REFERNECE
  1. Riedel H. Creep Crack Growth. ASTM STP 1020 . USA: ASTM; 1989:101-126. https://doi.org/10.1520/STP18822S
  2. Hollstein T, Webster GA, Djavanroodi F. Creep crack growth in a 1%CrMoV steel and a 32%Ni-20%Cr alloy. Mater High Temp.1992;10(2):92-96. https://doi.org/10.1080/09603409.1992.11689406
  3. Maile K, Schellenberg G, Granacher J and Tramer M. Description of creep and creep fatigue crack growth in 1% and 9% Cr steels.Mater High Temp. 1998;15(2):131-137. https://doi.org/10.1080/09603409.1998.11689591
  4. Dogan B, Petrovski B. Creep crack growth of high temperature weldments. Int J Pres Ves Pip. 2001;78:795-805. https://doi.org/10.1016/S0308-0161(01)00092-8
  5. Shibli IA, Hamata MLM. Creep crack growth in P22 and P91 welds – overview from SOTA and HIDA projects. Int J Pres Ves Pip.2001;78:785-793. https://doi.org/10.1016/S0308-0161(01)00091-6
  6. Hamata MLM, Shibli IA. Creep crack growth of seam-welded P22 and P91 pipes with artificial defects - Part I. Experimental study and post-test metallography. Int J Pres Ves Pip. 2001;78:819-826. https://doi.org/10.1016/S0308-0161(01)00096-5
  7. Hamata MLM, Shibli IA. Creep crack growth of seam-welded P22 and P91 pipes with artificial defects - Part II. Data analysis. Int J Pres Ves Pip. 2001;78:827-835. https://doi.org/10.1016/S0308-0161(01)00097-7
  8. Hyde TH, Saber M, Sun W. Testing and modelling of creep crack growth in compact tension specimen from a P91 weld at 650oC. Eng Fract Mech. 2010;77:2946-2957. https://doi.org/10.1016/j.engfracmech.2010.03.043
  9. Hyde TH, Saber M, Sun W. Creep crack growth data and prediction for a P91 weld at 650oC. Int J Pres Ves Pip.2010;87:721-729. https://doi.org/10.1016/j.ijpvp.2010.09.002
  10. Yamamoto M, Miura N, Ogata T. Applicability of C*parameter in assessing Type IV creep cracking in Mod. 9Cr–1Mo steel welded joint. Eng Fract Mech. 2010;77:3022-3034. https://doi.org/10.1016/j.engfracmech.2010.04.023
  11. Ohji K, Ogura K, Kubo S. Creep crack propagation rate in SUS 304 stainless steel and interpretation in Terms of Modified J-Integral.T Jpn Soc Mech Eng. 1976;42:350-358.
  12. Webster GA, Ainsworth RA. High temperature component life assessment . UK: Champman & Hall; 1994.
  13. Landes JD, Begley JA. A fracture mechanics approach to creep crack growth. ASTM STP 590 . USA: ASTM; 1976:128-148. https://doi.org/10.1520/STP33943S
  14. Nikbin KM, Webster GA, Turner CE. Relevance of nonlinear fracture mechanics to creep crack growth. ASTM STP 601 . USA: ASTM; 1976:47-62. https://doi.org/10.1520/STP28637S
  15. Ainsworth RA. The initiation of creep crack growth. Int J Solids Struct. 1982;18:873-881. https://doi.org/10.1016/0020-7683(82)90071-3
  16. Piques R, Molinie E, Pineau A. Comparison between two assessment methods for defects in the creep range. Fatigue Fract Eng Mater Struct. 1991;14:871-885. https://doi.org/10.1111/j.1460-2695.1991.tb00721.x
  17. Anderson TL. Fracture mechanics: fundamentals and applications . USA: Taylor & Francis - CRC Press; 2005.
  18. Riedel H, Rice JR. Tensile crack in creeping solids. ASTM STP 700 . USA: ASTM; 1980:112-130. https://doi.org/10.1520/STP36967S
  19. Taira S, Ohtani R, Kitamura T, Yamada K. J-integral approach to crack propagation under combined creep and fatigue condition. TJpn Soc Mater Sci. 1979;28:414–420.
