References
Alarcón, C.R., Goodarzi, H., Lee, H., Liu, X., Tavazoie, S., and
Tavazoie, S.F. (2015a). HNRNPA2B1 Is a Mediator of m6A-Dependent Nuclear
RNA Processing Events. Cell 162 : 1299–1308.
Alarcón, C.R., Lee, H., Goodarzi, H., Halberg, N., and Tavazoie, S.F.
(2015b). N6-methyladenosine marks primary microRNAs for processing.
Nature 519 : 482–485.
Allis, C.D., and Jenuwein, T. (2016). The molecular hallmarks of
epigenetic control. Nat. Rev. Genet. 17 : 487–500.
Anadón, C., Guil, S., Simó-Riudalbas, L., Moutinho, C., Setien, F.,
Martínez-Cardús, A., et al. (2016a). Gene amplification-associated
overexpression of the RNA editing enzyme ADAR1 enhances human lung
tumourigenesis. Oncogene 35 : 4407–4413.
Anadón, C., Guil, S., Simó-Riudalbas, L., Moutinho, C., Setien, F.,
Martínez-Cardús, A., et al. (2016b). Gene amplification-associated
overexpression of the RNA editing enzyme ADAR1 enhances human lung
tumourigenesis. Oncogene 35 : 4407–4413.
Ballestar, E., and Li, T. (2017). New insights into the epigenetics of
inflammatory rheumatic diseases. Nat. Rev. Rheumatol. 13 :
593–605.
Barbieri, I., and Kouzarides, T. (2020). Role of RNA modifications in
cancer. Nat. Rev. Cancer 20 : 303–322.
Barbieri, I., Tzelepis, K., Pandolfini, L., Shi, J., Millán-Zambrano,
G., Robson, S.C., et al. (2017). Promoter-bound METTL3 maintains myeloid
leukaemia by m6A-dependent translation control. Nature 552 :
126–131.
Bedi, R.K., Huang, D., Eberle, S.A., Wiedmer, L., Śledź, P., and
Caflisch, A. (2020). Small‐Molecule Inhibitors of METTL3, the Major
Human Epitranscriptomic Writer. ChemMedChem 15 : 744–748.
Behm, M., Wahlstedt, H., Widmark, A., Eriksson, M., and Öhman, M.
(2017). Accumulation of nuclear ADAR2 regulates adenosine-to-inosine RNA
editing during neuronal development. J. Cell Sci. 130 : 745–753.
Berdasco, M., and Esteller, M. (2018). Clinical epigenetics: seizing
opportunities for translation. Nat. Rev. Genet.
Berdasco, M., and Esteller, M. (2019). Clinical epigenetics: seizing
opportunities for translation. Nat. Rev. Genet. 20 : 109–127.
Boccaletto, P., Machnicka, M.A., Purta, E., Piątkowski, P., Bagiński,
B., Wirecki, T.K., et al. (2018). MODOMICS: a database of RNA
modification pathways. 2017 update. Nucleic Acids Res. 46 :
D303–D307.
Boriack-Sjodin, P.A., Gardino, A.K., Wynn, T.A., Buker, S.M., Laidlaw,
M., Sickmier, E.A., et al. (2019). Abstract A112: Drug discovery efforts
on the RNA protein methyltransferase METTL3/METTL14. In Drug Design,
(American Association for Cancer Research), pp A112–A112.
Boriack-Sjodin, P.A., Ribich, S., and Copeland, R.A. (2018).
RNA-modifying proteins as anticancer drug targets. Nat. Rev. Drug
Discov. 17 : 435–453.
Carlile, T.M., Rojas-Duran, M.F., Zinshteyn, B., Shin, H., Bartoli,
K.M., and Gilbert, W. V. (2014a). Pseudouridine profiling reveals
regulated mRNA pseudouridylation in yeast and human cells. Nature515 : 143–146.
Carlile, T.M., Rojas-Duran, M.F., Zinshteyn, B., Shin, H., Bartoli,
K.M., and Gilbert, W. V. (2014b). Pseudouridine profiling reveals
regulated mRNA pseudouridylation in yeast and human cells. Nature515 : 143–146.
Cavenagh, J.D., and Popat, R. (2018). Optimal Management of Histone
Deacetylase Inhibitor-Related Adverse Events in Patients With Multiple
Myeloma: A Focus on Panobinostat. Clin. Lymphoma. Myeloma Leuk.18 : 501–507.
Cenik, C., Chua, H.N., Singh, G., Akef, A., Snyder, M.P., Palazzo, A.F.,
et al. (2017). A common class of transcripts with 5′-intron depletion,
distinct early coding sequence features, and N 1 -methyladenosine
modification. RNA 23 : 270–283.
Chan, T.H.M., Lin, C.H., Qi, L., Fei, J., Li, Y., Yong, K.J., et al.
(2014). A disrupted RNA editing balance mediated by ADARs (Adenosine
DeAminases that act on RNA) in human hepatocellular carcinoma. Gut63 : 832–843.
Chan, T.H.M., Qamra, A., Tan, K.T., Guo, J., Yang, H., Qi, L., et al.
