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Abstract: This paper studies the definite solution problems of partial differential equation 

(PDE) under two kinds of elastic coefficients (exponential function type, polynomial 

function type) of external boundary conditions. Then the definite solution problems are 

solved by Laplace transformation, the method of undetermined coefficients and Gaver-

Stehfest numerical inversion equation. Firstly, the definite solution problems of linear PDE 

are transformed into the boundary value problems of linear differential equations in Laplace 

Space by Laplace transformation. Secondly, the solutions in Laplace space to the boundary 

value problems of linear differential equations are obtained through using the method of 

undetermined coefficients. Finally, the solution in real space to the definite solution of PDE 

under three kinds of elastic coefficients of external boundary conditions by using the Gaver-

Stehfest numerical inversion equation. According to the above solution steps, this paper 

gives two different examples and obtains images of the solutions to the definite solution 

problems of PDE under two kinds of elastic coefficients of external boundary conditions. 

The introduction of two kinds of elastic coefficients of external boundary conditions not 

only expands the scope of the research on the definite solution of PDE, but also improves 

the matching degree between the theoretical model and the actual problems. 

Keywords: Definite solution problems; Elastic outer boundary condition; Elastic 

coefficients; Exponential function type, Polynomial function type 

1 Introduction 

Partial differential equations and their systems as models for describing real-world 

phenomena often appear in the field of physical sciences and engineering. In practical 

applications, the solutions to the partial differential equation that satisfies some additional 

conditions, such as initial conditions and/or boundary conditions are a common concern. 

Therefore, the study of solutions to definite solution problems of partial differential equations 
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plays an important role in the study of physical phenomena. Domestic and foreign scholars 

have done a lot of research in this area. Nowadays, in order to better solve practical problems, 

the elastic outer boundary conditions derived from the concept of elasticity are gradually 

applied to the definite solution of PDE. 

Elasticity reflects the sensitivity of changes in one variable to changes in another one. 

In 1920, Marshall [1] proposed firstly the concept of demand elasticity. After that, Woods and 

Sauro [2] gave formulas for elasticity and elasticity coefficient. Madenci and Dorduncu et al. 
[3] obtained the numerical solutions of linear and nonlinear partial differential equations 

(PDEs) by using differential operators. The boundary conditions of model they studied are 

Dirichlet and Neumann-characteristic boundary conditions. Yang and Goodyer et al. [4] 

introduced a new software tool for solving efficient solutions of parabolic linear and 

nonlinear partial differential equations. It is suitable for two different sample problems, which 

illustrate the flexibility and robustness of the tool. Abraham-Shrauner [5] used the Power 

Index Method to identify the possible exact analytical nonlinear solutions of any of two 

characteristics of hyperbolic functions or any of three characteristics of Jacobian elliptic 

functions of nonlinear partial differential equations, which are invariant under the 

independent variables translations. Benamou and Froese et al. [6] applied the classical “direct” 

technique involving Lie symmetries of partial differential equations to the boundary value 

problems of generalized Burgers equations with time-dependent viscosity coefficient and 

solved the particular sub-cases. However, this method has its limitations. Polyanin and 

Zhurov [7] have derived the nonlinear differential-difference equations of motion for viscous 

incompressible fluid with finite relaxation rate and given the corresponding exact solutions 

to these equations. The results obtained can be used to solve some hydrodynamic problems 

for the differential-difference model of viscous fluid. Lee and Manteuffel [8] proposed a 

natural framework for combining a Newton linearization and a FOSLL discretization 

approach for nonlinear partial differential equations. Yang and Deng et al. [9] proposed the 

Riccati-Bernoulli sub-ODE method to construct the exact traveling wave solutions, solitary 

wave solutions and spike wave solutions of nonlinear partial differential equations and given 

the Backlund transformation of the Riccati-Bernoulli equation. This method provides a 

powerful and simple mathematical tool for solving some nonlinear partial differential 

equations in mathematical physics. Quarteroni et al. [10] summarized the basic idea of domain 

decomposition method. This method is an iterative method for solving linear or nonlinear 

systems. Grande et al. [11] introduced and analyzed a new higher-order finite element method 

for elliptic partial differential equations on stationary smooth surfaces. The results of the 

numerical experiments demonstrate the high-order convergence of the method. 

