10.1089/cmb.2012.0021
Bi, K., Vanderpool, D., Singhal, S., Linderoth, T., Moritz, C., & Good,
J. M. (2012). Transcriptome-based exon capture enables highly
cost-effective comparative genomic data collection at moderate
evolutionary scales. BMC Genomics , 13 (1), 403.
https://doi:10.1186/1471-2164-13-403
Blaimer, B. B., Lloyd, M. W., Guillory, W. X., & Brady, S. G. (2016).
Sequence capture and phylogenetic utility of genomic ultraconserved
elements obtained from pinned insect specimens. PLoS One ,11 (8), e0161531. https://doi:10.1371/journal.pone.0161531
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible
trimmer for Illumina sequence data. Bioinformatics ,30 (15), 2114–2120. https://doi:10.1093/bioinformatics/btu170
Boratyn, G. M., Camacho, C., Cooper, P. S., Coulouris, G., Fong, A., Ma,
N., … Zaretskaya I. (2013).
BLAST: A more efficient report with
usability improvements. Nucleic Acids Research , 41 ,
W29–W31.
Bragg, J. G., Potter, S., Bi, K., & Moritz, C. (2016). Exon capture
phylogenomics: efficacy across scales of divergence. Molecular
Ecology Resources , 16 (5), 1059–1068.
https://doi:10.1111/1755-0998.12449
Burbrink, F. T., Grazziotin, F. G., Pyron, R. A., Cundall, D.,
Donnellan, S., Irish, F., … Zaher, H. (2020). Interrogating
Genomic-Scale Data for Squamata (Lizards, Snakes, and Amphisbaenians)
Shows no Support for Key Traditional Morphological Relationships.Systematic Biology , 69 (3), 502–520.
https://doi.org/10.1093/sysbio/syz062
Bushnell, B. (2014). BBtools. Retrieved from
https://sourceforge.net/projects/bbmap/
Castresana, J. (2000). Selection of conserved blocks from multiple
alignments for their use in phylogenetic analysis. MolecularBiology and Evolution , 17 (4), 540–552.
https://doi:10.1093/oxfordjournals.molbev.a026334
Chen, M. Y., Liang, D., & Zhang, P. (2017). Phylogenomic resolution of
the phylogeny of Laurasiatherian mammals: exploring phylogenetic signals
within coding and noncoding sequences. Genome Biology and
Evolution , 9 (8), 1998–2012. https://doi:10.1093/gbe/evx147
Faircloth, B. C., McCormack, J. E., Crawford, N. G., Harvey, M. G.,
Brumfield, R. T., & Glenn, T. C. (2012).
Ultraconserved
elements anchor thousands of genetic markers spanning multiple
evolutionary timescales. Systematic Biology , 61 (5),
717–726. https://doi:10.1093/sysbio/sys004
Fu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: Accelerated
for clustering the next-generation sequencing data.Bioinformatics , 28 (23), 3150–3152.
https://doi:10.1093/bioinformatics/bts565
Garrison, N. L., Rodriguez, J., Agnarsson, I., Coddington, J. A.,
Griswold, C. E., Hamilton, C. A., … Bond, J. E. (2016). Spider
phylogenomics: untangling the spider tree of life. PeerJ ,4 , e1719. https://doi:10.7717/peerj.1719
Glenn, T. C., & Faircloth, B. C. (2016). Capturing Darwin’s dream.Molecular Ecology Resources , 16 (5), 1051–1058.
https://doi:10.1111/1755-0998.12574
Gori, K., Suchan, T., Alvarez, N., Goldman, N., & Dessimoz, C. (2016).
Clustering genes of common evolutionary history. MolecularBiology and Evolution , 33 (6), 1590–1605.
https://doi:10.1093/molbev/msw038
Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D.
A., Amit, I., Adiconis X., Fan, L., … Regev A. (2011). Full-length
transcriptome assembly from RNA-Seq data without a reference genome.Nature Biotechnology , 29 (7), 644–652.
https://doi:10.1038/nbt.1883
Guillaume, M., & Carl, K. (2011). A fast, lock-free approach for
efficient parallel counting of occurrences of k-mers.Bioinformatics , 27 (6), 764–770.
https://doi:10.1093/bioinformatics/btr011
Guschanski, K., Krause, J., Sawyer, S., Valente, L. M., Bailey, S.,
Finstermeier, K., … Savolainen, V. (2013). Next-generation museomics
disentang one of the largest primate radiations. Systematic
Biology , 62 (4), 539–554. https://doi:10.1093/sysbio/syt018
Hahn, M. W., & Nakhleh, L. (2016). Irrational exuberance for resolved
species trees. Evolution , 70 (1), 7–17.