  20. Ohji K, Kubo S. Fatigue crack propagation behavior under creep conditions. In: Creep in structures: 4th IUTAM Symposium (Part II) . Germany: Springer; 1991:253–268. https://doi.org/10.1007/978-3-642-84455-3_30
  21. Grover PS, Saxena A. Modelling the effect of creep-fatigue interaction on crack growth. Fatigue Fract Eng Mater Tech.1999;22:111–122. https://doi.org/10.1046/j.1460-2695.1999.00144.x
  22. Granacher J, Klenk A, Tramer M, Schellenberg G, Mueller F, Ewald J. Creep fatigue crack behavior of two power plant steels. Int J Pres Ves Pip . 2001;78:909-920. https://doi.org/10.1016/S0308-0161(01)00106-5
  23. Lu YL, Chen LJ, Liaw PK, Wang GY, Brooks CR, Thompson SA, et al. Effects of temperature and hold time on creep-fatigue crack-growth behavior of HAYNES® 230® alloy.Mater Sci Eng A . 2006;429:1-10. https://doi.org/10.1016/j.msea.2005.07.039
  24. Mehmanparast A, Davies CM, Nikbin KM. Evaluation of the testing and analysis methods in ASTM E2760-10 creep-fatigue crack growth testing standard for a range of steels. ASTM STP 1539 . USA: ASTM; 2011:41-66. https://doi.org/10.1520/STP49934S
  25. Holdsworth S. Creep-fatigue interaction in power plant steels.Mater High Temp . 2011;28(3): 197-204. https://doi.org/10.3184/096034011X13123676561681
  26. Narasimhachary SB, Saxena A. Crack growth behavior of 9Cr-1Mo (P91) steel under creep-fatigue conditions. Int J Fatigue.2013;56:106–113. https://doi.org/10.1016/j.ijfatigue.2013.07.006
  27. Bassi F, Foletti S, Conte AL. Creep fatigue crack growth and fracture mechanisms of T/P91 power plant steel. Mater High Temp . 2015;32(3):250-255. https://doi.org/10.1179/0960340914Z.00000000065
  28. Takahashi Y. Effect of intermittent unloading or reversed loading on high temperature crack growth behaviour of Grade 91 steel under constant tensile load. Mater High Temp. 2015;32(3):256-265. https://doi.org/10.1179/0960340914Z.00000000066
  29. Razak NA, Davies CM, Nikbin KM. Creep-fatigue crack growth behaviour of P91 steels. Proc Struct Integr . 2016;2:855-862. https://doi.org/10.1016/j.prostr.2016.06.110
  30. Guerra-Rosa L, Branco CM, Randon JC. Monotonic and cyclic crack tip plasticity. Int J Fatigue . 1984;6:17-24. https://doi.org/10.1016/0142-1123(84)90004-5
  31. Pommier S. Plane strain crack closure and cyclic hardening. Eng Fract Mech. 2002;69:25-44. https://doi.org/10.1016/S0013-7944(01)00061-3
  32. Wang CH, Rose LRF, Newman Jr. JC. Closure of plane‐strain cracks under large‐scale yielding conditions. Fatigue Fract Eng Mater Struct. 2002;25:127-139. https://doi.org/10.1046/j.8756-758x.2002.00483.x
  33. Zhao LG, Tong J, Byrne J. The evolution of the stress–strain fields near a fatigue crack tip and plasticity‐induced crack closure revisited. Fatigue Fract Eng Mater Struct. 2004;27:19-29. https://doi.org/10.1111/j.1460-2695.2004.00716.x
  34. Toribio J, Kharin V. Finite-deformation analysis of the crack-tip fields under cyclic loading. Int J Solids Struct.2009;46(9):1937-1952. https://doi.org/10.1016/j.ijsolstr.2009.01.006
  35. Paul SK, Tarafder S. Cyclic plastic deformation response at fatigue crack. Int J Pres Ves Pip. 2013;101:81-90. https://doi.org/10.1016/j.ijpvp.2012.10.007