(2016). ADAR-Mediated RNA Editing Predicts Progression and Prognosis of
Gastric Cancer. Gastroenterology 151 : 637-650.e10.
Chellamuthu, A., and Gray, S.G. (2020). The RNA Methyltransferase NSUN2
and Its Potential Roles in Cancer. Cells 9 : 1758.
Chen, B., Ye, F., Yu, L., Jia, G., Huang, X., Zhang, X., et al. (2012).
Development of Cell-Active N 6 -Methyladenosine RNA Demethylase FTO
Inhibitor. J. Am. Chem. Soc. 134 : 17963–17971.
Chen, L., Li, Y., Lin, C.H., Chan, T.H.M., Chow, R.K.K., Song, Y., et
al. (2013). Recoding RNA editing of AZIN1 predisposes to hepatocellular
carcinoma. Nat. Med. 19 : 209–216.
Chen, T., Hao, Y.-J., Zhang, Y., Li, M.-M., Wang, M., Han, W., et al.
(2015). m6A RNA Methylation Is Regulated by MicroRNAs and Promotes
Reprogramming to Pluripotency. Cell Stem Cell 16 : 289–301.
Chen, X., Li, A., Sun, B.-F., Yang, Y., Han, Y.-N., Yuan, X., et al.
(2019). 5-methylcytosine promotes pathogenesis of bladder cancer through
stabilizing mRNAs. Nat. Cell Biol. 21 : 978–990.
Chen, Y.-B., Liao, X.-Y., Zhang, J.-B., Wang, F., Qin, H.-D., Zhang, L.,
et al. (2017). ADAR2 functions as a tumour suppressor via editing IGFBP7
in esophageal squamous cell carcinoma. Int. J. Oncol. 50 :
622–630.
Cheng, J.X., Chen, L., Li, Y., Cloe, A., Yue, M., Wei, J., et al.
(2018). RNA cytosine methylation and methyltransferases mediate
chromatin organization and 5-azacytidine response and resistance in
leukaemia. Nat. Commun. 9 : 1163.
Cossío, F.P., Esteller, M., and Berdasco, M. (2020). Towards a more
precise therapy in cancer: Exploring epigenetic complexity. Curr. Opin.
Chem. Biol. 57 : 41–49.
Cui, Q., Shi, H., Ye, P., Li, L., Qu, Q., Sun, G., et al. (2017). m 6 A
RNA Methylation Regulates the Self-Renewal and Tumourigenesis of
Glioblastoma Stem Cells. Cell Rep. 18 : 2622–2634.
Cully, M. (2019). Chemical inhibitors make their RNA epigenetic mark.
Nat. Rev. Drug Discov. 18 : 892–894.
Dahal, U., Le, K., and Gupta, M. (2019). RNA m6A methyltransferase
METTL3 regulates invasiveness of melanoma cells by matrix
metallopeptidase 2. Melanoma Res. 29 : 382–389.
Dai, X., Wang, T., Gonzalez, G., and Wang, Y. (2018). Identification of
YTH Domain-Containing Proteins as the Readers for N 1-Methyladenosine in
RNA. Anal. Chem. 90 : 6380–6384.
Dai, Z., Ramesh, V., and Locasale, J.W. (2020). The evolving metabolic
landscape of chromatin biology and epigenetics. Nat. Rev. Genet.
Deng, R., Cheng, Y., Ye, S., Zhang, J., Huang, R., Li, P., et al.
(2019). m6A methyltransferase METTL3 suppresses colorectal cancer
proliferation and migration through p38/ERK pathways. Onco. Targets.
Ther. Volume 12 : 4391–4402.
Diesch, J., Zwick, A., Garz, A.-K., Palau, A., Buschbeck, M., and Götze,
K.S. (2016). A clinical-molecular update on azanucleoside-based therapy
for the treatment of hematologic cancers. Clin. Epigenetics 8 :
71.
Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon,
M., Ungar, L., Osenberg, S., et al. (2012). Topology of the human and
mouse m6A RNA methylomes revealed by m6A-seq. Nature 485 :
201–206.
Dominissini, D., Nachtergaele, S., Moshitch-Moshkovitz, S., Peer, E.,
Kol, N., Ben-Haim, M.S., et al. (2016). The dynamic N1-methyladenosine
methylome in eukaryotic messenger RNA. Nature 530 : 441–446.
Dou, N., Yu, S., Ye, X., Yang, D., Li, Y., and Gao, Y. (2016). Aberrant
overexpression of ADAR1 promotes gastric cancer progression by
activating mTOR/p70S6K signaling. Oncotarget 7 : 86161–86173.
Eisenberg, E., and Levanon, E.Y. (2018). A-to-I RNA editing — immune
protector and transcriptome diversifier. Nat. Rev. Genet. 19 :
473–490.
Elkashef, S.M., Lin, A.-P., Myers, J., Sill, H., Jiang, D., Dahia,
P.L.M., et al. (2017). IDH Mutation, Competitive Inhibition of FTO, and
RNA Methylation. Cancer Cell 31 : 619–620.
