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Text S1. Set-up of the pilot-scale reactor 
The modeling domain is defined as three-dimensional (3-D), with the contaminated 
zone around the groundwater table considered as the major pollution source. The area 
of the simulation domain is 3.6 × 1.2 m2. Vertically, the simulation domain is 
discretized into four grid blocks corresponding to four simulation layers; each layer is 
located in the middle of the grid block that facilitates the application of a block-centered 
finite difference scheme. In the horizontal plain, each layer is discretized into 24 × 8 
grids. Each grid has dimensions of 0.15, 0.15, and 0.30 m in x, y, and z directions, 
respectively. The total number of grids in this 3-D computational system is 768 (24 × 
8 × 4). Layers 3 and 4 are located in the saturated zone, while layers 1 and 2 are situated 
in the unsaturated zone. The detailed views of the pilot-scale reactor can be seen in 
Figure S1(a)-(d) of the supporting information. 

Three soil distributions in the four layers are shown in Figure S1(f). The monitoring 
wells were used to obtain the subsurface hydrogeology “representative” view (well 
locations are shown in Figure S1(e)) The LNAPLs (Light Non-Aqueous Phase Liquids) 
initially occupied a contaminated area in layers 3 and 4 around the groundwater table. 
The zero-flow boundary conditions were enforced at the top and bottom of the modeling 
domain, as well as at the sides parallel to the x-axis. Constant hydraulic heads were 
employed at the left and right boundaries, allowing continuous water flow in the aquifer. 
Benzene concentrations in the system can be forecasted through the developed 
simulator. Table S1 presents the input parameters for the simulation model.  

Water-table level gauges were installed in the first and fourth sections to monitor water 
depths inside the reactor. Observation windows were built on the front side of each 
section while another on the top. The side windows were used to observe the subsurface 
conditions, and the top ones to observe the soil surface. The four sections were 
connected to each other with flanges, each of which had 44 bolts. Gaskets made of anti-
organic solvent and anti-high temperature rubber and silicone pastern were placed 
between the flanges to prevent the leakages. 

For soils loading, the pre-selected clay was from the construction site of the 
Saskatchewan Indian Federated College, Regina, Saskatchewan, at depths of 2 to 6 m 
from the ground surface. The clayey till and fine sand were provided by the Waxy’s 
Bobcat and Landscaping Ltd. The initial properties of soils can be seen in Table S2. 
The value of soil organic carbon (SOC) in the soils is measured at around 1.14%. Some 
activities around the concentration site accelerate the decomposition of the organic 
carbon, and there is little vegetation and insufficient organic carbon input, resulting in 
the particularly low concentration. Therefore, the transport of organic carbon is not 
considered in this model, which is assumed to migrate with the movement of the organic 
phase. We thus ignored the effect of SOCs in this study, also considering the high 
concentration of benzene contamination, as treated by many existing studies (Jimenez 
et al., 2006; Wolicka et al., 2009; Xin et al., 2013; Umar et al., 2021; Yang et al., 2019). 
For instance, Liang et al (2013) mentioned that benzene can be used as the sole source 
of organic carbons when discussing the chlorobenzene and benzene degradation in the 
groundwater. Besides we did not directly consider the effect of the grain size, instead 
of using porosity and intrinsic permeability when describing the transport of the target 
contaminant in the mathematical model. We did it by hypothesizing the gran size can 
affect soil porosity and intrinsic permeability and have a further impact on the fate and 
transport of benzene. This method is generally used in many groundwater models such 
as MODFLOW and NAPL3D (McDonald & Harbaugh, 1988; Zhang et al., 2008; 
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Niswonger & Prudic, 2013; Hu et al., 2021). Detailed information and guides can be 
seen in USGS website (https://www.usgs.gov/mission-areas/water-
resources/science/modflow-and-related-programs) and EPA website 
(https://www.epa.gov/water-research/non-aqueous-phase-liquid-napl-simulator).  

The inner surface of the reactor wall was labeled and divided into grids where different 
types of soils were loaded. Clay and clay-till were sieved by 1/4 inch sieving meshwork 
before loading. Sand was firstly loaded followed by clay-till and then clay. Upon the 
completion of every 100 mm depth in every grid, tap water was spread on the surface, 
and the soil in the grid was vibrated by concrete vibrator and pressed by impinging a 
hammer on a wood board that directly contacted the soil surface to ensure homogeneity 
and non-fracture structure. Upon the completion of each layer, more water was spread 
and the layer was left overnight to settle. After the soil loading process was completed, 
the system was then left still for three months with a water flow of 10 L/day through 
the loaded soils. No noticeable further settlement or consolidation was observed 
afterwards. 