The study of reservoir seepage model is an important application of definite solution 

problems of differential equation. In recent years, the seepage theory has been continuously 

improved, but the theoretical and applied research on seepage problems under elastic 

boundary condition is still in primary stage. The study of seepage mechanics under elastic 

boundary condition has received more and more attention and has become a new direction in 
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the development of modern seepage mechanics. Li et al [12-14] studied oil and gas flow 

characteristics in the reservoir with the elastic outer boundary, the fractal homogeneous 

reservoir with the elastic outer boundary and two-region composite reservoir seepage model 

under elasticity of the outer boundary. Zheng et al [15] studied the dual media shale gas 

reservoir with the elastic outer boundary. The Laplace transform is applied in the solution 

process of these four models. We find that the elastic coefficients were treated as constants 

during the Laplace transform of the model. However, in real elastic boundary reservoirs, the 

elastic coefficient is a function of location and time. Therefore, we study the solution of the 

definite solution problems of PDE whose elastic coefficients are functions. 

Based on the above research, this paper studies the definite solution problems of linear 

partial differential equations (PDE) under two kinds of elastic coefficients (exponential 

function type, polynomial function type) of external boundary conditions. In section 2, we 

propose the definite solution problems of PDE under two kinds of elastic coefficients of 

external boundary conditions and solve definite solution problems by Laplace transformation, 

the method of undetermined coefficients and Gaver-Stehfest numerical inversion equation. 

In section 3, examples of the definite solution problems of PDE under two kinds of elastic 

coefficients of external boundary conditions are solved.  

2 Solving the definite solution problem of PDE under two kinds of elastic 

coefficients of external boundary conditions  

In this section, we first propose the following definite solution problem of linear PDE: 
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where D , E , F , H , a , b are constants, 2 2 0E F+  , ( )  1 ,x Cp a b ,

( ) ( )  2, ,Cq x r x a b , ( )  1 0,t Cg    and ( ),x t  is elastic coefficient.  

Next, we study the definite solution problem (1) of PDEs under the following two kinds 

of elastic coefficient of external boundary conditions: 

(1) Elastic coefficient of exponential function type 
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Laplace transformation is performed on the above definite solution problem (1) of PDE, 

and ( ) ( )
0

, ,sty x s e y x t dt


−=  , ( ) ( )
0

stg s e g t dt


−=  , then the definite solution problem (1) 

is transformed into the following boundary value problems: 

(1) Elastic coefficient of exponential function type 
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(2) Elastic coefficient of polynomial function type 
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where s  is Laplace space variable. 

Theorem 1: Under the premise of existence and uniqueness of solution to boundary 

value problem (5), the solution to the definite solution problem (4) with elastic coefficient 

of exponential function type of external boundary condition is 
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and ( )1 ,y x s , ( )2 ,y x s  are two linearly independent solutions to governing equation

( ) ( ) ( ) ( )
2

2
, 0

d y dy
p x q x r x s y x s

dx dx
+ − =  +  of the definite solution problem (4). 

Proof: The general solution to governing equation of the definite solution problem (4) 

is  
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 ( ) ( ) ( )1 1 2 2, , ,y x s A y x s A y x s= +  (9) 

Substituting equation (9) into the boundary conditions of the definite solution problem 

(4), then  
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Equations (10) and (11) are a system of linear equations for 1A  and 2A , whose 

coefficient determinant is 
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Using Cramer's law, then 
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Substituting equations (13) and (14) into equation (9), then the solution to the definite 

solution problem (5) is equation (6). 

Theorem 2: Under the premise of existence and uniqueness of solution to boundary 

value problem (5), the solution to the definite solution problem (5) with elastic coefficient 

of polynomial function type of external boundary condition is 
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and ( )1 ,y x s , ( )2 ,y x s  are two linearly independent solutions to governing equation
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Proof: The general solution to governing equation of the definite solution problem (5) 

is  
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Equations (20) and (21) are a system of linear equations for 1B  and 2B , whose 

coefficient determinant is 
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Substituting equations (23) and (24) into equation (19), then the solution to the 

definite solution problem (5) is equation (15). 

