References:
Abbatiello, S., Ackermann, B. L., Borchers, C., Bradshaw, R. A., Carr, S. A., Chalkley, R., Choi, M., Deutsch, E., Domon, B., Hoofnagle, A. N., Keshishian, H., Kuhn, E., Liebler, D. C., MacCoss, M., MacLean, B., Mani, D. R., Neubert, H., Smith, D., Vitek, O., & Zimmerman, L. (2017). New Guidelines for Publication of Manuscripts Describing Development and Application of Targeted Mass Spectrometry Measurements of Peptides and Proteins. Molecular & Cellular Proteomics : MCP , 16 (3), 327–328.
Amoudi, M. A., El‐Sayed, A.-F. M., & El‐Ghobashy, A. (1996). Effects of Thermal and Thermo-Haline Shocks on Survival and Osmotic Concentration of the Tilapias Oreochromis mossambicus and Oreochromis aureus × Oreochromis niloticus Hybrids. Journal of the World Aquaculture Society , 27 (4), 456–461. https://doi.org/10.1111/j.1749-7345.1996.tb00630.x
Avella, M., Berhaut, J., & Bornancin, M. (1993). Salinity tolerance of two tropical fishes, Oreochromis aureus and O. niloticus. I. Biochemical and morphological changes in the gill epithelium. Journal of Fish Biology , 42 (2), 243–254. https://doi.org/10.1111/j.1095-8649.1993.tb00325.x
Basiao, Z. U., Eguia, R. V., & Doyle, R. W. (2005). Growth response of Nile tilapia fry to salinity stress in the presence of an ‘internal reference’ fish. Aquaculture Research , 36 (7), 712–720. https://doi.org/10.1111/j.1365-2109.2005.01283.x
Bazil, J. N., Beard, D. A., & Vinnakota, K. C. (2016). Catalytic Coupling of Oxidative Phosphorylation, ATP Demand, and Reactive Oxygen Species Generation. Biophysical Journal , 110 (4), 962–971. https://doi.org/10.1016/j.bpj.2015.09.036
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing.Journal of the Royal Statistical Society. Series B (Methodological) , 57 (1), 289–300.
Blackburn, J. (1987). Revised procedure for the 24-hour seawater challenge test to measure seawater adaptability of juvenile.Canadian Technical Report of Fisheries and Aquatic Sciences ,1515 . https://ci.nii.ac.jp/naid/10005103917/
Bœuf, G., & Payan, P. (2001). How should salinity influence fish growth? Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology , 130 (4), 411–423. https://doi.org/10.1016/S1532-0456(01)00268-X
Brett, J. R. (1956). Some Principles in the Thermal Requirements of Fishes. The Quarterly Review of Biology , 31 (2), 75–87. https://doi.org/10.1086/401257
Choi, M., Chang, C. Y., Clough, T., Broudy, D., Killeen, T., MacLean, B., & Vitek, O. (2014). MSstats: An R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments.Bioinformatics , 30 (17), 2524–2526. https://doi.org/10.1093/bioinformatics/btu305
Christensen, E. A. F., Grosell, M., & Steffensen, J. F. (2019). Maximum salinity tolerance and osmoregulatory capabilities of European perch Perca fluviatilis populations originating from different salinity habitats. Conservation Physiology , 7 (1), coz004. https://doi.org/10.1093/conphys/coz004
Clarke, B. (1971). Natural Selection and the Evolution of Proteins.Nature , 232 (5311), 487. https://doi.org/10.1038/232487a0
Cui, Y.-W., Zhang, H.-Y., Ding, J.-R., & Peng, Y.-Z. (2016). The effects of salinity on nitrification using halophilic nitrifiers in a Sequencing Batch Reactor treating hypersaline wastewater.Scientific Reports , 6 (1), 24825. https://doi.org/10.1038/srep24825
Davis, B. E., Hansen, M. J., Cocherell, D. E., Nguyen, T. X., Sommer, T., Baxter, R. D., Fangue, N. A., & Todgham, A. E. (2019). Consequences of temperature and temperature variability on swimming activity, group structure, and predation of endangered delta smelt. Freshwater Biology , 64 (12), 2156–2175. https://doi.org/10.1111/fwb.13403
Ebhardt, H. A., Root, A., Sander, C., & Aebersold, R. (2015). Applications of targeted proteomics in systems biology and translational medicine. Proteomics , 15 (18), 3193–3208. https://doi.org/10.1002/pmic.201500004
Edet, U. O., & Antai, S. P. (2018). Correlation and Distribution of Xenobiotics Genes and Metabolic Activities with Level of Total Petroleum Hydrocarbon in Soil, Sediment and Estuary Water in the Niger Delta Region of Nigeria. Asian Journal of Biotechnology and Genetic Engineering , 1–11.
