References
Albert, T. J., Molla, M. N., Muzny, D. M., Nazareth, L., Wheeler, D., Song, X., … Gibbs, R. A. (2007). Direct selection of human genomic loci by microarray hybridization. Nature Methods , 4 (11), 903–905. https://doi:10.1038/nmeth1111
Allen, J. M., Boyd, B., Nguyen, N. P., Vachaspati, P., Warnow, T., Huang, D. I., … Johnson, K. P. (2017). Phylogenomics from whole genome sequences using aTRAM. Systematic Biology , 66 (5), 786–798. https://doi.org/10.1093/sysbio/syw105
Allio, R., Scornavacca, C., Nabholz, B., Clamens, A. L., Sperling, F. A., Condamine, F. L. (2019). Whole genome shotgun phylogenomics resolves the pattern and timing of swallowtail butterfly evolution.Systematic Biology , 69 (1), 38–60. https://doi:10.1093/sysbio/syz030
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., … Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology , 19 (5), 455–477. https://doi:10.1089/cmb.2012.0021
Bi, K., Vanderpool, D., Singhal, S., Linderoth, T., Moritz, C., & Good, J. M. (2012). Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales. BMC Genomics , 13 (1), 403. https://doi:10.1186/1471-2164-13-403
Blaimer, B. B., Lloyd, M. W., Guillory, W. X., & Brady, S. G. (2016). Sequence capture and phylogenetic utility of genomic ultraconserved elements obtained from pinned insect specimens. PLoS One ,11 (8), e0161531. https://doi:10.1371/journal.pone.0161531
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics ,30 (15), 2114–2120. https://doi:10.1093/bioinformatics/btu170
Boratyn, G. M., Camacho, C., Cooper, P. S., Coulouris, G., Fong, A., Ma, N., … Zaretskaya I. (2013). BLAST: A more efficient report with usability improvements. Nucleic Acids Research , 41 , W29–W31.
Bragg, J. G., Potter, S., Bi, K., & Moritz, C. (2016). Exon capture phylogenomics: efficacy across scales of divergence. Molecular Ecology Resources , 16 (5), 1059–1068. https://doi:10.1111/1755-0998.12449
Burbrink, F. T., Grazziotin, F. G., Pyron, R. A., Cundall, D., Donnellan, S., Irish, F., … Zaher, H. (2020). Interrogating Genomic-Scale Data for Squamata (Lizards, Snakes, and Amphisbaenians) Shows no Support for Key Traditional Morphological Relationships.Systematic Biology , 69 (3), 502–520. https://doi.org/10.1093/sysbio/syz062
Bushnell, B. (2014). BBtools. Retrieved from https://sourceforge.net/projects/bbmap/
Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. MolecularBiology and Evolution , 17 (4), 540–552. https://doi:10.1093/oxfordjournals.molbev.a026334
Chen, M. Y., Liang, D., & Zhang, P. (2017). Phylogenomic resolution of the phylogeny of Laurasiatherian mammals: exploring phylogenetic signals within coding and noncoding sequences. Genome Biology and Evolution , 9 (8), 1998–2012. https://doi:10.1093/gbe/evx147
Faircloth, B. C., McCormack, J. E., Crawford, N. G., Harvey, M. G., Brumfield, R. T., & Glenn, T. C. (2012). Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Systematic Biology , 61 (5), 717–726. https://doi:10.1093/sysbio/sys004
Fu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: Accelerated for clustering the next-generation sequencing data.Bioinformatics , 28 (23), 3150–3152. https://doi:10.1093/bioinformatics/bts565
Garrison, N. L., Rodriguez, J., Agnarsson, I., Coddington, J. A., Griswold, C. E., Hamilton, C. A., … Bond, J. E. (2016). Spider phylogenomics: untangling the spider tree of life. PeerJ ,4 , e1719. https://doi:10.7717/peerj.1719
Glenn, T. C., & Faircloth, B. C. (2016). Capturing Darwin’s dream.Molecular Ecology Resources , 16 (5), 1051–1058. https://doi:10.1111/1755-0998.12574
Gori, K., Suchan, T., Alvarez, N., Goldman, N., & Dessimoz, C. (2016). Clustering genes of common evolutionary history. MolecularBiology and Evolution , 33 (6), 1590–1605. https://doi:10.1093/molbev/msw038
Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis X., Fan, L., … Regev A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome.Nature Biotechnology , 29 (7), 644–652. https://doi:10.1038/nbt.1883
Guillaume, M., & Carl, K. (2011). A fast, lock-free approach for efficient parallel counting of occurrences of k-mers.Bioinformatics , 27 (6), 764–770. https://doi:10.1093/bioinformatics/btr011