Esteller, M., and Pandolfi, P.P. (2017). The Epitranscriptome of
Noncoding RNAs in Cancer. Cancer Discov. 7 : 359–368.
Esteve-Puig, R., Climent, F., Piñeyro, D., Domingo-Domenech, E.,
Davalos, V., Encuentra, M., et al. (2020). Epigenetic Loss of m1A RNA
Demethylase ALKBH3 in Hodgkin Lymphoma Targets Collagen Conferring Poor
Clinical Outcome. Blood doi: 10.1182/blood.2020005823.
Frye, M., and Watt, F.M. (2006). The RNA Methyltransferase Misu (NSun2)
Mediates Myc-Induced Proliferation and Is Upregulated in Tumours. Curr.
Biol. 16 : 971–981.
Fu, Y., Dominissini, D., Rechavi, G., and He, C. (2014). Gene expression
regulation mediated through reversible m6A RNA methylation. Nat. Rev.
Genet. 15 : 293–306.
Galeano, F., Rossetti, C., Tomaselli, S., Cifaldi, L., Lezzerini, M.,
Pezzullo, M., et al. (2013). ADAR2-editing activity inhibits
glioblastoma growth through the modulation of the CDC14B/Skp2/p21/p27
axis. Oncogene 32 : 998–1009.
Ganesan, A. (2018). Epigenetic drug discovery: a success story for
cofactor interference. Philos. Trans. R. Soc. B Biol. Sci. 373 :
20170069.
Ganesan, A., Arimondo, P.B., Rots, M.G., Jeronimo, C., and Berdasco, M.
(2019). The timeline of epigenetic drug discovery: from reality to
dreams. Clin. Epigenetics 11 : 174.
Garcia-Campos, M.A., Edelheit, S., Toth, U., Safra, M., Shachar, R.,
Viukov, S., et al. (2019). Deciphering the “m6A Code” via
Antibody-Independent Quantitative Profiling. Cell 178 :
731-747.e16.
Hamma, T., and Ferré-D’Amaré, A.R. (2006). Pseudouridine Synthases.
Chem. Biol. 13 : 1125–1135.
Han, D., Liu, J., Chen, C., Dong, L., Liu, Y., Chang, R., et al.
(2019a). Anti-tumour immunity controlled through mRNA m6A methylation
and YTHDF1 in dendritic cells. Nature 566 : 270–274.
Han, J., Wang, J., Yang, X., Yu, H., Zhou, R., Lu, H.-C., et al.
(2019b). METTL3 promote tumour proliferation of bladder cancer by
accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol.
Cancer 18 : 110.
Hauser, A.-T., Robaa, D., and Jung, M. (2018). Epigenetic small molecule
modulators of histone and DNA methylation. Curr. Opin. Chem. Biol.45 : 73–85.
He, Y., Selvaraju, S., Curtin, M.L., Jakob, C.G., Zhu, H., Comess, K.M.,
et al. (2017). The EED protein–protein interaction inhibitor A-395
inactivates the PRC2 complex. Nat. Chem. Biol. 13 : 389–395.
Heck, A.M., Russo, J., Wilusz, J., Nishimura, E.O., and Wilusz, C.J.
(2020). YTHDF2 destabilizes m 6 A-modified neural-specific RNAs to
restrain differentiation in induced pluripotent stem cells. RNA26 : 739–755.
Hsu, P.J., Zhu, Y., Ma, H., Guo, Y., Shi, X., Liu, Y., et al. (2017).
Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian
spermatogenesis. Cell Res. 27 : 1115–1127.
Huang, H., Weng, H., Sun, W., Qin, X., Shi, H., Wu, H., et al. (2018).
Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA
stability and translation. Nat. Cell Biol. 20 : 285–295.
Huang, H., Weng, H., Zhou, K., Wu, T., Zhao, B.S., Sun, M., et al.
(2019a). Histone H3 trimethylation at lysine 36 guides m6A RNA
modification co-transcriptionally. Nature 567 : 414–419.
Huang, T., Chen, W., Liu, J., Gu, N., and Zhang, R. (2019b). Genome-wide
identification of mRNA 5-methylcytosine in mammals. Nat. Struct. Mol.
Biol. 26 : 380–388.
Huang, Y., Su, R., Sheng, Y., Dong, L., Dong, Z., Xu, H., et al.
(2019c). Small-Molecule Targeting of Oncogenic FTO Demethylase in Acute
Myeloid Leukemia. Cancer Cell 35 : 677-691.e10.
Huang, Y., Yan, J., Li, Q., Li, J., Gong, S., Zhou, H., et al. (2015).
Meclofenamic acid selectively inhibits FTO demethylation of m6A over
ALKBH5. Nucleic Acids Res. 43 : 373–384.
Hussain, S., Tuorto, F., Menon, S., Blanco, S., Cox, C., Flores, J. V.,
et al. (2013). The Mouse Cytosine-5 RNA Methyltransferase NSun2 Is a
Component of the Chromatoid Body and Required for Testis
Differentiation. Mol. Cell. Biol. 33 : 1561–1570.
