REFERENCES
Adams, H.D., Zeppel, M.J.B., Anderegg, W.R.L., Hartmann, H., Landhausser, S.M., Tissue, D.T. et al. (2017). A multi-species synthesis of physiological mechanisms in drought-induced tree mortality.Nat. Ecol. Evol. , 1, 1285-1291.
Albornoz, F.E., Burgess, T.I., Lambers, H., Etchells, H., Laliberté, E. & Power, A. (2017). Native soilborne pathogens equalize differences in competitive ability between plants of contrasting nutrient-acquisition strategies. J. Ecol. , 105, 549-557.
Aleixo, I., Norris, D., Hemerik, L., Barbosa, A., Prata, E., Costa, F.et al. (2019). Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Chang. , 9, 384-388.
Alster, C.J., Weller, Z.D. & von Fischer, J.C. (2018). A meta-analysis of temperature sensitivity as a microbial trait. Glob. Chang. Biol. , 24, 4211-4224.
Anderson, P.K., Cunningham, A.A., Patel, N.G., Morales, F.J., Epstein, P.R. & Daszak, P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers.Trends Ecol. Evol. , 19, 535-544.
Bachelot, B., Alonso‐Rodríguez, A.M., Aldrich‐Wolfe, L., Cavaleri, M.A., Reed, S.C. & Wood, T.E. (2020). Altered climate leads to positive density‐dependent feedbacks in a tropical wet forest. Glob. Chang. Biol. , 26, 3417-3428.
Bagchi, R., Gallery, R.E., Gripenberg, S., Gurr, S.J., Narayan, L., Addis, C.E. et al. (2014). Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature , 506, 85-88.
Bell, T., Freckleton, R.P. & Lewis, O.T. (2006). Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecol. Lett. , 9, 569-574.
Bennett, J.A., Maherali, H., Reinhart, K.O., Lekberg, Y., Hart, M.M. & Klironomos, J. (2017). Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science , 355, 181-184.
Bever, J.D. (2003). Soil community feedback and the coexistence of competitors conceptual frameworks and empirical tests. New Phytol. , 157, 465-473.
Bever, J.D., Westover, K.M. & Antonovics, J. (1997). Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J. Ecol. , 85, 561-573.
Bolger, A.M., Lohse, M. & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics , 30, 2114–2120.
Brunner, I., Herzog, C., Dawes, M.A., Arend, M. & Sperisen, C. (2015). How tree roots respond to drought. Front. Plant Sci. , 6, 547.
Chakraborty, S. (2005). Potential impact of climate change on plant-pathogen interactions. Australas. Plant Pathol. , 34, 443-448.
Chan, W.-P., Chen, I.-C., Colwell, R.K., Liu, W.-C., Huang, C.-Y. & Shen, S.-F. (2016). Seasonal and daily climate variation have opposite effects on species elevational range size. Science , 351, 1437-1439.
Chen, L., Swenson, N.G., Ji, N., Mi, X., Ren, H., Guo, L. et al.(2019). Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science , 366, 124-128.
Connell, J.H. (1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: Dynamics of Populations (eds. Boer, PJD & Gradwell, GR). Center for Agriculture Publishing and Documentation Wageningen, pp. 298-312.
Corrales, A., Henkel, T.W. & Smith, M.E. (2018). Ectomycorrhizal associations in the tropics - biogeography, diversity patterns and ecosystem roles. New Phytol. , 220, 1076-1091.
Delgado-Baquerizo, M., Guerra, C.A., Cano-Díaz, C., Egidi, E., Wang, J.-T., Eisenhauer, N. et al. (2020). The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Chang. , 10, 550-554.
Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D.C. et al. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. U.S.A. , 105, 6668-6672.
Dornelas, M., Gotelli, N.J., McGill, B., Shimadzu, H., Moyes, F., Sievers, C. et al. (2014). Assemblage time series reveal biodiversity change but not systematic loss. Science , 344, 296-299.
Eck, J.L., Stump, S.M., Delavaux, C.S., Mangan, S.A. & Comita, L.S. (2019). Evidence of within-species specialization by soil microbes and the implications for plant community diversity. Proc. Natl. Acad. Sci. U.S.A. , 116, 7371-7376.
Edgar, R.C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics , 26, 2460–2461.
Feeley, K.J., Joseph Wright, S., Nur Supardi, M.N., Kassim, A.R. & Davies, S.J. (2007). Decelerating growth in tropical forest trees.Ecol. Lett. , 10, 461-469.
García-Guzmán, G., Trejo, I. & Sánchez-Coronado, M.E. (2016). Foliar diseases in a seasonal tropical dry forest: Impacts of habitat fragmentation. For. Ecol. Manag. , 369, 126-134.
Germain, S.J. & Lutz, J.A. (2021). Shared friends counterbalance shared enemies in old forests. Ecology , (online).
Ghalambor, C.K., Huey, R.B., Martin, P.R., Tewksbury, J.J. & Wang, G. (2006). Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. , 46, 5-17.