A thermostatic room, in which the pilot-scale system and the accessorial equipment 
were assembled, was built to realize various temperatures by an air conditioner. Water 
and drainage containers were each connected to the upstream inlet and downstream 
outlet, respectively. Water level gauges were used to show the depth of water table in 
the reactor. Tap water in a water container was pumped into the reactor through six 
water inlets on the inlet-end board as upstream groundwater inflow through a peristaltic 
pump. Before the start of the experiments, water in the container was kept still overnight 
to reach the room temperature. A 7-day buffering time preceded all experiments in the 
pilot model so that the temperature at every location in the reactor could reach 
equilibrium. The upstream water was kept flowing through system to acquire the 
desired soil temperature. 

The monitoring wells are for facilitating access to the groundwater so that a 
“representative” view of the subsurface hydrogeology can be obtained, either through 
the collection of water samples or the measurement of physical and hydraulic 
parameters. In this study, a few monitoring wells were also used for pumping and 
injecting purposes during the remediation processes. Locations of the wells are 
presented in Figure S1(e). There are 25 wells allocated in four sections of the pilot 
system. Soil in the system was stratified into four layers, with the third and fourth layers 
being saturated with water. Each layer is 30 cm deep. Among the wells, 13 of them 
(with PVC pipes) were installed to reach the third soil layer; the other 12 wells could 
reach the fourth layer (Figure S1(f)). Small holes were uniformly made around the 
bottom sections of the pipes. Screens were used to wrap the pipes to prevent from soil 
clogging. Soil particles were prevented from moving into the wells while the 
groundwater could infiltrate into them. The wells were sealed by rubber caps at the tops. 
For each well, a hose was installed that passed through the caps and reached its bottom. 
The outside of the hose was clamped by a clip so that air and groundwater in the well 
were isolated from the atmosphere. 

  

https://www.usgs.gov/mission-areas/water-resources/science/modflow-and-related-programs
https://www.usgs.gov/mission-areas/water-resources/science/modflow-and-related-programs
https://www.epa.gov/water-research/non-aqueous-phase-liquid-napl-simulator
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Text S2. Pilot-scale experimentation analysis 

Benzene concentrations monitored in both natural-attenuation and bioremediation 
phases are listed in Table S3 and Figure S6(a-b) of the Supporting Information. The 
highest benzene concentrations were encountered in well 6 during the entire period of 
the natural-attenuation phase. This was due to the fact that well 6 was close to the 
leakage source. High concentrations were also observed in wells 3 and 10, which were 
placed in the third layer. The contaminant can easily reach these wells along with 
groundwater flow since the leakage occurred at the top of the third layer. Moreover, 
much of the contaminant transported within the third layer and did not migrate to the 
fourth one since gasoline is lighter than water. In comparison, the highest 
concentrations in the fourth layer were observed in well 5, which was installed in the 
sand zone near the leakage source. Due to the low porosity and permeability of silty 
and clayey soils, benzene was not observed in the down gradient domain of the pilot 
system until day 32 (the contaminant reached well 16 on day 32).  

On day 40, enhanced in-situ biodegradation action was undertaken. It is shown from 
Table S3 of the Supporting Information that the benzene concentrations vary greatly 
due to flow-condition changes resulting from the pumping and injecting actions. The 
location of the peak concentration moved towards the downstream. The benzene 
concentrations in the groundwater also decreased greatly compared with those in the 
earlier periods. The peak benzene concentration decreased from 7.34 mg/L at the 
beginning of the remediation program to 0.633 mg/L on day 17 after the remediation 
action started. It is indicated that the enhanced in-situ bioremediation had efficiency in 
removing benzene from the groundwater. 

The experimental results indicated that the developed pilot-scale reactor can effectively 
facilitate the simulation of both natural attenuation and enhanced remediation processes. 
The experimental results can be used for validating, calibrating and verifying the 
developed numerical model under different site conditions. 

