REFERNECE
- Riedel H. Creep Crack Growth. ASTM STP 1020 . USA: ASTM;
1989:101-126. https://doi.org/10.1520/STP18822S
- Hollstein T, Webster GA, Djavanroodi F. Creep crack growth in a
1%CrMoV steel and a 32%Ni-20%Cr alloy. Mater High Temp.1992;10(2):92-96. https://doi.org/10.1080/09603409.1992.11689406
- Maile K, Schellenberg G, Granacher J and Tramer M. Description of
creep and creep fatigue crack growth in 1% and 9% Cr steels.Mater High Temp. 1998;15(2):131-137.
https://doi.org/10.1080/09603409.1998.11689591
- Dogan B, Petrovski B. Creep crack growth of high temperature
weldments. Int J Pres Ves Pip. 2001;78:795-805.
https://doi.org/10.1016/S0308-0161(01)00092-8
- Shibli IA, Hamata MLM. Creep crack growth in P22 and P91 welds –
overview from SOTA and HIDA projects. Int J Pres Ves Pip.2001;78:785-793. https://doi.org/10.1016/S0308-0161(01)00091-6
- Hamata MLM, Shibli IA. Creep crack growth of seam-welded P22 and P91
pipes with artificial defects - Part I. Experimental study and
post-test metallography. Int J Pres Ves Pip. 2001;78:819-826.
https://doi.org/10.1016/S0308-0161(01)00096-5
- Hamata MLM, Shibli IA. Creep crack growth of seam-welded P22 and P91
pipes with artificial defects - Part II. Data analysis. Int J
Pres Ves Pip. 2001;78:827-835.
https://doi.org/10.1016/S0308-0161(01)00097-7
- Hyde TH, Saber M, Sun W. Testing and modelling of creep crack growth
in compact tension specimen from a P91 weld at
650oC. Eng Fract Mech. 2010;77:2946-2957.
https://doi.org/10.1016/j.engfracmech.2010.03.043
- Hyde TH, Saber M, Sun W. Creep crack growth data and prediction for a
P91 weld at 650oC. Int J Pres Ves Pip.2010;87:721-729. https://doi.org/10.1016/j.ijpvp.2010.09.002
- Yamamoto M, Miura N, Ogata T. Applicability of C*parameter in assessing Type IV creep cracking in Mod. 9Cr–1Mo steel
welded joint. Eng Fract Mech. 2010;77:3022-3034.
https://doi.org/10.1016/j.engfracmech.2010.04.023
- Ohji K, Ogura K, Kubo S. Creep crack propagation rate in SUS 304
stainless steel and interpretation in Terms of Modified J-Integral.T Jpn Soc Mech Eng. 1976;42:350-358.
- Webster GA, Ainsworth RA. High temperature component life
assessment . UK: Champman & Hall; 1994.
- Landes JD, Begley JA. A fracture mechanics approach to creep crack
growth. ASTM STP 590 . USA: ASTM; 1976:128-148.
https://doi.org/10.1520/STP33943S
- Nikbin KM, Webster GA, Turner CE. Relevance of nonlinear fracture
mechanics to creep crack growth. ASTM STP 601 . USA: ASTM;
1976:47-62. https://doi.org/10.1520/STP28637S
- Ainsworth RA. The initiation of creep crack growth. Int J Solids
Struct. 1982;18:873-881. https://doi.org/10.1016/0020-7683(82)90071-3
- Piques R, Molinie E, Pineau A. Comparison between two assessment
methods for defects in the creep range. Fatigue Fract Eng Mater
Struct. 1991;14:871-885.
https://doi.org/10.1111/j.1460-2695.1991.tb00721.x
- Anderson TL. Fracture mechanics: fundamentals and applications .
USA: Taylor & Francis - CRC Press; 2005.