Finally, using the Gaver-Stehfest numerical inversion equation [16] to the equations (6)

and (15), the real-space solutions to the definite solution problem (1) under two kinds of 

elastic coefficients of external boundary conditions are: 
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(2) Elastic coefficient of polynomial function type 
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3 Case studies  
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Case 1: The following definite solution problem with elastic coefficient of exponential 

function type of external boundary condition is solved. 
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 (27) 

Laplace transformation is performed on the above definite solution problem (27) of 

PDE, and  ( ) ( )
0

, ,sty x s e y x t dt


−=  , then the definite solution problem (27) is transformed 

into the following boundary value problem: 

 

( ) ( )

( )
( )

( )
( )

2 2
2

2 2

1
, 0

,
,

,
, 0

x a

x

x b

d y dy v
s y x s a x b

dx x dx x

dy x s D
Ey x s F

dx s

dy x s
e y x s x H

dx

 



 

=

+

=

  
+ + =    

  

 

+ = 
 

  − − + =  

−

 (28) 

( )vI sx  and ( )vK sx  are two linearly independent solutions of differential 

equations ( )
2 2

2

2 2

1
, 0

d y dy v
s y x s

dx x dx x

 

+ + = 
 

− . Here ( )vI   and ( )vK  are respectively the 

first and the second class of modified Bessel functions of order v [17].  

According to Theorem 1, the solution to the definite solution problem (28) with elastic 

coefficient of exponential function type of external boundary condition is 

 ( )
( )

( )
1

1

,
,

,

G x s
y x s

EG a s F

D

s
= 

+
 (29) 

where  

 ( )
( ) ( )
( ) ( )

0,0 0,1

1

1,0 1,1

, , , , , ,0
,

, , , , , ,0

b

b

e x b s b H x b s
G x s

e a b s b H a b s

 

 

   

   

+

+

 + + 
=

 + + 
 (30) 

 ( )( ) ( )( )0,0 ,, , , , , ,v vx s x s       =  (31) 

 
( )( )

( )( ) ( )( )

( )( ) ( ) ( )( )

0,0 ,

0,1

, , 1

, , , , , ,
, , ,

, , , , , ,

v v

v v v v

x s x s
x s

v
x s s x s

      
  

 

         


+

 
 = =

 

= − −

 (32) 
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( )( )

( )( ) ( )( )

( )( ) ( ) ( )( )

0,0 ,

1,0

, 1,

, , , , , ,
, , ,

, , , , , ,

v v

v v v v

x s x s
x s

x x

v
x s s x s

x

      
  

        +

 
 = =

 

= +

 (33) 

 

( )( )
( )( ) ( )( )

( )( )
( )

( )( )

( )
( )( ) ( ) ( ) ( )( )

2

0,0 ,

1,1

2

, , 1

1, 1, 1

, , , , , ,
, , ,

, , , , , ,

, , , , , ,

v v

v v v v

v v v v

x s x s
x s

x x x

v sv
x s x s

x x

v s
x s s s x s

      
  

 

 
       




          



+

+ + +

  
 = =

    

−
= −

+ − −

 (34) 

 ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )
1

, , , , 1
m n

m n m n n mx s s s s sI x K I K x         
+ −

= − −+−   

(35) 

Using the Gaver-Stehfest numerical inversion equation [16] to the equation (29), the real-

space solutions to the definite solution problem (27) is: 

 

( )
1

1

1
1

ln 2 ln 2
, ,

ln 2
,

ln 2

ln 2ln 2
,

N

j

j

N

j

j

j
y x t V y x

t t

j
G x

Dj t
V

jt j
EG a F

t

=

=

 
=  

 

  
    =  
  + 

   





 (36) 

The image of the solution of the definite solution problem (27) is shown in Figure 1. 