Iles, M.M., Law, M.H., Stacey, S.N., Han, J., Fang, S., Pfeiffer, R., et
al. (2013). A variant in FTO shows association with melanoma risk not
due to BMI. Nat. Genet. 45 : 428–32, 432e1.
Ishizuka, J.J., Manguso, R.T., Cheruiyot, C.K., Bi, K., Panda, A.,
Iracheta-Vellve, A., et al. (2019). Loss of ADAR1 in tumours overcomes
resistance to immune checkpoint blockade. Nature 565 : 43–48.
Italiano, A., Soria, J.-C., Toulmonde, M., Michot, J.-M., Lucchesi, C.,
Varga, A., et al. (2018). Tazemetostat, an EZH2 inhibitor, in relapsed
or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a
first-in-human, open-label, phase 1 study. Lancet Oncol. 19 :
649–659.
Jana, S., Hsieh, A.C., and Gupta, R. (2017). Reciprocal amplification of
caspase-3 activity by nuclear export of a putative human RNA-modifying
protein, PUS10 during TRAIL-induced apoptosis. Cell Death Dis. 8 :
e3093–e3093.
Janin M, Ortiz-Barahona V, de Moura MC, Martínez-Cardús A, Llinàs-Arias
P, Soler M, et al. (2019). Epigenetic loss of RNA-methyltransferase
NSUN5 in glioma targets ribosomes to drive a stress adaptive
translational program. Acta Neuropathol. 138 :1053-1074.
Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., et al. (2011).
N6-Methyladenosine in nuclear RNA is a major substrate of the
obesity-associated FTO. Nat. Chem. Biol. 7 : 885–887.
Jiang, Q., Crews, L.A., Barrett, C.L., Chun, H.-J., Court, A.C.,
Isquith, J.M., et al. (2013a). ADAR1 promotes malignant progenitor
reprogramming in chronic myeloid leukemia. Proc. Natl. Acad. Sci.110 : 1041–1046.
Jiang, Q., Crews, L.A., Barrett, C.L., Chun, H.-J., Court, A.C.,
Isquith, J.M., et al. (2013b). ADAR1 promotes malignant progenitor
reprogramming in chronic myeloid leukemia. Proc. Natl. Acad. Sci.110 : 1041–1046.
Jones, P.A., Ohtani, H., Chakravarthy, A., and Carvalho, D.D. De (2019).
Epigenetic therapy in immune-oncology. Nat. Rev. Cancer 19 :
151–161.
Kaniskan, H.Ü., Konze, K.D., and Jin, J. (2015a). Selective inhibitors
of protein methyltransferases. J. Med. Chem. 58 : 1596–629.
Kaniskan, H.Ü., Konze, K.D., and Jin, J. (2015b). Selective inhibitors
of protein methyltransferases. J. Med. Chem. 58 : 1596–629.
Li, Q., Huang, Y., Liu, X., Gan, J., Chen, H., and Yang, C.-G. (2016a).
Rhein Inhibits AlkB Repair Enzymes and Sensitizes Cells to Methylated
DNA Damage. J. Biol. Chem. 291 : 11083–11093.
Li, X., Xiong, X., Wang, K., Wang, L., Shu, X., Ma, S., et al. (2016b).
Transcriptome-wide mapping reveals reversible and dynamic
N1-methyladenosine methylome. Nat. Chem. Biol. 12 : 311–316.
Li, X., Xiong, X., Zhang, M., Wang, K., Chen, Y., Zhou, J., et al.
(2017a). Base-Resolution Mapping Reveals Distinct m1A Methylome in
Nuclear- and Mitochondrial-Encoded Transcripts. Mol. Cell 68 :
993-1005.e9.
Li, Y., Li, J., Luo, M., Zhou, C., Shi, X., Yang, W., et al. (2018a).
Novel long noncoding RNA NMR promotes tumour progression via NSUN2 and
BPTF in esophageal squamous cell carcinoma. Cancer Lett. 430 :
57–66.
Li, Z., Qian, P., Shao, W., Shi, H., He, X.C., Gogol, M., et al.
(2018b). Suppression of m6A reader Ythdf2 promotes hematopoietic stem
cell expansion. Cell Res. 28 : 904–917.
Li, Z., Weng, H., Su, R., Weng, X., Zuo, Z., Li, C., et al. (2017b). FTO
Plays an Oncogenic Role in Acute Myeloid Leukemia as a N 6
-Methyladenosine RNA Demethylase. Cancer Cell 31 : 127–141.
Lin, S., and Gregory, R.I. (2015). Identification of small molecule
inhibitors of Zcchc11 TUTase activity. RNA Biol. 12 : 792–800.
Lin, X., Chai, G., Wu, Y., Li, J., Chen, F., Liu, J., et al. (2019). RNA
m6A methylation regulates the epithelial mesenchymal transition of
cancer cells and translation of Snail. Nat. Commun. 10 : 2065.
Linder, B., Grozhik, A. V, Olarerin-George, A.O., Meydan, C., Mason,
C.E., and Jaffrey, S.R. (2015). Single-nucleotide-resolution mapping of
m6A and m6Am throughout the transcriptome. Nat. Methods 12 :
767–772.