- Riedel H, Rice JR. Tensile crack in creeping solids. ASTM STP
700 . USA: ASTM; 1980:112-130. https://doi.org/10.1520/STP36967S
- Taira S, Ohtani R, Kitamura T, Yamada K. J-integral approach to crack
propagation under combined creep and fatigue condition. TJpn Soc Mater Sci. 1979;28:414–420.
- Ohji K, Kubo S. Fatigue crack propagation behavior under creep
conditions. In: Creep in structures: 4th IUTAM Symposium (Part
II) . Germany: Springer; 1991:253–268.
https://doi.org/10.1007/978-3-642-84455-3_30
- Grover PS, Saxena A. Modelling the effect of creep-fatigue interaction
on crack growth. Fatigue Fract Eng Mater Tech.1999;22:111–122. https://doi.org/10.1046/j.1460-2695.1999.00144.x
- Granacher J, Klenk A, Tramer M, Schellenberg G, Mueller F, Ewald J.
Creep fatigue crack behavior of two power plant steels. Int J
Pres Ves Pip . 2001;78:909-920.
https://doi.org/10.1016/S0308-0161(01)00106-5
- Lu YL, Chen LJ, Liaw PK, Wang GY, Brooks CR, Thompson SA, et al.
Effects of temperature and hold time on creep-fatigue crack-growth
behavior of HAYNES® 230® alloy.Mater Sci Eng A . 2006;429:1-10.
https://doi.org/10.1016/j.msea.2005.07.039
- Mehmanparast A, Davies CM, Nikbin KM. Evaluation of the testing and
analysis methods in ASTM E2760-10 creep-fatigue crack growth testing
standard for a range of steels. ASTM STP 1539 . USA: ASTM;
2011:41-66. https://doi.org/10.1520/STP49934S
- Holdsworth S. Creep-fatigue interaction in power plant steels.Mater High Temp . 2011;28(3): 197-204.
https://doi.org/10.3184/096034011X13123676561681
- Narasimhachary SB, Saxena A. Crack growth behavior of 9Cr-1Mo (P91)
steel under creep-fatigue conditions. Int J Fatigue.2013;56:106–113. https://doi.org/10.1016/j.ijfatigue.2013.07.006
- Bassi F, Foletti S, Conte AL. Creep fatigue crack growth and fracture
mechanisms of T/P91 power plant steel. Mater High Temp .
2015;32(3):250-255. https://doi.org/10.1179/0960340914Z.00000000065
- Takahashi Y. Effect of intermittent unloading or reversed loading on
high temperature crack growth behaviour of Grade 91 steel under
constant tensile load. Mater High Temp. 2015;32(3):256-265.
https://doi.org/10.1179/0960340914Z.00000000066
- Razak NA, Davies CM, Nikbin KM. Creep-fatigue crack growth behaviour
of P91 steels. Proc Struct Integr . 2016;2:855-862.
https://doi.org/10.1016/j.prostr.2016.06.110
- Guerra-Rosa L, Branco CM, Randon JC. Monotonic and cyclic crack tip
plasticity. Int J Fatigue . 1984;6:17-24.
https://doi.org/10.1016/0142-1123(84)90004-5
- Pommier S. Plane strain crack closure and cyclic hardening. Eng
Fract Mech. 2002;69:25-44.
https://doi.org/10.1016/S0013-7944(01)00061-3
- Wang CH, Rose LRF, Newman Jr. JC. Closure of plane‐strain cracks under
large‐scale yielding conditions. Fatigue Fract Eng Mater
Struct. 2002;25:127-139.
https://doi.org/10.1046/j.8756-758x.2002.00483.x
- Zhao LG, Tong J, Byrne J. The evolution of the stress–strain fields
near a fatigue crack tip and plasticity‐induced crack closure
revisited. Fatigue Fract Eng Mater Struct. 2004;27:19-29.