Gonzalez, A., Cardinale, B.J., Allington, G.R.H., Byrnes, J., Endsley, K.A., Brown, D.G. et al. (2016). Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity.Ecology , 97, 1949–1960.
Guo, J., Ling, N., Chen, Z., Xue, C., Li, L., Liu, L. et al.(2020). Soil fungal assemblage complexity is dependent on soil fertility and dominated by deterministic processes. New Phytol. , 226, 232-243.
Hannula, S.E., Morrien, E., de Hollander, M., van der Putten, W.H., van Veen, J.A. & de Boer, W. (2017). Shifts in rhizosphere fungal community during secondary succession following abandonment from agriculture.ISME J. , 11, 2294-2304.
Hillebrand, H., Blasius, B., Borer, E.T., Chase, J.M., Downing, J.A., Eriksson, B.K. et al. (2018). Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. J. Appl. Ecol. , 55, 169-184.
Hollister, R.D. & Webber, P.J. (2000). Biotic validation of small open-top chambers in a tundra ecosystem. Glob. Chang. Biol. , 6, 835-845.
IPCC (2013). Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change . Cambridge, UK.
Janzen, D.H. (1970). Herbivores and the number of tree species in tropical forests. Am. Nat. , 104, 501-528.
Johnson, D.J., Needham, J., Xu, C., Massoud, E.C., Davies, S.J., Anderson-Teixeira, K.J. et al. (2018). Climate sensitive size-dependent survival in tropical trees. Nat. Ecol. Evol. , 2, 1436-1442.
Kandlikar, G.S., Johnson, C.A., Yan, X., Kraft, N.J.B. & Levine, J.M. (2019). Winning and losing with microbes: how microbially mediated fitness differences influence plant diversity. Ecol. Lett. , 22, 1178-1191.
Khaliq, I., Hof, C., Prinzinger, R., Bohning-Gaese, K. & Pfenninger, M. (2014). Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. Royal Soc. B , 281, 20141097.
Koljalg, U., Larsson, K.H., Abarenkov, K., Nilsson, R.H., Alexander, I.J., Eberhardt, U. et al. (2005). UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol. , 166, 1063-1068.
Legeay, J., Husson, C., Cordier, T., Vacher, C., Marcais, B. & Buée, M. (2019). Comparison and validation of Oomycetes metabarcoding primers for Phytophthora high throughput sequencing. J. Plant Pathol. , 101, 743-748.
Li, R.B., Yu, S.X., Wang, Y.F., Staehelin, C. & Zang, R.G. (2009). Distance-dependent effects of soil-derived biota on seedling survival of the tropical tree legume Ormosia semicastrata . J. Veg. Sci. , 20, 527-534.
Liu, Y., Fang, S., Chesson, P. & He, F. (2015). The effect of soil-borne pathogens depends on the abundance of host tree species.Nat. Commun. , 6:10017.
Liu, Y. & He, F. (2019). Incorporating the disease triangle framework for testing the effect of soil‐borne pathogens on tree species diversity. Funct. Ecol. , 33, 1211-1222.
Liu, Y., Yu, S., Xie, Z.-P. & Staehelin, C. (2012). Analysis of a negative plant-soil feedback in a subtropical monsoon forest. J. Ecol. , 100, 1019-1028.
Magoč, T. & Salzberg, S.L. (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics , 27, 2957–2963.
Malhi, Y., Roberts, J.T., Betts, R.A., Killeen, T.J., Li, W. & Nobre, C.A. (2008). Climate change, deforestation, and the fate of the Amazon.Science , 319, 169–172.
Mangan, S.A., Schnitzer, S.A., Herre, E.A., Mack, K.M., Valencia, M.C., Sanchez, E.I. et al. (2010). Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest.Nature , 466, 752-755.
Mariotte, P., Mehrabi, Z., Bezemer, T.M., De Deyn, G.B., Kulmatiski, A., Drigo, B. et al. (2018). Plant-Soil Feedback: Bridging Natural and Agricultural Sciences. Trends Ecol. Evol. , 33, 129-142.
Marx, D.H. (1972). Ectomycorrhizae as biological deterrents to pathogenic root infections. Annu. Rev. Phytopathol. , 10, 429-454.
Merges, D., Bálint, M., Schmitt, I., Böhning-Gaese, K., Neuschulz, E.L. & Power, A. (2018). Spatial patterns of pathogenic and mutualistic fungi across the elevational range of a host plant. J. Ecol. , 106, 1545-1557.
Milici, V.R., Dalui, D., Mickley, J.G., Bagchi, R. & Fridley, J. (2020). Responses of plant–pathogen interactions to precipitation: Implications for tropical tree richness in a changing world. J. Ecol. , 108, 1800-1809.