Calibration and verification of the developed biodegradation model were undertaken 
using data obtained from the pilot experiments. The results of the error analysis are 
provided in Table S4 of the Supporting Information. The absolute errors between the 
simulated and observed concentrations of 12 wells range from 0.00 to 0.40 mg/L with 
a mean of 0.21 mg/L. The root-mean-square error is 0.27 mg/L, and the correlation 
coefficient is 0.93. According to the error analysis, the biodegradation simulation result 
has been proved to be within a relatively reasonable range. Figure S7 shows the 
verification results for Day 57, which is the end of phase I bioremediation. The 
concentration distributions of benzene are generally the same based on observed data 
and simulated data. The highest concentration levels are obtained at the bottom right 
corner of the experiment region, and the coordinates of these points are around (2.1, 
0.6) and (3, 0.45). The verification results for the temporal variations of benzene 
concentrations in well 5 and well 6 are shown in Figure S8, which indicates that this 
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model can simulate the actual degradation process of benzene properly. After the 
calibration and verification, the simulation model can be used for investigating the 
effects of different bioremediation strategies on benzene concentrations. 
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Text S3. Contaminant fate and transport modeling in the groundwater 

A critical step in understanding the impact of a subsurface release of NAPL is a 
modeling analysis of the NAPL flow and transport and fate of its crucial constituents. 
A complete description of multiphase flow and transport in subsurface must include 
flow of the fluid phases (water, gas, NAPL, etc.), mass transfer of species between these 
phases, and transport of species in each phase. A three-dimensional multiphase 
multicomponent SEAR model is recognized as an effective tool in investigating 
complex physical processes involved in NAPLs flow and transport. Several models 
have been developed to simulate the flow of multiple fluid phases in subsurface during 
recent years. All these models included simplifying assumptions with respect to phase 
presence and dimensionality, NAPL contaminant mass balance and water and air in 
subsurface. Important assumptions used in the development of mass conservation 
equations are: 1) the solid phase is immobile; 2) soil and fluids are slightly compressible; 
3) dispersion is of Fickian form; 4) components mix ideally; 5) Darcy’s law applies in 
the calculation of phase velocities. The basic mass conservation equation for 
components in subsurface can be written as (Delshad et al., 1996): 
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where k is the component index; l is the phase index; φ is the soil porosity; �̃�𝐶𝑘𝑘 is the 
overall concentration of component k (volume fraction); ρk is the density of component 
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where τ is tortuosity (defined as a value greater than 1); Dm,kl is molecular diffusion 
coefficient of component k in phase l [L2T-1]; δij is Kronecker delta function; αLl and 
αTl are longitudinal and transverse dispersivities of phase l , respectively [L]; uli and ulj 
are Darcy velocities of phase l  in directions i and j, respectively [LT-1]; lu is 
magnitude of the vector flux for phase l  [LT-1]. The phase flux can be calculated from 
the multiphase form of the Darcy’s law (Faust et al., 1989): 
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where krl is relative permeability of porous medium to phase l; K




 is intrinsic 
permeability tensor [L2]; µl is viscosity of phase l [ML-2T-1]; ρl is density of phase l 
[ML-3]; g is acceleration of gravity [LT-2]; z is vertical distance which is defined as 
positive downward [L]; Pl is pressure of phase l [ML-1T-2]. 
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Grumberg and Nissan’s correlation is used to calculate the NAPL viscosity as a function 
or organic species concentration: 
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where l2µ  is the organic mixture viscosity; o
klx  is molar fraction of each organic 

component in phase l  (water, NAPL, etc.); o
kµ  is the viscosity of single organic 

component; and on  is the number of organic components in NAPL. For a NAPL 
mixture, the overall organic hydrostatic pressure gradient is obtained by assuming ideal 
mixing: 
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where lC2  is concentration of NAPL mixture in phase l  (water, NAPL, etc.); l2γ  is 
density of NAPL mixture in phase l ; o

klC  is concentration of each organic component 
in phase l ; o

klγ  is density of single organic component in phase l ; and on  is the 
number of organic components in NAPL. 