Liu, J., Eckert, M.A., Harada, B.T., Liu, S.-M., Lu, Z., Yu, K., et al.
(2018). m6A mRNA methylation regulates AKT activity to promote the
proliferation and tumourigenicity of endometrial cancer. Nat. Cell Biol.20 : 1074–1083.
Liu, N., Dai, Q., Zheng, G., He, C., Parisien, M., and Pan, T. (2015).
N6-methyladenosine-dependent RNA structural switches regulate
RNA–protein interactions. Nature 518 : 560–564.
Liu, T., Li, C., Jin, L., Li, C., and Wang, L. (2019). The Prognostic
Value of m6A RNA Methylation Regulators in Colon Adenocarcinoma. Med.
Sci. Monit. 25 : 9435–9445.
Lu, L., Gaffney, S.G., Cannataro, V.L., and Townsend, J. (2020).
Transfer RNA methyltransferase gene NSUN2 mRNA expression modifies the
effect of T cell activation score on patient survival in head and neck
squamous carcinoma. Oral Oncol. 101 : 104554.
Lu, L., Zhu, G., Zeng, H., Xu, Q., and Holzmann, K. (2018). High tRNA
Transferase NSUN2 Gene Expression is Associated with Poor Prognosis in
Head and Neck Squamous Carcinoma. Cancer Invest. 36 : 246–253.
Ma, J., Yang, F., Zhou, C., Liu, F., Yuan, J., Wang, F., et al. (2017).
METTL14 suppresses the metastatic potential of hepatocellular carcinoma
by modulating N 6 ‐methyladenosine‐dependent primary MicroRNA
processing. Hepatology 65 : 529–543.
Meyer, K.D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C.E., and
Jaffrey, S.R. (2012). Comprehensive Analysis of mRNA Methylation Reveals
Enrichment in 3′ UTRs and near Stop Codons. Cell 149 : 1635–1646.
Montanaro, L., Brigotti, M., Clohessy, J., Barbieri, S., Ceccarelli, C.,
Santini, D., et al. (2006). Dyskerin expression influences the level of
ribosomal RNA pseudo-uridylation and telomerase RNA component in human
breast cancer. J. Pathol. 210 : 10–18.
Montanaro, L., Calienni, M., Bertoni, S., Rocchi, L., Sansone, P.,
Storci, G., et al. (2010). Novel Dyskerin-Mediated Mechanism of p53
Inactivation through Defective mRNA Translation. Cancer Res. 70 :
4767–4777.
Morena, F., Argentati, C., Bazzucchi, M., Emiliani, C., and Martino, S.
(2018). Above the Epitranscriptome: RNA Modifications and Stem Cell
Identity. Genes (Basel). 9 : 329.
Nakao, S., Mabuchi, M., Shimizu, T., Itoh, Y., Takeuchi, Y., Ueda, M.,
et al. (2014). Design and synthesis of prostate cancer antigen-1
(PCA-1/ALKBH3) inhibitors as anti-prostate cancer drugs. Bioorg. Med.
Chem. Lett. 24 : 1071–1074.
Nishikura, K. (2016a). A-to-I editing of coding and non-coding RNAs by
ADARs. Nat. Rev. Mol. Cell Biol. 17 : 83–96.
Nishikura, K. (2016b). A-to-I editing of coding and non-coding RNAs by
ADARs. Nat. Rev. Mol. Cell Biol. 17 : 83–96.
Oakes, E., Anderson, A., Cohen-Gadol, A., and Hundley, H.A. (2017a).
Adenosine Deaminase That Acts on RNA 3 (ADAR3) Binding to Glutamate
Receptor Subunit B Pre-mRNA Inhibits RNA Editing in Glioblastoma. J.
Biol. Chem. 292 : 4326–4335.
Oakes, E., Anderson, A., Cohen-Gadol, A., and Hundley, H.A. (2017b).
Adenosine Deaminase That Acts on RNA 3 (ADAR3) Binding to Glutamate
Receptor Subunit B Pre-mRNA Inhibits RNA Editing in Glioblastoma. J.
Biol. Chem. 292 : 4326–4335.
Okamoto, M., Fujiwara, M., Hori, M., Okada, K., Yazama, F., Konishi, H.,
et al. (2014). tRNA Modifying Enzymes, NSUN2 and METTL1, Determine
Sensitivity to 5-Fluorouracil in HeLa Cells. PLoS Genet. 10 :
e1004639.
Ota, H., Sakurai, M., Gupta, R., Valente, L., Wulff, B.-E., Ariyoshi,
K., et al. (2013). ADAR1 Forms a Complex with Dicer to Promote MicroRNA
Processing and RNA-Induced Gene Silencing. Cell 153 : 575–589.
Paris, J., Morgan, M., Campos, J., Spencer, G.J., Shmakova, A., Ivanova,
I., et al. (2019). Targeting the RNA m6A Reader YTHDF2 Selectively
Compromises Cancer Stem Cells in Acute Myeloid Leukemia. Cell Stem Cell25 : 137-148.e6.