Elliott, M., & Quintino, V. (2007). The Estuarine Quality Paradox, Environmental Homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas. Marine Pollution Bulletin ,54 (6), 640–645. https://doi.org/10.1016/j.marpolbul.2007.02.003
Elumalai, P., Rubeena, A. S., Arockiaraj, J., Wongpanya, R., Cammarata, M., Ringø, E., & Vaseeharan, B. (2019). The Role of Lectins in Finfish: A Review. Reviews in Fisheries Science & Aquaculture ,27 (2), 152–169. https://doi.org/10.1080/23308249.2018.1520191
Evans, Piermarini, P. M., & Choe, K. P. (2005). The Multifunctional Fish Gill: Dominant Site of Gas Exchange, Osmoregulation, Acid-Base Regulation, and Excretion of Nitrogenous Waste. Physiological Reviews , 85 (1), 97–177. https://doi.org/10.1152/physrev.00050.2003
Fiol, D. F., Sanmarti, E., Lim, A. H., & Kültz, D. (2011). A novel GRAIL E3 ubiquitin ligase promotes environmental salinity tolerance in euryhaline tilapia. Biochimica et Biophysica Acta (BBA) - General Subjects , 1810 (4), 439–445. https://doi.org/10.1016/j.bbagen.2010.11.005
Fridman, S., Rana, K. J., & Bron, J. E. (2013). Morphological and ultrastructural characterization of ionoregulatory cells in the teleost oreochromis niloticus following salinity challenge combining complementary confocal scanning laser microscopy and transmission electron microscopy using a novel prefixation immunogold labeling technique. Microscopy Research and Technique , 76 (10), 1016–1024. https://doi.org/10.1002/jemt.22262
Fuadi, A. A., Hasly, I. R. J., Azkia, L. I., & Irham, M. (2021). Response of tilapia (Oreochromis niloticus) behaviour to salinity differences: A laboratory scale study. IOP Conference Series: Earth and Environmental Science , 674 (1), 012060. https://doi.org/10.1088/1755-1315/674/1/012060
Gardell, A. M., Yang, J., Sacchi, R., Fangue, N. A., Hammock, B. D., & Kültz, D. (2013). Tilapia (Oreochromis mossambicus) brain cells respond to hyperosmotic challenge by inducing myo-inositol biosynthesis.Journal of Experimental Biology , 216 (24), 4615–4625. https://doi.org/10.1242/jeb.088906
Goss, G. G., Adamia, S., & Galvez, F. (2001). Peanut lectin binds to a subpopulation of mitochondria-rich cells in the rainbow trout gill epithelium. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology , 281 (5), R1718–R1725. https://doi.org/10.1152/ajpregu.2001.281.5.R1718
Hiroi, J., McCormick, S. D., Ohtani-Kaneko, R., & Kaneko, T. (2005). Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na+/K+-ATPase, Na+/K+/2Cl- cotransporter and CFTR anion channel. Journal of Experimental Biology ,208 (11), 2023–2036. https://doi.org/10.1242/jeb.01611
Hirose, S., Kaneko, T., Naito, N., & Takei, Y. (2003). Molecular biology of major components of chloride cells. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology ,136 (4), 593–620. https://doi.org/10.1016/S1096-4959(03)00287-2
Inokuchi, M., Hiroi, J., Watanabe, S., Hwang, P.-P., & Kaneko, T. (2009). Morphological and functional classification of ion-absorbing mitochondria-rich cells in the gills of Mozambique tilapia.Journal of Experimental Biology , 212 (7), 1003–1010. https://doi.org/10.1242/jeb.025957
Inokuchi, M., & Kaneko, T. (2012). Recruitment and degeneration of mitochondrion-rich cells in the gills of Mozambique tilapia Oreochromis mossambicus during adaptation to a hyperosmotic environment.Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology , 162 (3), 245–251. https://doi.org/10.1016/j.cbpa.2012.03.018