The aquifer boundaries are modeled as either constant potential surfaces or closed 
surfaces. The model can be solved numerically through the block-centered finite 
difference method. The solution method for the contaminant-transport model is the 
implicit pressure-explicit saturation method. The only unknown in the pressure 
equation is the pressure of water phase. 
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Text S4. Biodegradation modeling of contaminants in the groundwater  

Generally, the biodegradation model involves simulation of substrate competition, 
nutrient limitation, product toxic inhibition, and aerobic cometabolism. The basic 
structure of the biodegradation model for a system with single substrate, single electron 
acceptor and single biological species can be characterized as follows (de Blanc, 1998): 
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𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴

𝑘𝑘𝐴𝐴𝑆𝑆𝐴𝐴 + 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴
) − 𝑘𝑘𝐴𝐴𝐸𝐸𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴 

(S11) 

where CAPS is the aqueous phase substrate concentration (substrate mass per unit 

volume of aqueous phase); 
ABSC  is the substrate concentration in attached biomass 

(mass of substrate per unit volume of biomass); CAPE is the aqueous phase electron 
acceptor concentration (mass of electron acceptor per unit volume of aqueous phase); 

ABEC  is the electron acceptor concentration in attached biomass (mass of electron 

acceptor per unit volume of biomass); CAUB is the aqueous phase concentration of 

unattached biomass (mass of unattached cells per unit volume of aqueous phase); 
AABC  

is the attached biomass concentration (mass of attached cells per volume of aqueous 
phase); ASM is the surface area of a single microcolony (L2); kEMT is the electron 
acceptor mass transfer coefficient (LT-1); kSMT is the substrate mass transfer coefficient 

(LT-1); maxµ is the maximum specific growth rate (T-1); mCSM is the mass of cells in a 
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single microcolony, 
CSM SMm Vρ=  (M); mEAC is the mass of electron acceptor 

consumed per mass of substrate biodegraded; ρ is the biomass density (mass of cells 
per volume of biomass); VSM is the volume of a single microcolony (L3); kY is the yield 
coefficient (mass of cells per volume of biomass); kSHS is the substrate half-saturation 
coefficient (ML-3); kEHS is the electron acceptor half-saturation coefficient (ML-3); kFRR 
is the first-order reaction rate coefficient (for abiotic decay reactions, T-1); kED is the 
endogenous decay coefficient (T-1); and t is the time (T).  
Reduction of contaminants in the aqueous phase in Equation (S6) results from three 
mechanisms. The first term accounts for diffusion of contaminants from liquid phase 
across a stagnant liquid film into attached biomass. The second one indicates the 
reduction of contaminants by unattached microorganisms in the bulk liquid. The 
reduction rate is affected by concentrations of contaminant and electron acceptor 
through the Monod kinetic. Substrate competition, nutrient limitations, inhibition, and 
reducing power limitations can also be incorporated within the second tern as described 
in the following sections. The third term accounts for abiotic loss of contaminants 
through first-order reactions. One equation of the same form as Equation (S6) will be 
used for each substrate. 
Equation (S7) describes the loss of substrate within attached biomass. It describes 
processes of substrate diffusion into attached biomass, biodegradation within the 
biomass, and abiotic decay. Substrate competition, nutrient limitations, inhibition, and 
reducing power limitations can also be incorporated into this term for biodegradation 
of the substrate. Equations (S8) and (S9) describe the loss of the electron acceptor, 
which are of the same form as Equations (S6) and (S7). Equations (S8) and (S9) 
simulate the growth and decay of unattached and attached biomass, respectively.  

The attached biomass concentration (
AABC ) is dependent upon the biomass density, 

microcolony volume and microcolony mass (de Blanc, 1998):  

                                              
CPS PM CSM

AAB
CPM

N D mC
N φ

=                                                          (S12) 

where NCPS is the number of cells per mass of solid; DPM is the bulk density of the 
porous medium; NCPM is the number of cells per microcolony (a constant); and φ  is the 
porosity. 
Since the biomass density, number of cells, mass of one microcolony, and medium 
porosity are assumed to be constant, AABC  is proportional to NCPS or, alternately, to 
(NCPS / NCPM), (the number of microcolonies). Moreover, the area available for transport 
of species from the aqueous phase to the biomass is directly proportional to AABC , 
because the surface area per microcolony is assumed constant. 
 
Multiplicative Monod kinetics 
For multiplicative Monod kinetics, it is assumed that other limiting nutrients are also 
limiting microbial growth besides substrates and electron acceptors. When other 
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chemical species or nutrients such as nitrogen or phosphorous are limiting factors, the 
substrate utilization term can be modified correspondingly in order to account for these 
additional limitations (Rittmann et al., 1991): 

                                                      𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚
′ = 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 ∙

𝐶𝐶𝐿𝐿𝐿𝐿

𝑘𝑘𝐿𝐿𝐿𝐿𝐿𝐿+𝐶𝐶𝐿𝐿𝐿𝐿
                                               (S13) 

where CLN is concentration of a limiting nutrient (ML-3); and kLNH is limiting nutrient 
half-saturation coefficient concentration (ML-3). 
 
