References
Boddy, L. (1999). Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous environments. Mycologia , 91, 13–32, doi: 10.1080/00275514.1999.12060990.
Boddy, L. & Donnelly., D.P. (2008). Fractal geometry and microorganisms in the environment. In: Biophysical chemistry of fractal structures and processes in environmental systems . pp. 239–272.
Bouda, M., Caplan, J.S. & Saiers, J.E. (2016). Box-Counting Dimension Revisited: Presenting an Efficient Method of Minimizing Quantization Error and an Assessment of the Self-Similarity of Structural Root Systems. Front. Plant Sci. , 7, 1–15, doi: 10.3389/fpls.2016.00149.
Boyer, L.R., Brain, P., Xu, X.M. & Jeffries, P. (2015). Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency.Mycorrhiza , 25, 215–227, doi: 10.1007/s00572-014-0603-6.
Crawford, J.W., Ritz, K. & Young, I.M. (1993). Quantification of fungal morphology, gaseous transport and microbial dynamics in soil: an integrated framework utilising fractal geometry. In: Soil Structure/Soil Biota Interrelationships . Elsevier, pp. 157–172.
Croll, D., Giovannetti, M., Koch, A.M., Sbrana, C., Ehinger, M., Lammers, P.J., et al. (2009). Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol. , 181, 924–937, doi: 10.1111/j.1469-8137.2008.02726.x.
Engelmoer, D.J.P., Behm, J.E. & Kiers, E.T. (2014). Intense competition between arbuscular mycorrhizal mutualists in an in vitro root microbiome negatively affects total fungal abundance. Mol. Ecol. , 23, 1584–1593, doi: 10.1111/mec.12451.
Falconer, K. (2003). Fractal Geometry . John Wiley & Sons, Ltd, Chichester, UK.
Fortin, J.A., Bécard, G., Declerck, S., Dalpé, Y., St-Arnaud, M., Coughlan, A.P., et al. (2002). Arbuscular mycorrhiza on root-organ cultures. Can. J. Bot. , 80, 1–20, doi: 10.1139/b01-139.
Foster, K.R., Schluter, J., Coyte, K.Z. & Rakoff-Nahoum, S.(2017). The evolution of the host microbiome as an ecosystem on a leash.Nature , 548, 43–51, doi: 10.1038/nature23292.
Fox, J., Weisberg, S. & Price, B. (2016). car: Companion to Applied Regression. R Package version: 2.1-3.
Frank, S.A. (1996a). Host–symbiont conflict over the mixing of symbiotic lineages. Proc. R. Soc. London. Ser. B Biol. Sci. , 263, 339–344, doi: 10.1098/rspb.1996.0052.
Frank, S.A. (1996b). Models of Parasite Virulence. Q. Rev. Biol. , 71, 37–78, doi: 10.1086/419267.
Frank, S.A. (2003). Perspective: Repression of Competition and the Evolution of Cooperation. Evolution (N. Y). , 57, 693–705, doi: 10.1111/j.0014-3820.2003.tb00283.x.
Garcia, J., Barker, D.G. & Journet, E.-P. (2006). Seed storage and germination. In: Medicago truncatula handbook . pp. 1–9.
Giovannetti, M., Avio, L. & Sbrana, C. (2015). Functional Significance of Anastomosis in Arbuscular Mycorrhizal Networks.Curr. Biol. , 19, 41–67, doi: 10.1007/978-94-017-7395-9_2.
Giovannetti, M. & Sbrana, C. (2001). Self and non-self responses in hyphal tips of arbuscular mycorrhizal fungi. In: Cell Biology of Plant and Fungal Tip Growth (eds. Geitmann, A., Cresti, M. & Brent, I.). IOS Press, pp. 221–232.
Giovannetti, M., Sbrana, C., Avio, L. & Strani, P. (2004). Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytol. , 164, 175–181, doi: 10.1111/j.1469-8137.2004.01145.x.
Giovannetti, M., Sbrana, C., Strani, P., Agnolucci, M., Rinaudo, V. & Avio, L. (2003). Genetic Diversity of Isolates of Glomus mosseae from Different Geographic Areas Detected by Vegetative Compatibility Testing and Biochemical and Molecular Analysis. Appl. Environ. Microbiol. , 69, 616–624, doi: 10.1128/AEM.69.1.616-624.2003.
Griffin, A.S. & West, S.A. (2002). Kin selection: fact and fiction. Trends Ecol. Evol. , 17, 15–21, doi: 10.1016/S0169-5347(01)02355-2.
Gustafsson, F.S., Whiteside, M.D., Jiranek, V. & Durall, D.M.(2015). Development and use of a quantum dot probe to track multiple yeast strains in mixed culture. Sci. Rep. , 4, 6971, doi: 10.1038/srep06971.