Guschanski, K., Krause, J., Sawyer, S., Valente, L. M., Bailey, S., Finstermeier, K., … Savolainen, V. (2013). Next-generation museomics disentang one of the largest primate radiations. Systematic Biology , 62 (4), 539–554. https://doi:10.1093/sysbio/syt018
Hahn, M. W., & Nakhleh, L. (2016). Irrational exuberance for resolved species trees. Evolution , 70 (1), 7–17. https://doi:10.1111/evo.12832
Hillis, D. M., Heath, T. A., & St John, K. (2005). Analysis and visualization of tree space. Systems Biology , 54 (3), 471–482. https://doi:10.1080/10635150590946961
Hughes, G. M., & Teeling, E. C. (2018). AGILE: an assembled genome mining pipeline. Bioinformatics , 35 (7), 1252–1254. https://doi:10.1093/bioinformatics/bty781
Jarvis, E. D., Mirarab, S., Aberer, A. J., Li, B., Houde, P., Li, C., … Zhang G. (2014). Whole-genome analyses resolve early branches in the tree of life of modern birds. Science , 346 (6215), 1320–1331. https://doi:10.1126/science.1253451
Jones, M. R., & Good, J. M. (2016). Targeted capture in evolutionary and ecological genomics. Molecular Ecology , 25 (1), 185–202. https://doi:10.1111/mec.13304
Lemmon, A. R., Emme, S. A., & Lemmon, E. M. (2012). Anchored hybrid enrichment for massively high-throughput phylogenomics. Systematic Biology , 61 (5), 727–744. https://doi:10.1093/sysbio/sys049
Lemmon, E. M., & Lemmon, A. R. (2013). High-throughput genomic data in systematics and phylogenetics. Annual Review of Ecology Evolution and Systematics , 44 , 99–121. https://doi:10.1146/annurev-ecolsys-110512-135822
Li, C., Hofreiter, M., Straube, N., Corrigan, S., & Naylor, G. J. (2013). Capturing protein-coding genes across highly divergent species.BioTechniques , 54 (6), 321–326. https://doi:10.2144/000114039
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., … Durbin, R. (2009). The sequence alignment/map format and SAMtools.Bioinformatics , 25 (16), 2078–2079. https://doi:10.1093/bioinformatics/btp352
Li, J., Liang, D., Wang, Y., Guo, P., Huang, S., & Zhang, P. (2020). A large-scale systematic framework of Chinese snakes based on a unified multilocus marker system. Molecular Phylogenetics and Evolution ,148 , 106807. https://doi:10.1016/j.ympev.2020.106807
Li, J., Zeng, Z., Wang, Y., Liang, D., & Zhang, P. (2019). Sequence capture using AFLP-generated baits: A cost-effective method for high-throughput phylogenetic and phylogeographic analysis. Ecology and Evolution , 9 (10), 5925–5937. https://doi:10.1002/ece3.5176
Liu, K., Warnow, T. J., Holder, M. T., Nelesen, S. M., Yu, J., Stamatakis, A. P., & Linder, C. R. (2012). SATe-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees. Systematic Biology , 61 (1), 90–106.
McCartney-Melstad, E., Mount, G. G., & Shaffer, H. B. (2016). Exon capture optimization in amphibians with large genomes. Molecular Ecology Resource , 16 (5), 1084–1094. https://doi:10.1111/1755-0998.12538
McCormack, J. E., Hird, S. M., Zellmer, A. J., Carstens, B. C., & Brumfield, R. T. (2013). Applications of next-generation sequencing to phylogeography and phylogenetics. Molecular Phylogenetics and Evolution , 66 (2), 526–538. https://doi:10.1016/j.ympev.2011.12.007
Misof, B., Liu, S., Meusemann, K., Peters, R. S., Donath, A., Mayer, C., … Zhou X. (2014). Phylogenomics resolves the timing and pattern of insect evolution. Science , 346 (6210), 763–767. https://doi:10.1126/science.1257570
Morozova, O., Hirst, M., & Marra, M. A. (2009). Applications of new sequencing technologies for transcriptome analysis. Annual Review of Genomics and Human Geneticsis , 10 , 135–151. https://doi:10.1146/annurev-genom-082908-145957
Ng, S. B., Turner, E. H., Robertson, P. D., Flygare, S. D., Bigham, A. W., Lee, C., … Shendure, J. (2009). Targeted capture and massively parallel sequencing of 12 human exomes. Nature ,461 (7261), 272–276. https://doi:10.1038/nature08250
Oakley, T. H., Wolfe, J. M., Lindgren, A. R., & Zaharoff, A. K. (2012). Phylotranscriptomics to bring the understudied into the fold: monophyletic ostracoda, fossil placement and pancrustacean phylogeny.Molecular Biology and Evolution , 30 , 215–233. https://doi:10.1093/molbev/mss216
Olofsson, J. K., Cantera, I., Paer, C. V. D., Hong-Wa, C., Zedane, L., Dunning, L. T., … Besnard, G. (2019). Phylogenomics using low-depth whole genome sequencing: A case study with the olive tribe.Molecular Ecology Resource , 19 (4), 877–892.