Biomass growth 
The basic biomass growth expression of equations (S10) and (S11) contains an 
additional term to limit the volume of the biomass. With this limitation, the general 
form of the biomass growth expression is (de Blanc, 1998): 

                       
AUB APS SM AUB

AUB ED AUB
max SHS APS SM( )( )(1 )

0.9A

dC C A CC k C
dt k C K A

µ
ρ

= − −
+ +

     (S14) 

The linear biomass growth expression limits the total volume of biomass to 90% of the 
aqueous phase volume. At low biomass concentrations, such limits have negligible 
effects on biomass growth and substrate utilization because the biomass occupies a 
small volume of the total pore space.  
When the biomass concentration begins to occupy a significant fraction of the pore 
volume, as might be expected near in-situ bioremediation injection wells, the key 
modeling assumption that biofilms in the pore space are thin and can be fully penetrated 
will likely be violated. The reduction (or near cessation) of biomass growth becomes 
less important than biofilm mass transport effects that are not considered in the model. 
Thus, through using the linear growth limitation expression, the model can only crudely 
approximate biological growth in grid blocks occupied by a substantial volume of 
biomass. At low biomass concentrations, the term has an insignificant effect. 
The total biomass in the aquifer consists of the attached biomass and the unattached 
biomass is: 

                                                  T AP AB B B= +                                (S15) 

where BT is the total biomass, BAP is the aqueous phase biomass, and AB is the attached 
biomass. The attached biomass is composed of the minimum biomass population 
( A

minB , which does not partition between the solid and the aqueous phase) and the 
biomass in equilibrium with the aqueous phase biomass: 

                                                      A A AP
minB B Bκ= +              (S16) 

Substituting the equilibrium relationship of equation (S15) into mass balance (S16) 
results in the following equilibrium concentration of aqueous phase biomass: 

                                                       min

1
TX XX
κ
−

=
+

                                   (S17) 
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The attached biomass concentration is then calculated from equation (S16). The κ of 
infinity would mean that all of the biomass is attached, while the κ  of 0 would mean 
that all of the biomass, except A

minB , would exist in the aqueous phase. 
 
Substrate competition 
When two substrates (substrates 1 and 2) compete for the same enzyme, it reduces the 
rate of biodegradation. The half-saturation coefficient of each substrate in Monod term 
is suggested, and thus, the Monod terms for the two substrates would become (Chang 
& Alvarez-Cohen, 1995): 
Substrate 1: 

                                                            S1

HS S2
S1 S1HS

S2

(1 )

C
Ck C
k

+ +
    

                           (S18) 

Substrate 2: 

                                                           S2

HS S1
S2 S2HS

S1

(1 )

C
Ck C
k

+ +
             (S19) 

where CS1, CS2 are concentrations of substrates 1 and 2, respectively (ML-3); kS1HS, kS2HS 
are half-saturation coefficients of substrates 1 and 2, respectively (ML-3). 
 
Inhibition 
Inhibition effects can be addressed through multiplying the substrate biodegradation 
rate term by an inhibition factor (Chang &Alvarez-Cohen, 2010): 









+ ihih

ih

CI
I              (S20) 

where ihI  is an experimentally determined inhibition constant for species ih . Inhibition 
can be used to simulate the sequential use of electron acceptors or the reduction of 
biodegradation rates due to the presence of a toxic or inhibitory compound. The term 
for substrate utilization and biomass growth can be calibrated by using one inhibition 
factor for each inhibiting substance. 
 
Aerobic cometabolism 
To describe the loss of cometabolite and attached biomass growth in aerobic 
cometabolic reactions, the following equations can be used (in the case of no mass 
transfer resistance, no inhibition, and no substrate competition) (de Blanc, 1998): 

APC APC APE RP
SCB AUB

CHS APC EHS APE RHS RP( )( )( )dC C C CR C
dt k C k C K C

= −
+ + +

          (S21) 



13 
 

AUBAUB APS APE RP AUB
max

Y SHS APS EHS APE RHS RP

SCB AUB APC APE RP
ED AUB

TC CHS APC EHS APE RHS RP

0.9(1 )( )( )( )[ ]

              ( )( )( )