https://doi:10.1111/evo.12832
Hillis, D. M., Heath, T. A., & St John, K. (2005). Analysis and
visualization of tree space. Systems Biology , 54 (3),
471–482. https://doi:10.1080/10635150590946961
Hughes, G. M., & Teeling, E. C. (2018). AGILE: an assembled genome
mining pipeline. Bioinformatics , 35 (7), 1252–1254.
https://doi:10.1093/bioinformatics/bty781
Jarvis, E. D., Mirarab, S., Aberer, A. J., Li, B., Houde, P., Li, C.,
… Zhang G. (2014). Whole-genome analyses resolve early branches in the
tree of life of modern birds. Science , 346 (6215),
1320–1331. https://doi:10.1126/science.1253451
Jones, M. R., & Good, J. M. (2016). Targeted capture in evolutionary
and ecological genomics. Molecular Ecology , 25 (1),
185–202. https://doi:10.1111/mec.13304
Lemmon, A. R., Emme, S. A., & Lemmon, E. M. (2012). Anchored hybrid
enrichment for massively high-throughput phylogenomics. Systematic
Biology , 61 (5), 727–744. https://doi:10.1093/sysbio/sys049
Lemmon, E. M., & Lemmon, A. R. (2013).
High-throughput genomic data in
systematics and phylogenetics. Annual Review of Ecology Evolution
and Systematics , 44 , 99–121.
https://doi:10.1146/annurev-ecolsys-110512-135822
Li, C., Hofreiter, M., Straube, N., Corrigan, S., & Naylor, G. J.
(2013). Capturing protein-coding genes across highly divergent species.BioTechniques , 54 (6), 321–326.
https://doi:10.2144/000114039
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N.,
… Durbin, R. (2009). The sequence alignment/map format and SAMtools.Bioinformatics , 25 (16), 2078–2079.
https://doi:10.1093/bioinformatics/btp352
Li, J., Liang, D., Wang, Y., Guo, P., Huang, S., & Zhang, P. (2020). A
large-scale systematic framework of Chinese snakes based on a unified
multilocus marker system. Molecular Phylogenetics and Evolution ,148 , 106807. https://doi:10.1016/j.ympev.2020.106807
Li, J., Zeng, Z., Wang, Y., Liang, D., & Zhang, P. (2019). Sequence
capture using AFLP-generated baits: A cost-effective method for
high-throughput phylogenetic and phylogeographic analysis. Ecology
and Evolution , 9 (10), 5925–5937.
https://doi:10.1002/ece3.5176
Liu, K., Warnow, T. J., Holder, M. T., Nelesen, S. M., Yu, J.,
Stamatakis, A. P., & Linder, C. R. (2012). SATe-II: very fast and
accurate simultaneous estimation of multiple sequence alignments and
phylogenetic trees. Systematic Biology , 61 (1), 90–106.
McCartney-Melstad, E., Mount, G. G., & Shaffer, H. B. (2016). Exon
capture optimization in amphibians with large genomes. Molecular
Ecology Resource , 16 (5), 1084–1094.
https://doi:10.1111/1755-0998.12538
McCormack, J. E., Hird, S. M., Zellmer, A. J., Carstens, B. C., &
Brumfield, R. T. (2013). Applications of next-generation sequencing to
phylogeography and phylogenetics. Molecular Phylogenetics and
Evolution , 66 (2), 526–538.
https://doi:10.1016/j.ympev.2011.12.007
Misof, B., Liu, S., Meusemann, K., Peters, R. S., Donath, A., Mayer, C.,
… Zhou X. (2014). Phylogenomics resolves the timing and pattern of
insect evolution. Science , 346 (6210), 763–767.
https://doi:10.1126/science.1257570
Morozova, O., Hirst, M., & Marra, M. A. (2009). Applications of new
sequencing technologies for transcriptome analysis. Annual Review
of Genomics and Human Geneticsis , 10 , 135–151.
https://doi:10.1146/annurev-genom-082908-145957
Ng, S. B., Turner, E. H., Robertson, P. D., Flygare, S. D., Bigham, A.
W., Lee, C., … Shendure, J. (2009). Targeted capture and massively
parallel sequencing of 12 human exomes. Nature ,461 (7261), 272–276. https://doi:10.1038/nature08250
Oakley, T. H., Wolfe, J. M., Lindgren, A. R., & Zaharoff, A. K. (2012).
Phylotranscriptomics to bring the understudied into the fold:
monophyletic ostracoda, fossil placement and pancrustacean phylogeny.Molecular Biology and Evolution , 30 , 215–233.
https://doi:10.1093/molbev/mss216
Olofsson, J. K., Cantera, I., Paer, C. V. D., Hong-Wa, C., Zedane, L.,
Dunning, L. T., … Besnard, G. (2019). Phylogenomics using low-depth
whole genome sequencing: A case study with the olive tribe.Molecular Ecology Resource , 19 (4), 877–892.