Heaton, L., Obara, B., Grau, V., Jones, N., Nakagaki, T., Boddy, L., et al. (2012a). Analysis of fungal networks. Fungal Biol. Rev. , 26, 12–29, doi: 10.1016/j.fbr.2012.02.001.
Heaton, L.L.M., López, E., Maini, P.K., Fricker, M.D. & Jones, N.S. (2012b). Advection, diffusion, and delivery over a network.Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. , 86, 1–10, doi: 10.1103/PhysRevE.86.021905.
van der Heijden, M.G.A.A., Streitwolf-Engel, R., Riedl, R., Siegrist, S., Neudecker, A., Ineichen, K., et al. (2006). The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol. , 172, 739–752, doi: 10.1111/j.1469-8137.2006.01862.x.
Hitchcock, D., Glasbey, C.A. & Ritz, K. (1996). Image analysis of space-filling by networks: Application to a fungal mycelium.Biotechnol. Tech. , 10, 205–210, doi: 10.1007/BF00158947.
Hortal, S., Powell, J.R., Plett, J.M., Simonin, A. & Anderson, I.C. (2016). Intraspecific competition between ectomycorrhizal Pisolithus microcarpus isolates impacts plant and fungal performance under elevated CO2 and temperature. FEMS Microbiol. Ecol. , 92, 1–11, doi: 10.1093/femsec/fiw113.
Jakobsen, I. (2004). Hyphal Fusion to Plant Species Connections : Giant Mycelia and Community Nutrient Flow. New Phytol. , 164, 4–7, doi: 10.1007/500122-004-1653-5.from.
Jansa, J., Smith, F.A. & Smith, S.E. (2008). Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol. , 177, 779–789, doi: 10.1111/j.1469-8137.2007.02294.x.
Jiang, Y., Wang, W., Xie, Q., Liu, N., Liu, L., Wang, D.,et al. (2017). Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science (80-. ). , 356, 1172–1173, doi: 10.1126/science.aam9970.
Jin, H., Germida, J.J. & Walley, F.L. (2013). Impact of arbuscular mycorrhizal fungal inoculants on subsequent arbuscular mycorrhizal fungi colonization in pot-cultured field pea (Pisum sativum L.). Mycorrhiza , 23, 45–59, doi: 10.1007/s00572-012-0448-9.
Johansen, A. & Jensen, E.S. (1996). Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorrhizal fungus. Soil Biol. Biochem. , 28, 73–81, doi: 10.1016/0038-0717(95)00117-4.
Keymer, A., Pimprikar, P., Wewer, V., Huber, C., Brands, M., Bucerius, S.L., et al. (2017). Lipid transfer from plants to arbuscular mycorrhiza fungi. Elife , 6, 1–33, doi: 10.7554/eLife.29107.
Kiers, E.T., Duhamel, M., Beesetty, Y., Mensah, J.A., Franken, O., Verbruggen, E., et al. (2011). Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal Symbiosis. Science (80-. ). , 333, 880–882, doi: 10.1126/science.1208473.
Koide, R.T. (2000). Functional complementarity in the arbuscular mycorrhizal symbiosis. New Phytol. , 147, 233–235, doi: 10.1046/j.1469-8137.2000.00710.x.
Levin, S. & West, S. (2017a). Kin Selection in the RNA World.Life , 7, 53, doi: 10.3390/life7040053.
Levin, S.R. & West, S.A. (2017b). The evolution of cooperation in simple molecular replicators. Proc. R. Soc. B Biol. Sci. , 284, 1–8, doi: 10.1098/rspb.2017.1967.
Lin, G., Mccormack, M.L. & Guo, D. (2015). Arbuscular mycorrhizal fungal effects on plant competition and community structure.J. Ecol. , 103, 1224–1232, doi: 10.1111/1365-2745.12429.
Long, L.K., Yao, Q., Huang, Y.H., Yang, R.H., Guo, J. & Zhu, H.H. (2010). Effects of arbuscular mycorrhizal fungi on zinnia and the different colonization between Gigaspora and Glomus. World J. Microbiol. Biotechnol. , 26, 1527–1531, doi: 10.1007/s11274-010-0313-y.
Luginbuehl, L.H., Menard, G.N., Kurup, S., Van Erp, H., Radhakrishnan, G. V., Breakspear, A., et al. (2017). Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant.Science (80-. ). , 356, 1175–1178, doi: 10.1126/science.aan0081.
Noë, R. & Kiers, E.T. (2018). Mycorrhizal Markets, Firms, and Co-ops. Trends Ecol. Evol. , 33, 777–789, doi: 10.1016/j.tree.2018.07.007.
Novais, C.B. de, Pepe, A., Siqueira, J.O., Giovannetti, M. & Sbrana, C. (2017). Compatibility and incompatibility in hyphal anastomosis of arbuscular mycorrhizal fungi. Sci. Agric. , 74, 411–416, doi: 10.1590/1678-992x-2016-0243.