Pendleton, K.E., Chen, B., Liu, K., Hunter, O. V., Xie, Y., Tu, B.P., et
al. (2017). The U6 snRNA m 6 A Methyltransferase METTL16 Regulates SAM
Synthetase Intron Retention. Cell 169 : 824-835.e14.
Penzo, M., Guerrieri, A.N., Zacchini, F., Treré, D., and Montanaro, L.
(2017). RNA Pseudouridylation in Physiology and Medicine: For Better and
for Worse. Genes (Basel). 8 :.
Penzo, M., Ludovini, V., Treré, D., Siggillino, A., Vannucci, J.,
Bellezza, G., et al. (2015). Dyskerin and TERC expression may condition
survival in lung cancer patients. Oncotarget 6 : 21755–21760.
Porath, H.T., Carmi, S., and Levanon, E.Y. (2014). A genome-wide map of
hyper-edited RNA reveals numerous new sites. Nat. Commun. 5 :
4726.
Porath, H.T., Knisbacher, B.A., Eisenberg, E., and Levanon, E.Y. (2017).
Massive A-to-I RNA editing is common across the Metazoa and correlates
with dsRNA abundance. Genome Biol. 18 : 185.
Prebet, T., Sun, Z., Figueroa, M.E., Ketterling, R., Melnick, A.,
Greenberg, P.L., et al. (2014). Prolonged administration of azacitidine
with or without entinostat for myelodysplastic syndrome and acute
myeloid leukemia with myelodysplasia-related changes: results of the US
Leukemia Intergroup trial E1905. J. Clin. Oncol. 32 : 1242–8.
Qin, Y.-R., Qiao, J.-J., Chan, T.H.M., Zhu, Y.-H., Li, F.-F., Liu, H.,
et al. (2014). Adenosine-to-Inosine RNA Editing Mediated by ADARs in
Esophageal Squamous Cell Carcinoma. Cancer Res. 74 : 840–851.
Rintala-Dempsey, A.C., and Kothe, U. (2017). Eukaryotic stand-alone
pseudouridine synthases – RNA modifying enzymes and emerging regulators
of gene expression? RNA Biol. 14 : 1185–1196.
Rosselló-Tortella, M., Ferrer, G., and Esteller, M. (2020).
Epitranscriptomics in Hematopoiesis and Hematologic Malignancies. Blood
Cancer Discov. 1 : 26–31.
Roundtree, I.A., Evans, M.E., Pan, T., and He, C. (2017a). Dynamic RNA
Modifications in Gene Expression Regulation. Cell 169 :
1187–1200.
Roundtree, I.A., and He, C. (2016). RNA epigenetics — chemical
messages for posttranscriptional gene regulation. Curr. Opin. Chem.
Biol. 30 : 46–51.
Roundtree, I.A., Luo, G.-Z., Zhang, Z., Wang, X., Zhou, T., Cui, Y., et
al. (2017b). YTHDC1 mediates nuclear export of N6-methyladenosine
methylated mRNAs. Elife 6 :.
Safra, M., Sas-Chen, A., Nir, R., Winkler, R., Nachshon, A., Bar-Yaacov,
D., et al. (2017). The m1A landscape on cytosolic and mitochondrial mRNA
at single-base resolution. Nature 551 : 251–255.
Schwartz, S., Bernstein, D.A., Mumbach, M.R., Jovanovic, M., Herbst,
R.H., León-Ricardo, B.X., et al. (2014). Transcriptome-wide Mapping
Reveals Widespread Dynamic-Regulated Pseudouridylation of ncRNA and
mRNA. Cell 159 : 148–162.
Shaheen, R., Tasak, M., Maddirevula, S., Abdel-Salam, G.M.H., Sayed,
I.S.M., Alazami, A.M., et al. (2019). PUS7 mutations impair
pseudouridylation in humans and cause intellectual disability and
microcephaly. Hum. Genet. 138 : 231–239.
Shi, H., Wang, X., Lu, Z., Zhao, B.S., Ma, H., Hsu, P.J., et al. (2017).
YTHDF3 facilitates translation and decay of N6-methyladenosine-modified
RNA. Cell Res. 27 : 315–328.
Shoshan, E., Mobley, A.K., Braeuer, R.R., Kamiya, T., Huang, L.,
Vasquez, M.E., et al. (2015). Reduced adenosine-to-inosine miR-455-5p
editing promotes melanoma growth and metastasis. Nat. Cell Biol.17 : 311–321.
Sieron, P., Hader, C., Hatina, J., Engers, R., Wlazlinski, A., Müller,
M., et al. (2009). DKC1 overexpression associated with prostate cancer
progression. Br. J. Cancer 101 : 1410–1416.
Śledź, P., and Jinek, M. (2016). Structural insights into the molecular
mechanism of the m6A writer complex. Elife 5 :.
Song, J., Zhuang, Y., Zhu, C., Meng, H., Lu, B., Xie, B., et al. (2020).
Differential roles of human PUS10 in miRNA processing and tRNA
pseudouridylation. Nat. Chem. Biol. 16 : 160–169.