CdC C C C C
dt k k C k C K C

R C C C C k C  
k k C k C K C

µ
ρ
−

=
+ + +

− −
+ + +

                (S22) 

where RSCB is maximum specific cometabolite biodegradation rate (ML-3T-1); CAPC is 
aqueous phase cometabolite concentration (ML-3); CRP is reducing power (NAD(P)H) 
concentration within the cells (mMOL e-/mass biomass); KRHS is NAD(P)H half-
saturation constant (mMOL e-/mass biomass); kCHS is cometabolite half-saturation 
coefficient (ML-3); maxµ  is maximum specific growth rate on growth substrate (T-1); 
and kTC is transformation capacity (mass cells deactivated/mass cometabolite 
biodegraded). 
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Text S5. Procedures for solving the coupled flow and transport problem 
The solution procedures are as follows:  
Step 1.  Solve the pressure equation implicitly using a Jacobi conjugate gradient solver 
to yield water phase pressure in all grid blocks; 
Step 2.  Capillary pressures from previous time step are used to determine the pressure 
of other phases in each grid block once the water phase pressure is known;  
Step 3.  The Darcy’s law is used to determine the phase velocities; 
Step 4.  Mass conservation equations are solved explicitly to yield concentration of each 
component in each grid block; 
Step 5.  Phase concentrations and saturations are determined through flash calculations;  
Step 6.  The concentration of the components calculated by the pollutant migration 
model was used as the initial condition of the biodegradation model to obtain the 
pollutant degradation rate for this time step. 
Step 7.  New capillary pressures are determined from the new saturations;  
Step 8.  Repeat the procedures for each time step until simulation ends. 
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Text S6. Stepwise cluster analysis (SCA) 

In the stepwise-cluster analysis, the solutions of the numerical model (benzene 
concentrations at concerned locations) are considered as dependent variables; the 
operating conditions are independent variables. If the developed simulation model is 
run under n scenarios of system conditions, there will then be n sets of such independent 
and dependent variables (e.g., if the model is run 50 times under various system 
conditions, then n = 50). Assume that there are m independent variables [e.g., four 
process control variables, denoted as x = (x1, x2, …, xm), where m = 4], and p dependent 
variables [e.g., benzene concentrations at six concerned locations, denoted as y = (y1, 
y2, …, yp), where p = 6]. Thus, all data can be given by matrixes X = (xtr)n×m and Y = 
( ytr)n×p, where r = 1 , 2 , …, m, and i = 1 , 2 , …, p. 

The first step is to determine the clustering principles for the patterns. In SCA, patterns 
of responses will be cut or merged into a number of sets, and explanatory variables will 
be the references in judging which pattern set in the parent set should enter. After 
completion of cutting and merging processes, cluster trees could be produced and 
further used for predicting responses according to new explanatory values. The essence 
of this method is, based on a given criteria, to cut one pattern set of responses into two, 
and to merge two sets into one, step by step, in order to classify sets and sieve variables. 
Let cluster h, which contains nh patterns, be cut into two sub-clusters e and f, containing 
ne and nf patterns, respectively (i.e., ne + nf = nh). According to Wilks’ likelihood-ratio 
criterion, if the cutting point is optimal, the value of Wilks’ Λ (Λ =|W|/|T| ) should be 
minimum (Wilks, 1960; 1962; 1963; Kennedy and Gentle, 1981), where T and W are 
total-sample sum of the squares and cross products (SSCP) matrix �𝑑𝑑𝑖𝑖𝑖𝑖� and within-
groups SSCP matrix �𝑤𝑤𝑖𝑖𝑖𝑖�, respectively, and T and W mean determinants of matrixes 
 �𝑑𝑑𝑖𝑖𝑖𝑖� and �𝑤𝑤𝑖𝑖𝑖𝑖�, respectively. When the Λ value is very large, clusters e and f cannot be 
cut, but must be merged into greater cluster h. By Rao’s F-approximation (R-Statistic), 
we have: 

                                                        𝑅𝑅 = 1−Λ1 𝑆𝑆⁄

Λ1 𝑆𝑆⁄ ⋅ 𝑍𝑍⋅𝐴𝐴−𝐴𝐴⋅(𝐾𝐾−1) 2⁄ +1
𝐴𝐴⋅(𝐾𝐾−1)                                      (S23) 

                                                         𝑍𝑍 = 𝑛𝑛ℎ − 1 − (𝑃𝑃 + 𝐾𝐾)/2                                         (S24) 