Peñalba, J. V., Smith, L. L., Tonione, M. A., Sass, C., Hykin, S. M.,
Skipwith, P. L., … Moritz, C. (2014). Sequence capture using
PCR-generated probes: A cost-effective method of targeted
high-throughput sequencing for nonmodel organisms. Molecular
Ecology Resources , 14 (5), 1000–1010.
https://doi:10.1111/1755-0998.12249
Portik, D. M., Smith, L. L., & Bi, K. (2016). An evaluation of
transcriptome-based exon capture for frog phylogenomics across multiple
scales of divergence (Class: Amphibia, Order: Anura). Molecular
Ecology Resources , 16 (5), 1069–1083.
https://doi:10.1111/1755-0998.12541
Puritz, J. B., & Lotterhos, K. E. Expressed exome capture sequencing: A
method for cost-effective exome sequencing for all organisms. 2018.Molecular Ecology Resources , 18 (6), 1209–1222.
https://doi:10.1111/1755-0998.12905
Pyron, R. A., Hendry, C. R., Chou, V. M., Lemmon, E. M., Lemmo, A. R.,
& Burbrink, F. T. (2014). Effectiveness of phylogenomic data and
coalescent species-tree methods for resolving difficult nodes in the
phylogeny of advanced snakes (Serpentes: Caenophidia). Molecular
Phylogenetics and Evolution , 81 , 221–231.
https://doi:10.1016/j.ympev.2014.08.023
Quek, R. Z. B., Jain, S. S., Neo, M. L., Rouse, G. W., & Huang, D. W.
(2020). Transcriptome-based target-enrichment baits for stony corals
(Cnidaria: Anthozoa: Scleractinia). Molecular Ecology Resources ,20 (3), 807–818. https://doi:10.1111/1755-0998.13150
Reddy, S., Kimball, R. T., Pandey, A., Hosner, P. A., Braun, M. J.,
Hackett, S. J., … Braun, E. L. (2017). Why do phylogenomic data sets
yield conflicting trees? Data type influences the Avian tree of life
more than taxon sampling. Systems Biology , 66 (5),
857–879. https://doi:10.1093/sysbio/syx041
Robinson, D. F., & Foulds, L. R. (1981). Comparison of phylogenetic
trees. Mathematical Biosciences , 53 (1–2), 131–147.
https://doi.org/10.1016/0025-5564(81)90043-2
Singhal, S., Grundler, M., Colli, G., & Rabosky, D. L. (2017). Squamate
Conserved Loci (SqCL): A unified set of conserved loci for phylogenomics
and population genetics of squamate reptiles. Molecular Ecology
Resources , 17 (6), e12–e14.
https://doi:10.1111/1755-0998.12681
Slater, G. S. C., & Birney, E., (2005). Automated generation of
heuristics for biological sequence comparison. BMC
Bioinformatics , 6 , 31. https://doi:10.1186/1471-2105-6-31
Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis
and post-analysis of large phylogenies. Bioinformatics ,30 (9), 1312–1313. https://doi:10.1093/bioinformatics/btu033
Waterhouse, R. M., Seppey, M., Simão, F. A., Manni, M., Ioannidis, P.,
Klioutchnikov, G., … Zdobnov, E. M. (2018). BUSCO applications from
quality assessments to gene prediction and phylogenomics.Molecular Biology and Evolution , 35 (3), 543–548.
https://doi:10.1093/molbev/msx319
Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-seq: a revolutionary
tool for transcriptomics. Nature Reviews Genetics ,10 (1), 57–63. https://doi:10.1038/nrg2484
Wiens, J. J., Hutter, C. R., Mulcahy, D. G., Noonan, B. P., Townsend, T.
M., Jr, J. W. S., & Reeder, T. W. (2012). Resolving the phylogeny of
lizards and snakes (Squamata) with extensive sampling of genes and
species. Biology Letters , 8 (6), 1043–1046.
https://doi:10.1098/rsbl.2012.0703
Zhang, F., Ding, Y., Zhu, C., Zhou, X., Orr, M. C., Scheu, S., & Luan,
Y. X. (2019). Phylogenomics from low-coverage whole-genome sequencing.Methods in Ecology and Evolution , 10 (4), 507–517.
https://doi:10.1111/2041-210X.13145
Zhang, Y., Deng, S., Liang, D., & Zhang P. (2019). Sequence capture
across large phylogenetic scales by using pooled PCR–generated baits: A
case study of Lepidoptera. Molecular Ecology Resource ,19 (4), 1037–1051. https://doi:10.1111/1755-0998.13026
Zheng, Y., & Wiens, J. J. (2015). Combining phylogenomic and
supermatrix approaches, and a time-calibrated phylogeny for squamate
reptiles (lizards and snakes) based on 52 genes and 4162 species.Molecular Phylogenetics and Evolution , 94 , 537–547.
https://doi.org/10.1016/j.ympev.2015.10.009.