Data Availability Statement
The data of species distribution of HSD plot and functional traits used in this article will be deposited in Dryad (doi:10.5061/dryad.9kd51c5ft) once this paper is published in the journal.
REFERENCES
Ackerly, D. D., & Cornwell, W. K. (2007). A trait-based approach to community assembly: Partitioning of species trait values into within- and among-community components. Ecology Letters , 10 (2), 135–145. doi: 10.1111/j.1461-0248.2006.01006.x
Baddeley, A., Rubak, E., & Turner, R. (2015). Spatial point patterns: methodology and applications with R . CRC press.
Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software , 67 (1). doi: 10.18637/jss.v067.i01
Burns, J. H., & Strauss, S. Y. (2011). More closely related species are more ecologically similar in an experimental test. Proceedings of the National Academy of Sciences , 108 (13), 5302–5307. doi: 10.1073/pnas.1013003108
Cadotte, M. W., Carboni, M., Si, X., & Tatsumi, S. (2019). Do traits and phylogeny support congruent community diversity patterns and assembly inferences? Journal of Ecology , (107), 2065–2077. doi: 10.1111/1365-2745.13247
Cadotte, M. W., Davies, T. J., & Peres-Neto, P. R. (2017). Why phylogenies do not always predict ecological differences.Ecological Monographs , 87 (4), 535–551. doi: 10.1002/ecm.1267
Carmona, C. P., de Bello, F., Azcárate, F. M., Mason, N. W. H., & Peco, B. (2019). Trait hierarchies and intraspecific variability drive competitive interactions in Mediterranean annual plants. Journal of Ecology , 107 (5), 2078–2089. doi: 10.1111/1365-2745.13248
Cavender-Bares, J., Kozak, K. H., Fine, P. V. A., & Kembel, S. W. (2009). The merging of community ecology and phylogenetic biology.Ecology Letters , 12 (7), 693–715. doi: 10.1111/j.1461-0248.2009.01314.x
Cavender-Bares, J., & Wilczek, A. (2003). Integrating Micro-and Macroevolutionary Processes. Ecology , 84 (3), 592–597. doi: 10.1890/0012-9658(2003)084[0592:IMAMPI]2.0.CO;2
Chanthorn, W., Wiegand, T., Getzin, S., Brockelman, W. Y., & Nathalang, A. (2018). Spatial patterns of local species richness reveal importance of frugivores for tropical forest diversity. Journal of Ecology ,106 (3), 925–935. doi: 10.1111/1365-2745.12886
Chave, Jerome, Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum.Ecology Letters , 12 (4), 351–366. doi: 10.1111/j.1461-0248.2009.01285.x
Chave, Jérôme, Muller-Landau, H. C., Baker, T. R., Easdale, T. A., Hans Steege, T. E. R., & Webb, C. O. (2006). Regional and phylogenetic variation of wood density across 2456 neotropical tree species.Ecological Applications , 16 (6), 2356–2367. doi: 10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2
Chesson, P. (2000). Mechanisms of Maintenance of Species Diversity.Annu. Rev. Ecol. Evol. Syst , 31 , 343–366. doi: 10.1146/annurev.ecolsys.31.1.343
Chesson, P. (2013). Species competition and predation. InEcological systems (pp. 223–256). Springer.
Díaz, S., Hodgson, J. G., Thompson, K., Cabido, M., Cornelissen, J. H. C., Jalili, A., … Zak, M. R. (2004). The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science , 15 (3), 295–304. doi: 10.1111/j.1654-1103.2004.tb02266.x
Diggle, P. J. (1983). Statistical analysis of spatial point patterns. Academic press.
Gause, G. F. (1934). Experimental analysis of Vito Volterra’s mathematical theory of the struggle for existence. Science ,79 (2036), 16–17. doi: 10.1126/science.79.2036.16-a
Gianuca, A. T., Declerck, S. A. J., Cadotte, M. W., Souffreau, C., De Bie, T., & De Meester, L. (2016). Integrating trait and phylogenetic distances to assess scale-dependent community assembly processes.Ecography , 40 (6), 742–752. doi: 10.1111/ecog.02263
He, D., & Biswas, S. R. (2019). Negative relationship between interspecies spatial association and trait dissimilarity. Oikos ,128 (5), 659–667. doi: 10.1111/oik.05876
He, D., Chen, Y., Zhao, K., Cornelissen, J. H. C., & Chu, C. (2018). Intra- and interspecific trait variations reveal functional relationships between specific leaf area and soil niche within a subtropical forest. Annals of Botany , 121 (6), 1173–1182. doi: 10.1093/aob/mcx222
He, F., & Duncan, R. P. (2000). Density-Dependent Effects on Tree Survival in an Old-Growth Douglas Fir Forest. Journal Of Ecology ,88 (4), 676–688. doi: 10.1046/j.1365-2745.2000.00482.x
HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M., & Mayfield, M. M. (2012). Rethinking Community Assembly through the Lens of Coexistence Theory. Annu. Rev. Ecol. Evol. Syst , 43 , 227–248. doi: 10.1146/annurev-ecolsys-110411-160411
Kraft, N. J. B., & Ackerly, D. D. (2010). Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs , 80 (3), 401–422. doi: 10.1890/09-1672.1
Kraft, N. J. B., Godoy, O., & Levine, J. M. (2015). Plant functional traits and the multidimensional nature of species coexistence.Proceedings of the National Academy of Sciences , 112 (3), 797–802. doi: 10.1073/pnas.1413650112
Kunstler, G., Falster, D., Coomes, D. A., Hui, F., Kooyman, R. M., Laughlin, D. C., … Westoby, M. (2016). Plant functional traits have globally consistent effects on competition. Nature ,529 (7585), 204–207. doi: 10.1038/nature16476