https://doi.org/10.1111/j.1460-2695.2004.00716.x
- Toribio J, Kharin V. Finite-deformation analysis of the crack-tip
fields under cyclic loading. Int J Solids Struct.2009;46(9):1937-1952. https://doi.org/10.1016/j.ijsolstr.2009.01.006
- Paul SK, Tarafder S. Cyclic plastic deformation response at fatigue
crack. Int J Pres Ves Pip. 2013;101:81-90.
https://doi.org/10.1016/j.ijpvp.2012.10.007
- Jingjie C, Yi H, Leilei D, Yugang L. A new method for cyclic crack-tip
plastic zone size determination under cyclic tensile load. Eng
Fract Mech. 2014;126:141-154.
https://doi.org/10.1016/j.engfracmech.2014.05.001
- Paul SK. Numerical models of plastic zones and associated deformations
for a stationary cr ack in a C(T) specimen loaded at different
R-ratios. Eng Fract Mech. 2016;152:72-80.
https://doi.org/10.1016/j.engfracmech.2015.12.008
- Jiang W, Yu Y, Zhang W, Xiao C,Woo W. Residual stress and stress
fields change around fatigue crack tip: Neutron diffraction
measurement and finite element modelling. Int J Pres Ves Pip.2020;179:104024. https://doi.org/10.1016/j.ijpvp.2019.104024
- Hwang JH, Kim HT, Kim YJ, Nam HS, Kim JW. Crack tip fields at crack
initiation and growth under monotonic and large amplitude cyclic
loading: Experimental and FE analyses. Int J Fatigue.2020;141:105889. https://doi.org/10.1016/j.ijfatigue.2020.105889
- Standard specification for pressure vessel plates, alloy steel,
chromium-molybdenum (A387/A387M). In: ASTM Volume 01.04 - ASTM
steel structural, reinforcing, pressure vessel, railway . USA: ASTM;
2014.
- Flat products made of steels for pressure purposes – Part 2:
Non-alloy and alloy steels with specified elevated temperature
properties (BS EN10028-2). UK: British Standard Institution; 2009.
- Kumar V, German MD, Shih CF. Engineering approach for elastic-plastic
fracture analysis (EPRI-NP—1931). USA: General Electric Cooperative,
1981.
- Abaqus version 2018 manual. France: Dassault Systems; 2015.
- Properties Groups for products and parts in alloy steel grade
X10CrMoVNb9-1 normalised - tempered or quenched – tempered (Appendix
A3.18AS). In: RCC-MRx Section III – Tome 1 – Subsection Z .
France: AFCEN; 2010.
- Chaboche JL, Van KD, Cordier G. Modelization of the strain memory
effect on the cyclic hardening of 316 stainless steel. In: Proc.
of the 5th International Conference on ‘Structural
Mechanics in Reactor Technology Div. L . USA: North-Holland Publishing
Company for the Commission of the European Communities; 1979.
- Chaboche JL. Time-independent constitutive theories for cyclic
plasticity. Int J Plasticity. 1986;2(2):149-188.
https://doi.org/10.1016/0749-6419(86)90010-0
- Kyaw ST, Rouse JP, Lu J, Sun W. Determination of material parameters
for a unified viscoplasticity-damage model for a P91 power plant
steel. Int J Mech Sci . 2016;115-116:168-179.
https://doi.org/10.1016/j.ijmecsci.2016.06.014
- Saad AA, Hyde CJ, Sun W, Hyde TH. Thermal-mechanical fatigue
simulation of a P91 steel in a temperature range of 400–600°C.Mater High Temp . 2011;28(3):212-218.
https://doi.org/10.3184/096034011X13072954674044
- Yaguchi M, Takahashi Y. Development of inelastic constitutive
equations for modified 9Cr-1Mo steel (No. T97034). Japan: Central
Research Institute of Electric Power Industry, Tokyo, Japan; 1998.
- Ainsworth RA. The assessment of defects in structures of strain
hardening material. Eng Fract Mech . 1984;19:633-642.
https://doi.org/10.1016/0013-7944(84)90096-1