Mommer, L., Cotton, T.E.A., Raaijmakers, J.M., Termorshuizen, A.J., van Ruijven, J., Hendriks, M. et al. (2018). Lost in diversity: the interactions between soil-borne fungi, biodiversity and plant productivity. New Phytol. , 218, 542-553.
Nguyen, N.H., Song, Z., Bates, S.T., Branco, S., Tedersoo, L., Menke, J.et al. (2016). FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. , 20, 241-248.
Nilsson, R.H., Larsson, K.H., Taylor, A.F.S., Bengtsson-Palme, J., Jeppesen, T.S., Schigel, D. et al. (2019). The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. , 47, D259-D264.
Nottingham, A.T., Meir, P., Velasquez, E. & Turner, B.L. (2020). Soil carbon loss by experimental warming in a tropical forest. Nature , 584, 234-237.
Pugnaire, F.I., Morillo, J.A., Peñuelas, J., Reich, P.B., Bardgett, R.D., Gaxiola, A. et al. (2019). Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Sci. Adv. , 5: eaaz1834.
Romero, F., Cazzato, S., Walder, F., Vogelgsang, S., Bender, S.F. & van der Heijden, M.G.A. (2021). Humidity and high temperatureare important for predicting fungal disease outbreaks worldwide. New Phytologist , (online).
Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B. et al. (2009). Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. , 75, 7537–7541.
Schroeder, J.W., Dobson, A., Mangan, S.A., Petticord, D.F. & Herre, E.A. (2020). Mutualist and pathogen traits interact to affect plant community structure in a spatially explicit model. Nat. Commun. , 11, 2204.
Segnitz, R.M., Russo, S.E., Davies, S.J. & Peay, K.G. (2020). Ectomycorrhizal fungi drive positive phylogenetic plant–soil feedbacks in a regionally dominant tropical plant family. Ecology , 101, e03083.
Swinfield, T., Lewis, O.T., Bagchi, R. & Freckleton, R.P. (2012). Consequences of changing rainfall for fungal pathogen-induced mortality in tropical tree seedlings. Ecol. Evol. , 2, 1408-1413.
Taylor, D.L., Walters, W.A., Lennon, N.J., Bochicchio, J., Krohn, A., Caporaso, J.G. et al. (2016). Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for Illumina amplicon sequencing. Appl. Environ. Microbiol. , 82, 7217-7226.
Tedersoo, L., Bahram, M. & Zobel, M. (2020). How mycorrhizal associations drive plant population and community biology.Science , 367, eaba1223.
Thompson, S., Alvarez-Loayza, P., Terborgh, J. & Katul, G. (2010). The effects of plant pathogens on tree recruitment in the Western Amazon under a projected future climate: a dynamical systems analysis. J. Ecol. , 98, 1434-1446.
van der Putten, W.H., Bradford, M.A., Brinkman, E.P., van de Voorde, T.F.J. & Veen, G.F. (2016). Where, when and how plant–soil feedback matters in a changing world. Funct. Ecol. , 30, 1109-1121.
Vellend, M., Baeten, L., Myers-Smith, I.H., Elmendorf, S.C., Beausejour, R., Brown, C.D. et al. (2013). Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl. Acad. Sci. U.S.A. , 110, 19456-19459.
Vetrovsky, T., Kohout, P., Kopecky, M., Machac, A., Man, M., Bahnmann, B.D. et al. (2019). A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. , 10, 5142.
Vlam, M., Baker, P.J., Bunyavejchewin, S. & Zuidema, P.A. (2014). Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees. Oecologia , 174, 1449-1461.
Wang, J., Zhang, H., Gao, J., Zhang, Y., Liu, Y. & Tang, M. (2021). Effects of ectomycorrhizal fungi (Suillus variegatus ) on the growth, hydraulic function, and non-structural carbohydrates ofPinus tabulaeformis under drought stress. BMC Plant Biol. , 21, 171.
Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setälä, H., van der Putten, W.H. & Wall, D.H. (2004). Ecological linkage between aboveground and belowground biology. Science , 304, 1629-1633.
Wright, S.J., Muller-Landau, H.C. & Schipper, J. (2009). The future of tropical species on a warmer planet. Conserv. Biol. , 23, 1418-1426.
Xu, H., Li, Y.D., Lin, M.X., Wu, J.H., Luo, T.S., Zhou, Z. et al.(2015). Community characteristics of a 60 ha dynamics plot in the tropical montane rain forest in Jianfengling, Hainan Island.Biodiversity Science , 23, 192-201 (Chinese with English abstract).
TABLE 1 Estimated coefficients (Coef) and standard errors (SE) of the negative binomial generalized linear mixed models (GLMMs) for modelling the responses of relative abundances of plant-pathogenic fungi to the three experimental treatments (OTC warming versus control, pesticides versus without pesticides, and distance to the parent trees). The model coefficients estimated the treatment effects. The random effects controlled the variation between the two focal tree species and the variation among the three adult trees of each focal species. For the 421 FUNGuild classified pathogens, the random effect variances were 0.15 and 0.08, respectively.