Iwama, G. K., Takemura, A., & Takano, K. (1997). Oxygen consumption rates of tilapia in fresh water, sea water, and hypersaline sea water.Journal of Fish Biology , 51 (5), 886–894. https://doi.org/10.1111/j.1095-8649.1997.tb01528.x
Kammerer, B. D., Cech, J. J., & Kültz, D. (2010). Rapid changes in plasma cortisol, osmolality, and respiration in response to salinity stress in tilapia (Oreochromis mossambicus). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology , 157 (3), 260–265. https://doi.org/10.1016/j.cbpa.2010.07.009
Karnaky. (1986). Structure and Function of the Chloride Cell of Fundulus heteroclitus and Other Teleosts1. American Zoologist ,26 (1), 209–224. https://doi.org/10.1093/icb/26.1.209
Karnaky, K. J., Jr, Ernst, S. A., & Philpott, C. W. (1976). Teleost chloride cell. I. Response of pupfish Cyprinodon variegatus gill Na,K-ATPase and chloride cell fine structure to various high salinity environments. Journal of Cell Biology , 70 (1), 144–156. https://doi.org/10.1083/jcb.70.1.144
Keerthikumar, S., & Mathivanan, S. (2017). Proteotypic Peptides and Their Applications. Methods in Molecular Biology (Clifton, N.J.) ,1549 , 101–107. https://doi.org/10.1007/978-1-4939-6740-7_8
Kültz, D., Fiol, D., Valkova, N., Gomez-Jimenez, S., Chan, S. Y., & Lee, J. (2007). Functional genomics and proteomics of the cellular osmotic stress response in “non-model” organisms. The Journal of Experimental Biology , 210 (Pt 9), 1593–1601. https://doi.org/10.1242/jeb.000141
Kültz, D., Jürss, K., & Jonas, L. (1995). Cellular and epithelial adjustments to altered salinity in the gill and opercular epithelium of a cichlid fish (Oreochromis mossambicus). Cell and Tissue Research , 279 (1), 65–73. https://doi.org/10.1007/BF00300692
Kültz, D., Li, J., Gardell, A., & Sacchi, R. (2013). Quantitative Molecular Phenotyping of Gill Remodeling in a Cichlid Fish Responding to Salinity Stress. Molecular & Cellular Proteomics , 12 (12), 3962–3975. https://doi.org/10.1074/mcp.M113.029827
Kültz, D., Li, J., Paguio, D., Pham, T., Eidsaa, M., & Almaas, E. (2016). Population-specific renal proteomes of marine and freshwater three-spined sticklebacks. Journal of Proteomics , 135 , 112–131. https://doi.org/10.1016/j.jprot.2015.10.002
Kültz, D., & Onken, H. (1993). Long-term acclimation of the teleost Oreochromis mossambicus to various salinities: Two different strategies in mastering hypertonic stress. Marine Biology , 117 (3), 527–533. https://doi.org/10.1007/BF00349328
Langston, J. N., Schofield, P. J., Hill, J. E., & Loftus, W. F. (2010). Salinity Tolerance of the African Jewelfish Hemichromis letourneuxi, a Non-native Cichlid in South Florida (USA). Copeia ,2010 (3), 475–480. https://doi.org/10.1643/CP-09-069
Laskar, A. A., & Younus, H. (2019). Aldehyde toxicity and metabolism: The role of aldehyde dehydrogenases in detoxification, drug resistance and carcinogenesis. Drug Metabolism Reviews , 51 (1), 42–64. https://doi.org/10.1080/03602532.2018.1555587
Leary, S., Pharmaceuticals, F., Underwood, W., Anthony, R., Cartner, S., Johnson, C. L., & Patterson-Kane, E. (2020). AVMA Guidelines for the Euthanasia of Animals: 2020 Edition . 121.