  36. Jingjie C, Yi H, Leilei D, Yugang L. A new method for cyclic crack-tip plastic zone size determination under cyclic tensile load. Eng Fract Mech. 2014;126:141-154. https://doi.org/10.1016/j.engfracmech.2014.05.001
  37. Paul SK. Numerical models of plastic zones and associated deformations for a stationary cr ack in a C(T) specimen loaded at different R-ratios. Eng Fract Mech. 2016;152:72-80. https://doi.org/10.1016/j.engfracmech.2015.12.008
  38. Jiang W, Yu Y, Zhang W, Xiao C,Woo W. Residual stress and stress fields change around fatigue crack tip: Neutron diffraction measurement and finite element modelling. Int J Pres Ves Pip.2020;179:104024. https://doi.org/10.1016/j.ijpvp.2019.104024
  39. Hwang JH, Kim HT, Kim YJ, Nam HS, Kim JW. Crack tip fields at crack initiation and growth under monotonic and large amplitude cyclic loading: Experimental and FE analyses. Int J Fatigue.2020;141:105889. https://doi.org/10.1016/j.ijfatigue.2020.105889
  40. Standard specification for pressure vessel plates, alloy steel, chromium-molybdenum (A387/A387M). In: ASTM Volume 01.04 - ASTM steel structural, reinforcing, pressure vessel, railway . USA: ASTM; 2014.
  41. Flat products made of steels for pressure purposes – Part 2: Non-alloy and alloy steels with specified elevated temperature properties (BS EN10028-2). UK: British Standard Institution; 2009.
  42. Kumar V, German MD, Shih CF. Engineering approach for elastic-plastic fracture analysis (EPRI-NP—1931). USA: General Electric Cooperative, 1981.
  43. Abaqus version 2018 manual. France: Dassault Systems; 2015.
  44. Properties Groups for products and parts in alloy steel grade X10CrMoVNb9-1 normalised - tempered or quenched – tempered (Appendix A3.18AS). In: RCC-MRx Section III – Tome 1 – Subsection Z . France: AFCEN; 2010.
  45. Chaboche JL, Van KD, Cordier G. Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel. In: Proc. of the 5th International Conference on ‘Structural Mechanics in Reactor Technology Div. L . USA: North-Holland Publishing Company for the Commission of the European Communities; 1979.
  46. Chaboche JL. Time-independent constitutive theories for cyclic plasticity. Int J Plasticity. 1986;2(2):149-188. https://doi.org/10.1016/0749-6419(86)90010-0
  47. Kyaw ST, Rouse JP, Lu J, Sun W. Determination of material parameters for a unified viscoplasticity-damage model for a P91 power plant steel. Int J Mech Sci . 2016;115-116:168-179. https://doi.org/10.1016/j.ijmecsci.2016.06.014
  48. Saad AA, Hyde CJ, Sun W, Hyde TH. Thermal-mechanical fatigue simulation of a P91 steel in a temperature range of 400–600°C.Mater High Temp . 2011;28(3):212-218. https://doi.org/10.3184/096034011X13072954674044
  49. Yaguchi M, Takahashi Y. Development of inelastic constitutive equations for modified 9Cr-1Mo steel (No. T97034). Japan: Central Research Institute of Electric Power Industry, Tokyo, Japan; 1998.
  50. Ainsworth RA. The assessment of defects in structures of strain hardening material. Eng Fract Mech . 1984;19:633-642. https://doi.org/10.1016/0013-7944(84)90096-1