Soukarieh, F., Nowicki, M.W., Bastide, A., Pöyry, T., Jones, C., Dudek,
K., et al. (2016). Design of nucleotide-mimetic and non-nucleotide
inhibitors of the translation initiation factor eIF4E: Synthesis,
structural and functional characterisation. Eur. J. Med. Chem.124 : 200–217.
Stein, E.M., Garcia-Manero, G., Rizzieri, D.A., Tibes, R., Berdeja,
J.G., Savona, M.R., et al. (2018). The DOT1L inhibitor pinometostat
reduces H3K79 methylation and has modest clinical activity in adult
acute leukemia. Blood 131 : 2661–2669.
Su, R., Dong, L., Li, C., Nachtergaele, S., Wunderlich, M., Qing, Y., et
al. (2018). R-2HG Exhibits Anti-tumour Activity by Targeting
FTO/m6A/MYC/CEBPA Signaling. Cell 172 : 90-105.e23.
Svensen, N., and Jaffrey, S.R. (2016). Fluorescent RNA Aptamers as a
Tool to Study RNA-Modifying Enzymes. Cell Chem. Biol. 23 :
415–425.
Taketo, K., Konno, M., Asai, A., Koseki, J., Toratani, M., Satoh, T., et
al. (2017). The epitranscriptome m6A writer METTL3 promotes chemo- and
radioresistance in pancreatic cancer cells. Int. J. Oncol.
Tanabe, A., Tanikawa, K., Tsunetomi, M., Takai, K., Ikeda, H., Konno,
J., et al. (2016). RNA helicase YTHDC2 promotes cancer metastasis via
the enhancement of the efficiency by which HIF-1α mRNA is translated.
Cancer Lett. 376 : 34–42.
Tang, H., Fan, X., Xing, J., Liu, Z., Jiang, B., Dou, Y., et al. (2015).
NSun2 delays replicative senescence by repressing p27 (KIP1) translation
and elevating CDK1 translation. Aging (Albany. NY). 7 :
1143–1155.
Terajima, H., Yoshitane, H., Ozaki, H., Suzuki, Y., Shimba, S., Kuroda,
S., et al. (2017). ADARB1 catalyzes circadian A-to-I editing and
regulates RNA rhythm. Nat. Genet. 49 : 146–151.
Toh, J.D.W., Sun, L., Lau, L.Z.M., Tan, J., Low, J.J.A., Tang, C.W.Q.,
et al. (2015). A strategy based on nucleotide specificity leads to a
subfamily-selective and cell-active inhibitor of N 6 -methyladenosine
demethylase FTO. Chem. Sci. 6 : 112–122.
Tomaselli, S., Galeano, F., Alon, S., Raho, S., Galardi, S., Polito,
V.A., et al. (2015). Modulation of microRNA editing, expression and
processing by ADAR2 deaminase in glioblastoma. Genome Biol. 16 :
5.
Trixl, L., and Lusser, A. (2019). The dynamic RNA modification
5‐methylcytosine and its emerging role as an epitranscriptomic mark.
Wiley Interdiscip. Rev. RNA 10 : e1510.
Tuorto, F., Liebers, R., Musch, T., Schaefer, M., Hofmann, S., Kellner,
S., et al. (2012). RNA cytosine methylation by Dnmt2 and NSun2 promotes
tRNA stability and protein synthesis. Nat. Struct. Mol. Biol. 19 :
900–905.
Véliz, E.A., Easterwood, L.M., and Beal, P.A. (2003). Substrate
Analogues for an RNA-Editing Adenosine Deaminase: Mechanistic
Investigation and Inhibitor Design. J. Am. Chem. Soc. 125 :
10867–10876.
Villanueva, L., Álvarez-Errico, D., and Esteller, M. (2020). The
Contribution of Epigenetics to Cancer Immunotherapy. Trends Immunol.41 : 676–691.
Vu, L.P., Pickering, B.F., Cheng, Y., Zaccara, S., Nguyen, D., Minuesa,
G., et al. (2017). The N6-methyladenosine (m6A)-forming enzyme METTL3
controls myeloid differentiation of normal hematopoietic and leukemia
cells. Nat. Med. 23 : 1369–1376.
Wang, J., Zhang, C., He, W., and Gou, X. (2020). Effect of m6A RNA
Methylation Regulators on Malignant Progression and Prognosis in Renal
Clear Cell Carcinoma. Front. Oncol. 10 :.
Wang, T., Hong, T., Huang, Y., Su, H., Wu, F., Chen, Y., et al. (2015).
Fluorescein Derivatives as Bifunctional Molecules for the Simultaneous
Inhibiting and Labeling of FTO Protein. J. Am. Chem. Soc. 137 :
13736–13739.
Wang, X., Lu, Z., Gomez, A., Hon, G.C., Yue, Y., Han, D., et al. (2014).
N6-methyladenosine-dependent regulation of messenger RNA stability.
Nature 505 : 117–120.
Weng, H., Huang, H., Wu, H., Qin, X., Zhao, B.S., Dong, L., et al.
(2018). METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation
and Promotes Leukemogenesis via mRNA m6A Modification. Cell Stem Cell22 : 191-205.e9.