Lee, T. H., Hwang, P. P., Shieh, Y. E., & Lin, C. H. (2000). The relationship between ‘deep-hole’ mitochondria-rich cells and salinity adaptation in the euryhaline teleost, Oreochromis mossambicus.Fish Physiology and Biochemistry , 23 (2), 133–140. https://doi.org/10.1023/A:1007818631917
Lewis, E. L., & Perkin, R. G. (1978). Salinity: Its definition and calculation. Journal of Geophysical Research: Oceans ,83 (C1), 466–478. https://doi.org/10.1029/JC083iC01p00466
Li, J., Levitan, B., Gomez-Jimenez, S., & Kültz, D. (2018). Development of a Gill Assay Library for Ecological Proteomics of Threespine Sticklebacks ( Gasterosteus aculeatus ). Molecular & Cellular Proteomics , 17 (11), 2146–2163. https://doi.org/10.1074/mcp.RA118.000973
Mularoni, L., Ledda, A., Toll-Riera, M., & Albà, M. M. (2010). Natural selection drives the accumulation of amino acid tandem repeats in human proteins. Genome Research , 20 (6), 745–754. https://doi.org/10.1101/gr.101261.109
Panfili, J., Mbow, A., Durand, J. D., Diop, K., Diouf, K., Thior, D., Ndiaye, P., & Lae, R. (2004). Influence of salinity on the life-history traits of the West African black-chinned tilapia (Sarotherodon melanotheron): Comparison between the Gambia and Saloum estuaries.Aquatic Living Resources , 17 (1), 65–74. https://doi.org/10.1051/alr:2004002
Pino, L. K., Searle, B. C., Bollinger, J. G., Nunn, B., MacLean, B., & MacCoss, M. J. (2017). The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom Rev ,39 (3), 229–244. https://doi.org/10.1002/mas.21540
Pörtner, H.-O. (2010). Oxygen- and capacity-limitation of thermal tolerance: A matrix for integrating climate-related stressor effects in marine ecosystems. Journal of Experimental Biology ,213 (6), 881–893. https://doi.org/10.1242/jeb.037523
Reiter, L., Rinner, O., Picotti, P., Huttenhain, R., Beck, M., Brusniak, M. Y., Hengartner, M. O., & Aebersold, R. (2011). mProphet: Automated data processing and statistical validation for large-scale SRM experiments. Nat Methods , 8 (5), 430–435. https://doi.org/10.1038/nmeth.1584
Richards, J. G., Semple, J. W., Bystriansky, J. S., & Schulte, P. M. (2003). Na+/K+-ATPase α-isoform switching in gills of rainbow trout (Oncorhynchus mykiss) during salinity transfer. Journal of Experimental Biology , 206 (24), 4475–4486. https://doi.org/10.1242/jeb.00701
Ronkin, D., Seroussi, E., Nitzan, T., Doron-Faigenboim, A., & Cnaani, A. (2015). Intestinal transcriptome analysis revealed differential salinity adaptation between two tilapiine species. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics , 13 , 35–43. https://doi.org/10.1016/j.cbd.2015.01.003
Root, L., Campo, A., MacNiven, L., Con, P., Cnaani, A., & Kültz, D. (2021a). Nonlinear effects of environmental salinity on the gill transcriptome versus proteome of Oreochromis niloticus modulate epithelial cell turnover. Genomics , 113 (5), 3235–3249. https://doi.org/10.1016/j.ygeno.2021.07.016
Root, L., Campo, A., MacNiven, L., Con, P., Cnaani, A., & Kültz, D. (2021b). A data-independent acquisition (DIA) assay library for quantitation of environmental effects on the kidney proteome of Oreochromis niloticus. Molecular Ecology Resources , 21 (7), 2486–2503. https://doi.org/10.1111/1755-0998.13445
Rosen, M. B., Schmid, J. R., Corton, J. C., Zehr, R. D., Das, K. P., Abbott, B. D., & Lau, C. (2010). Gene Expression Profiling in Wild-Type and PPARα-Null Mice Exposed to Perfluorooctane Sulfonate Reveals PPARα-Independent Effects. PPAR Research , 2010 , 794739. https://doi.org/10.1155/2010/794739
Sardella, B. A. (2004). Physiological, biochemical and morphological indicators of osmoregulatory stress in ‘California’ Mozambique tilapia (Oreochromis mossambicus x O. urolepis hornorum) exposed to hypersaline water. Journal of Experimental Biology , 207 (8), 1399–1413. https://doi.org/10.1242/jeb.00895
Sardella, B. A., & Brauner, C. J. (2007). The Osmo-respiratory Compromise in Fish: The Effects of Physiological State and the Environment. In Fish Respiration and Environment (p. chapter 8). CRC Press.