 
Figure 1 Image of the solution of the definite solution problem (27) 

( 1a = , 20b = , 0.1 = , 1v = , 2 = , 2 = , 0.1 = , 2 = − , 10D = , 3E = , 2F = , 5H = , 

10N = ) 

Case 2: The following definite solution problem with elastic coefficient of polynomial 

function type of external boundary condition is solved. 
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( )

( )

( )

( ) ( )

2 2
2

2 2

2

1
, 0

,0 0

,

, 0

x a

x b

y y v y
y u a x b t

x x x x t

y x

y
Ey x t F D

x

y
px q t lx kx c y x t N

x

=

=

  
+ − =   

  


=


 
+ =  


  
 + + + + + =    

 (37) 

Laplace transformation is performed on the above definite solution problem (37) of 

PDE, and  ( ) ( )
0

, ,sty x s e y x t dt


−=  , then the definite solution problem (37) is transformed 

into the following boundary value problem: 

 

( ) ( )

( )
( )

( )
( )

( ) ( ) ( )
( ) ( )

2 2
2

2 2

2

1
, 0

,
,

,
, 0

, ,
, 0

x a

x

x b

x b

d y dy v
s y x s a x b

dx x dx x

dy x s D
Ey x s F

dx s

dy x s
e y x s x N

dx

y x s y x s
lx kx c y x s px q N

s x

 



 

=

+

=

=

  
+ + =    

 
 
 + = 
 

  − − + = 
 
   

+ + − + + = 
  

−

 (38) 

According to Theorem 2, the solution to the definite solution problem (38) with elastic 

coefficient of exponential function type of external boundary condition is 

 ( )
( )

( )
2

2

,
,

,

G x s
y x s

EG a s F

D

s
= 

+
 (39) 

where  

 ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0 1 0

0,0 0,0 0,1

2 0 1 0

1,0 1,0 1,1

2

2

, , , , , ,
,

, , , , , ,

x b s x b s N x b s
G x s

a b s a b s N a b s

lb kb c pb q

lb kb c pb q

     

     

+ + +−
=

+ +

+

− ++
 (40) 

 ( )( ) ( )( )0

0,0 ,, , , , ,0v vx s x s     =  (41) 

 ( )( ) ( )( ) ( ) ( )( )0

0,1 , , 1, , , , ,0 , , ,0v v v v

v
x s x s s x s         


+= −  (42) 

 ( )( ) ( )( ) ( ) ( )( )0

1,0 , 1,, , , , ,0 , , ,0v v v v

v
x s x s s x s

x
         += +  (43) 

 

( )( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

2
0

1,1 , , 1

2

1, 1, 1

, , , , ,0 , , ,0

, , ,0 , , ,0

v v v v

v v v v

v v
x s x s s x s

x x

v
s x s s x s

         


       


+

+ + +

= −

+ −

 (44) 

 ( )( )
( )

( )
( )( ) ( )( )1

0,0 , , 1, , , , ,0 , , ,0v v v v

d s v
x s x s x s

ds s


        


+

 
= − 

 

 (45) 
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( )( )

( )

( )
( )( ) ( )( )

( )( ) ( ) ( )( )

2
1

1,0 , , 1

1, 1, 1

, , , , ,0 , , ,0

, , ,0 , , ,0

v v v v

v v v v

d s v v
x s x s x s

ds x s x

v x s s x s

 
        



      

+

+ + +


= −



+ − 

 (46) 

( )( ), , , ,m n x s    is equation (35). 

Using the Gaver-Stehfest numerical inversion equation [16] to the equation(39), the real-

space solutions to the definite solution problem (37) is: 

 

( )
1

2

1
2

ln 2 ln 2
, ,

ln 2
,

ln 2

ln 2ln 2
,

N

j

j

N

j

j

j
y x t V y x

t t

j
G x

Dj t
V

jt j
EG a F

t

=

=

 
=  

 

  
    =  
  + 

   





 (47) 

The image of the solution of the definite solution problem (37)is shown in Figure 2. 

 
Figure 2 Image of the solution of the definite solution problem (37) 

( 1a = , 20b = , 0.1 = , 1v = , 5k = , 1.85l = , 1c = , 1p = , 2.15q =  10D = , 3E = , 2F = , 5H = , 

10N = ) 

4. Conclusions 

1. The definite solution problems are solved by Laplace transformation, the method of 

undetermined coefficients and Gaver-Stehfest numerical inversion equation, and the 

form of the real space solution are relatively simple, which is beneficial to the 

programming of curve analysis. . 

2. The elastic outer boundary condition established in this paper regards the elastic 

coefficient as a function of space variables and time variables, which makes the 

established theoretical model more suitable for practical problems. With the help of the 

elastic outer boundary, we can better understand and characterize the generalized state 

of the outer boundary. 
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