Olsson, O., Olsson, P.A. & Hammer, E.C. (2014). Phosphorus and carbon availability regulate structural composition and complexity of AM fungal mycelium. Mycorrhiza , 24, 443–451, doi: 10.1007/s00572-014-0557-8.
Pel, R., Dupin, S., Schat, H., Ellers, J., Kiers, E.T. & van Straalen, N.M. (2018). Growth benefits provided by different arbuscular mycorrhizal fungi to Plantago lanceolata depend on the form of available phosphorus. Eur. J. Soil Biol. , 88, 89–96, doi: 10.1016/j.ejsobi.2018.07.004.
Pepe, A., Giovannetti, M. & Sbrana, C. (2016). Different levels of hyphal self-incompatibility modulate interconnectedness of mycorrhizal networks in three arbuscular mycorrhizal fungi within the Glomeraceae. Mycorrhiza , 26, 325–332, doi: 10.1007/s00572-015-0671-2.
Queller, D.C. (1992). Does population viscosity promote kin selection? Trends Ecol. Evol. , 7, 322–324, doi: 10.1016/0169-5347(92)90120-Z.
Ritz, K., Millar, S.M. & Crawford, J.W. (1996). Detailed visualisation of hyphal distribution in fungal mycelia growing in heterogeneous nutritional environments. J. Microbiol. Methods , 25, 23–28, doi: 10.1016/0167-7012(95)00077-1.
Roger, A., Colard, A., Angelard, C. & Sanders, I.R. (2013). Relatedness among arbuscular mycorrhizal fungi drives plant growth and intraspecific fungal coexistence. ISME J. , 7, 2137–2146, doi: 10.1038/ismej.2013.112.
dos Santos, M. & West, S.A. (2018). The coevolution of cooperation and cognition in humans. Proc. R. Soc. B Biol. Sci. , 285, 20180723, doi: 10.1098/rspb.2018.0723.
Sbrana, C., Fortuna, P. & Giovannetti, M. (2011). Plugging into the network: Belowground connections between germlings and extraradical mycelium of arbuscular mycorrhizal fungi. Mycologia , 103, 307–316, doi: 10.3852/10-125.
van’t Padje, A., Oyarte Galvez, L., Klein, M., Hink, M.A., Postma, M., Shimizu, T., et al. (2020a). Temporal tracking of quantum-dot apatite across in vitro mycorrhizal networks shows how host demand can influence fungal nutrient transfer strategies. ISME J. doi: 10.1038/s41396-020-00786-w.
van’t Padje, A., Werner, G.D.A. & Kiers, E.T. (2020b). Mycorrhizal fungi control value of phosphorus in trade symbiosis with host roots when exposed to abrupt ‘crashes’ and ‘booms’ of resource availability. New Phytol. doi: 10.1111/nph.17055.
Wagg, C., Jansa, J., Schmid, B. & van der Heijden, M.G.A.(2011). Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecol. Lett. , 14, 1001–1009, doi: 10.1111/j.1461-0248.2011.01666.x.
Walder, F., Niemann, H., Natarajan, M., Lehmann, M.F., Boller, T. & Wiemken, A. (2012). Mycorrhizal networks: Common goods of plants shared under unequal terms of trade. Plant Physiol. , 159, 789–797, doi: 10.1104/pp.112.195727.
West, S.A. (2002). Cooperation and Competition Between Relatives. Science (80-. ). , 296, 72–75, doi: 10.1126/science.1065507.
West, S.A., Griffin, A.S. & Gardner, A. (2007). Evolutionary Explanations for Cooperation. Curr. Biol. , 17, 661–672, doi: 10.1016/j.cub.2007.06.004.
West, S.A., Kiers, E.T., Pen, I. & Denison, R.F. (2002). Sanctions and mutualism stability: when should less beneficial mutualists be tolerated? J. Evol. Biol. , 15, 830–837, doi: 10.1046/j.1420-9101.2002.00441.x.
Whiteside, M.D., Treseder, K.K. & Atsatt, P.R. (2009). The brighter side of soils: Quantum dots track organic nitrogen through fungi and plants. Ecology , 90, 100–108, doi: 10.1890/07-2115.1.
Whiteside, M.D., Werner, G.D.A., Caldas, V.E.A., van ’t Padje, A., Dupin, S.E., Elbers, B., et al. (2019). Mycorrhizal Fungi Respond to Resource Inequality by Moving Phosphorus from Rich to Poor Patches across Networks. Curr. Biol. , 29, 2043-2050.e8, doi: 10.1016/j.cub.2019.04.061.
Wyatt, G.A.K., Kiers, E.T., Gardner, A. & West, S.A. (2014). A biological market analysis of the plant-mycorrhizal symbiosis.Evolution (N. Y). , 68, 2603–2618, doi: 10.1111/evo.12466.