Schultz, E., & McCormick, S. (2012). Euryhalinity in an Evolutionary Context. In Euryhaline Fishes (Vol. 32, pp. 477–533). https://opencommons.uconn.edu/eeb_articles/29
Sokolova, I. M., Frederich, M., Bagwe, R., Lannig, G., & Sukhotin, A. A. (2012). Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates.Marine Environmental Research , 79 , 1–15. https://doi.org/10.1016/j.marenvres.2012.04.003
Somero, G., Lockwood, B., Tomanek, L. (2016). Biochemical Adaptation, Response to Environmental Challenges from Life’s Origins to the Anthropocene . Sinauer Associates, an imprint of Oxford University Press. //global.oup.com/ukhe/product/biochemical-adaptation-9781605355641
Speare, D. J., MacNair, N., & Hammell, K. L. (1995). Demonstration of tank effect on growth indices of juvenile rainbow trout (Oncorhynchus mykiss) during an ad libitum feeding trial. American Journal of Veterinary Research , 56 (10), 1372–1379.
Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. von. (2019). STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Research , 47 (D1), D607–D613. https://doi.org/10.1093/nar/gky1131
Tipsmark, C. K., Breves, J. P., Seale, A. P., Lerner, D. T., Hirano, T., & Grau, E. G. (2011). Switching of Na+, K+-ATPase isoforms by salinity and prolactin in the gill of a cichlid fish. The Journal of Endocrinology , 209 (2), 237–244. https://doi.org/10.1530/joe-10-0495
Tsai, J. C., & Hwang, P. P. (1998a). The wheat germ agglutinin binding sites and development of the mitochondria-rich cells in gills of tilapia (Oreochromis mossambicus). Fish Physiology and Biochemistry ,19 (1), 95–102. https://doi.org/10.1023/A:1007766531264
Tsai, J. C., & Hwang, P. P. (1998b). Effects of wheat germ agglutinin and colchicine on microtubules of the mitochondria-rich cells and Ca2+ uptake in tilapia (Oreochromis mossambicus) larvae. Journal of Experimental Biology , 201 (15), 2263–2271. https://doi.org/10.1242/jeb.201.15.2263
Watanabe, W. O., Kuo, C.-M., & Huang, M.-C. (1985). The ontogeny of salinity tolerance in the tilapias Oreochromis aureus, O. niloticus, and an O. mossambicus × O. niloticus hybrid, spawned and reared in freshwater. Aquaculture , 47 (4), 353–367. https://doi.org/10.1016/0044-8486(85)90220-0
Whitfield, A. K., Taylor, R. H., Fox, C., & Cyrus, D. P. (2006). Fishes and salinities in the St Lucia estuarine system—A review.Reviews in Fish Biology and Fisheries , 16 (1), 1–20. https://doi.org/10.1007/s11160-006-0003-x
Yamaguchi, T., Gi, M., Fujioka, M., Tago, Y., Kakehashi, A., & Wanibuchi, H. (2019). A chronic toxicity study of diphenylarsinic acid in the drinking water of C57BL/6J mice for 52 weeks. Journal of Toxicologic Pathology , 32 (3), 127–134. https://doi.org/10.1293/tox.2018-0067
Zeng, L., Li, X., Preusch, C. B., He, G. J., Xu, N., Cheung, T. H., Qu, J., & Mak, H. Y. (2021). Nuclear receptors NHR-49 and NHR-79 promote peroxisome proliferation to compensate for aldehyde dehydrogenase deficiency in C. elegans. PLOS Genetics , 17 (7), e1009635. https://doi.org/10.1371/journal.pgen.1009635