Woo, H.-H., and Chambers, S.K. (2019). Human ALKBH3-induced m1A
demethylation increases the CSF-1 mRNA stability in breast and ovarian
cancer cells. Biochim. Biophys. Acta - Gene Regul. Mech. 1862 :
35–46.
Xiao, W., Adhikari, S., Dahal, U., Chen, Y.-S., Hao, Y.-J., Sun, B.-F.,
et al. (2016). Nuclear m 6 A Reader YTHDC1 Regulates mRNA Splicing. Mol.
Cell 61 : 507–519.
Xing, J., Yi, J., Cai, X., Tang, H., Liu, Z., Zhang, X., et al. (2015).
NSun2 Promotes Cell Growth via Elevating Cyclin-Dependent Kinase 1
Translation. Mol. Cell. Biol. 35 : 4043–4052.
Yan, F., Al-Kali, A., Zhang, Z., Liu, J., Pang, J., Zhao, N., et al.
(2018). A dynamic N6-methyladenosine methylome regulates intrinsic and
acquired resistance to tyrosine kinase inhibitors. Cell Res. 28 :
1062–1076.
Yang, D.-D., Chen, Z.-H., Yu, K., Lu, J.-H., Wu, Q.-N., Wang, Y., et al.
(2020). METTL3 Promotes the Progression of Gastric Cancer via Targeting
the MYC Pathway. Front. Oncol. 10 :.
Yang, J., Risch, E., Zhang, M., Huang, C., Huang, H., and Lu, L.
(2017a). Association of tRNA methyltransferase NSUN2/IGF-II molecular
signature with ovarian cancer survival. Futur. Oncol. 13 :
1981–1990.
Yang, S., Wei, J., Cui, Y.-H., Park, G., Shah, P., Deng, Y., et al.
(2019). m6A mRNA demethylase FTO regulates melanoma tumourigenicity and
response to anti-PD-1 blockade. Nat. Commun. 10 : 2782.
Yang, X., Yang, Y., Sun, B.-F., Chen, Y.-S., Xu, J.-W., Lai, W.-Y., et
al. (2017b). 5-methylcytosine promotes mRNA export — NSUN2 as the
methyltransferase and ALYREF as an m5C reader. Cell Res. 27 :
606–625.
Zhang, C., Chen, Y., Sun, B., Wang, L., Yang, Y., Ma, D., et al.
(2017a). m6A modulates haematopoietic stem and progenitor cell
specification. Nature 549 : 273–276.
Zhang, C., Samanta, D., Lu, H., Bullen, J.W., Zhang, H., Chen, I., et
al. (2016). Hypoxia induces the breast cancer stem cell phenotype by
HIF-dependent and ALKBH5-mediated m 6 A-demethylation of NANOG mRNA.
Proc. Natl. Acad. Sci. 113 : E2047–E2056.
Zhang, J., Chen, Z., Tang, Z., Huang, J., Hu, X., and He, J. (2017b).
RNA editing is induced by type I interferon in esophageal squamous cell
carcinoma. Tumour Biol. 39 : 101042831770854.
Zhang, S., Zhao, B.S., Zhou, A., Lin, K., Zheng, S., Lu, Z., et al.
(2017c). m 6 A Demethylase ALKBH5 Maintains Tumourigenicity of
Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell
Proliferation Program. Cancer Cell 31 : 591-606.e6.
Zhang, Z., Chen, L.-Q., Zhao, Y.-L., Yang, C.-G., Roundtree, I.A.,
Zhang, Z., et al. (2019). Single-base mapping of m 6 A by an
antibody-independent method. Sci. Adv. 5 : eaax0250.
Zhao, X., Patton, J.R., Davis, S.L., Florence, B., Ames, S.J., and
Spanjaard, R.A. (2004). Regulation of Nuclear Receptor Activity by a
Pseudouridine Synthase through Posttranscriptional Modification of
Steroid Receptor RNA Activator. Mol. Cell 15 : 549–558.
Zheng, G., Dahl, J.A., Niu, Y., Fedorcsak, P., Huang, C.-M., Li, C.J.,
et al. (2013). ALKBH5 Is a Mammalian RNA Demethylase that Impacts RNA
Metabolism and Mouse Fertility. Mol. Cell 49 : 18–29.
Zheng, W., Dong, X., Zhao, Y., Wang, S., Jiang, H., Zhang, M., et al.
(2019). Multiple Functions and Mechanisms Underlying the Role of METTL3
in Human Cancers. Front. Oncol. 9 :.
Zhong, X., Yu, J., Frazier, K., Weng, X., Li, Y., Cham, C.M., et al.
(2018). Circadian Clock Regulation of Hepatic Lipid Metabolism by
Modulation of m6A mRNA Methylation. Cell Rep. 25 : 1816-1828.e4.
Zipeto, M.A., Court, A.C., Sadarangani, A., Delos Santos, N.P., Balaian,
L., Chun, H.-J., et al. (2016). ADAR1 Activation Drives Leukemia Stem
Cell Self-Renewal by Impairing Let-7 Biogenesis. Cell Stem Cell19 : 177–191.