Peñalba, J. V., Smith, L. L., Tonione, M. A., Sass, C., Hykin, S. M., Skipwith, P. L., … Moritz, C. (2014). Sequence capture using PCR-generated probes: A cost-effective method of targeted high-throughput sequencing for nonmodel organisms. Molecular Ecology Resources , 14 (5), 1000–1010. https://doi:10.1111/1755-0998.12249
Portik, D. M., Smith, L. L., & Bi, K. (2016). An evaluation of transcriptome-based exon capture for frog phylogenomics across multiple scales of divergence (Class: Amphibia, Order: Anura). Molecular Ecology Resources , 16 (5), 1069–1083. https://doi:10.1111/1755-0998.12541
Puritz, J. B., & Lotterhos, K. E. Expressed exome capture sequencing: A method for cost-effective exome sequencing for all organisms. 2018.Molecular Ecology Resources , 18 (6), 1209–1222. https://doi:10.1111/1755-0998.12905
Pyron, R. A., Hendry, C. R., Chou, V. M., Lemmon, E. M., Lemmo, A. R., & Burbrink, F. T. (2014). Effectiveness of phylogenomic data and coalescent species-tree methods for resolving difficult nodes in the phylogeny of advanced snakes (Serpentes: Caenophidia). Molecular Phylogenetics and Evolution , 81 , 221–231. https://doi:10.1016/j.ympev.2014.08.023
Quek, R. Z. B., Jain, S. S., Neo, M. L., Rouse, G. W., & Huang, D. W. (2020). Transcriptome-based target-enrichment baits for stony corals (Cnidaria: Anthozoa: Scleractinia). Molecular Ecology Resources ,20 (3), 807–818. https://doi:10.1111/1755-0998.13150
Reddy, S., Kimball, R. T., Pandey, A., Hosner, P. A., Braun, M. J., Hackett, S. J., … Braun, E. L. (2017). Why do phylogenomic data sets yield conflicting trees? Data type influences the Avian tree of life more than taxon sampling. Systems Biology , 66 (5), 857–879. https://doi:10.1093/sysbio/syx041
Robinson, D. F., & Foulds, L. R. (1981). Comparison of phylogenetic trees. Mathematical Biosciences , 53 (1–2), 131–147. https://doi.org/10.1016/0025-5564(81)90043-2
Singhal, S., Grundler, M., Colli, G., & Rabosky, D. L. (2017). Squamate Conserved Loci (SqCL): A unified set of conserved loci for phylogenomics and population genetics of squamate reptiles. Molecular Ecology Resources , 17 (6), e12–e14. https://doi:10.1111/1755-0998.12681
Slater, G. S. C., & Birney, E., (2005). Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics , 6 , 31. https://doi:10.1186/1471-2105-6-31
Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics ,30 (9), 1312–1313. https://doi:10.1093/bioinformatics/btu033
Waterhouse, R. M., Seppey, M., Simão, F. A., Manni, M., Ioannidis, P., Klioutchnikov, G., … Zdobnov, E. M. (2018). BUSCO applications from quality assessments to gene prediction and phylogenomics.Molecular Biology and Evolution , 35 (3), 543–548. https://doi:10.1093/molbev/msx319
Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics ,10 (1), 57–63. https://doi:10.1038/nrg2484
Wiens, J. J., Hutter, C. R., Mulcahy, D. G., Noonan, B. P., Townsend, T. M., Jr, J. W. S., & Reeder, T. W. (2012). Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biology Letters , 8 (6), 1043–1046. https://doi:10.1098/rsbl.2012.0703
Zhang, F., Ding, Y., Zhu, C., Zhou, X., Orr, M. C., Scheu, S., & Luan, Y. X. (2019). Phylogenomics from low-coverage whole-genome sequencing.Methods in Ecology and Evolution , 10 (4), 507–517. https://doi:10.1111/2041-210X.13145
Zhang, Y., Deng, S., Liang, D., & Zhang P. (2019). Sequence capture across large phylogenetic scales by using pooled PCR–generated baits: A case study of Lepidoptera. Molecular Ecology Resource ,19 (4), 1037–1051. https://doi:10.1111/1755-0998.13026
Zheng, Y., & Wiens, J. J. (2015). Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species.Molecular Phylogenetics and Evolution , 94 , 537–547. https://doi.org/10.1016/j.ympev.2015.10.009.