Kunstler, G., Lavergne, S., Courbaud, B., Thuiller, W., Vieilledent, G., Zimmermann, N. E., … Coomes, D. A. (2012). Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: Implications for forest community assembly. Ecology Letters , 15 (8), 831–840. doi: 10.1111/j.1461-0248.2012.01803.x
Lasky, J. R., Uriarte, M., Boukili, V. K., & Chazdon, R. L. (2014). Trait-mediated assembly processes predict successional changes in community diversity of tropical forests. Proceedings of the National Academy of Sciences of the United States of America ,111 (15), 5616–5621. doi: 10.1073/pnas.1319342111
Laughlin, D. C. (2014). Applying trait-based models to achieve functional targets for theory-driven ecological restoration.Ecology Letters , 17 (7), 771–784. doi: 10.1111/ele.12288
Laughlin, D. C., Gremer, J. R., Adler, P. B., Mitchell, R. M., & Moore, M. M. (2020). The Net Effect of Functional Traits on Fitness.Trends in Ecology & Evolution , 1–11. doi: 10.1016/j.tree.2020.07.010
Li, Y., Shipley, B., Price, J. N., Dantas, V. de L., Tamme, R., Westoby, M., … Batalha, M. A. (2018). Habitat filtering determines the functional niche occupancy of plant communities worldwide. Journal of Ecology , 106 (3), 1001–1009. doi: 10.1111/1365-2745.12802
Lotwick, H. . W. ., & Silverman, B. W. (1982). Methods for Analysing Spatial Processes of Several Types of Points. Journal of the Royal Statistical Society. Series B (Methodological) , 44 (3), 406–413. doi: 10.1111/j.2517-6161.1982.tb01221.x
MacArthur. (1958). Population Ecology of Some Warblers of Northeastern Coniferous Forests. Ecology , 39 (4), 599–619. doi: 10.2307/1931600
Mayfield, M. M., & Levine, J. M. (2010). Opposing effects of competitive exclusion on the phylogenetic structure of communities.Ecology Letters , 13 (9), 1085–1093. doi: 10.1111/j.1461-0248.2010.01509.x
R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Austria: Vienna .
Ricklefs, R. E., & Schluter, D. (1993). Species diversity in ecological communities: historical and geographical perspectives (Vol. 414). University of Chicago Press Chicago.
Ripley, B. D. (1981). Spatial statistics (Vol. 575). doi: 10.1002/0471725218
Shen, G., Wiegand, T., Mi, X., & He, F. (2013). Quantifying spatial phylogenetic structures of fully stem-mapped plant communities.Methods in Ecology and Evolution , 4 (12), 1132–1141. doi: 10.1111/2041-210X.12119
Smith, A. B., Sandel, B., Kraft, N. J. B., & Carey, S. (2013). Characterizing scale-dependent community assembly using the functional-diversity-area relationship. Ecology , 94 (11), 2392–2402. doi: 10.1002/ecm.1283
Stoyan, D., & Stoyan, H. (1994). Fractals, random shapes, and point fields: methods of geometrical statistics (Vol. 302). John Wiley & Sons Inc.
Tilman, D. (1982). Resource competition and community structure . Princeton university press.
Wang, X., Wiegand, T., Anderson-Teixeira, K. J., Bourg, N. A., Hao, Z., Howe, R., … Myers, J. A. (2018). Ecological drivers of spatial community dissimilarity, species replacement and species nestedness across temperate forests. Global Ecology and Biogeography ,27 (5), 581–592. doi: 10.1111/geb.12719
Wang, X., Wiegand, T., Hao, Z., Li, B., Ye, J., & Lin, F. (2010). Species associations in an old-growth temperate forest in north-eastern China. Journal of Ecology , 98 (3), 674–686. doi: 10.1111/j.1365-2745.2010.01644.x
Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., & Wright, I. J. (2002). Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics , 33 (2002), 125–159. doi: 10.1146/annurev.ecolsys.33.010802.150452
Wiegand, T., Grabarnik, P., & Stoyan, D. (2016). Envelope tests for spatial point patterns with and without simulation. Ecosphere ,7 (6), 1–18. doi: 10.1002/ecs2.1365
Wiegand, T., Gunatilleke, S., & Gunatilleke, N. (2007). Species associations in a heterogeneous Sri Lankan dipterocarp forest. The American Naturalist , 170 (4), E77–E95. doi: 10.1086/521240
Wiegand, T., & Moloney, K. A. (2014). Handbook of spatial point-pattern analysis in ecology . Chapman and Hall/CRC.
Wiegand, T., Uriarte, M., Kraft, N. J. B., Shen, G., Wang, X., & He, F. (2017). Spatially Explicit Metrics of Species Diversity, Functional Diversity, and Phylogenetic Diversity: Insights into Plant Community Assembly Processes. Annual Review of Ecology, Evolution, and Systematics , 48 (1), 329–351. doi: 10.1146/annurev-ecolsys-110316-022936
Wright, I. J., Groom, P. K., Lamont, B. B., Poot, P., Prior, L. D., Reich, P. B., … Westoby, M. (2004). Leaf trait relationships in Australian plant species. Functional Plant Biology , 31 (5), 551–558. doi: 10.1071/FP03212
Yin, D., & He, F. (2014). A simple method for estimating species abundance from occurrence maps. Methods in Ecology and Evolution ,5 (4), 336–343. doi: 10.1111/2041-210X.12159
Table 1. The number and percentages of different types of pairwise spatial point patterns assessed by the standardized effect size (SES) of two different summary statistics, bivariate pair-correlation function (gij (r )) and bivariate distribution function of nearest neighbor (Dij (r )), at three spatial scales.