                                                              𝑆𝑆 = 𝐴𝐴2⋅(𝐾𝐾−1)2−4
𝐴𝐴2+(𝐾𝐾−1)2−5

                                                      (S25) 

where statistic R is distributed approximately as an F-value with 𝑣𝑣1 = 𝑃𝑃 ⋅ (𝐾𝐾 − 1) and 
𝑣𝑣2 = 𝑃𝑃 ⋅ (𝐾𝐾 − 1) 2⁄ + 1 degrees of freedom, K is number of groups, and P is number 
of responses. The R - statistics will reduce to an exact F-value when P = 1 or 2, or when 
K = 2 or 3. Since the number of groups is two (K = 2 for system operating conditions 
and benzene concentrations at concerned locations) in this study, an exact F-test is 
possible based on Wilks’ Λ criterion. Thus, we have: 

                                                        𝐹𝐹(𝑃𝑃,𝑛𝑛ℎ − 𝑃𝑃 − 1) = 1−Λ
Λ
⋅ 𝑛𝑛ℎ−𝐴𝐴−1

𝐴𝐴
                          (S26) 

Therefore, the criteria of cutting and merging clusters become to make a number of F-
tests (Rao, 1952).  
The second step is to test optimal cutting points, for which nh patterns in cluster h are  
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sequenced according to the value of 𝑥𝑥𝑟𝑟,𝑘𝑘
(ℎ) in {𝑥𝑥𝑟𝑟}, i.e., 𝑥𝑥𝑟𝑟,1𝑟𝑟

(ℎ) ≤ 𝑥𝑥𝑟𝑟,2𝑟𝑟
(ℎ) ≤ ⋯ ≤ 𝑥𝑥𝑟𝑟,𝑛𝑛ℎ

𝑟𝑟
(ℎ) . Then 

the total-pattern SSCP matrix and within-groups SSCP matrix of responses y are 
calculated based on the sequence statistic {𝐾𝐾𝑟𝑟}: 

                          𝑏𝑏𝑖𝑖𝑖𝑖(𝐾𝐾𝑟𝑟 ,𝑛𝑛ℎ𝑟𝑟) =
𝑛𝑛ℎ
𝑟𝑟𝐾𝐾𝑟𝑟⋅��𝐴𝐴𝑖𝑖

(ℎ)(𝐾𝐾𝑟𝑟)−𝐴𝐴𝑖𝑖
(ℎ)(𝑛𝑛ℎ

𝑟𝑟)�⋅�𝐴𝐴𝑗𝑗
(ℎ)(𝐾𝐾𝑟𝑟)−𝐴𝐴𝑗𝑗

(ℎ)(𝑛𝑛ℎ
𝑟𝑟)��

𝑛𝑛ℎ
𝑟𝑟−𝐾𝐾𝑟𝑟

                   (S27) 

                                                      𝑑𝑑𝑖𝑖𝑖𝑖(𝑛𝑛ℎ𝑟𝑟) = 𝐴𝐴𝑖𝑖𝑖𝑖
(ℎ)(𝑛𝑛ℎ𝑟𝑟) − 𝑛𝑛ℎ𝑟𝑟𝐵𝐵𝑖𝑖ℎ(𝑛𝑛ℎ𝑟𝑟)𝐵𝐵𝑖𝑖ℎ(𝑛𝑛ℎ𝑟𝑟)              (S28) 

                                                       𝑤𝑤𝑖𝑖𝑖𝑖(𝐾𝐾𝑟𝑟 ,𝑛𝑛ℎ𝑟𝑟) = 𝑑𝑑𝑖𝑖𝑖𝑖(𝑛𝑛ℎ𝑟𝑟) − 𝑏𝑏𝑖𝑖𝑖𝑖(𝐾𝐾𝑟𝑟,𝑛𝑛ℎ𝑟𝑟)                     (S29) 

where: 

                                                                 𝐵𝐵𝑖𝑖 𝑜𝑜𝑟𝑟 𝑖𝑖
(ℎ) (𝑢𝑢) = 1

𝑢𝑢
∑ 𝑦𝑦𝑖𝑖 𝑜𝑜𝑟𝑟 𝑖𝑖,𝑘𝑘

(ℎ)𝑢𝑢
𝑘𝑘=1                             (S30) 

                                                                 𝐴𝐴𝑖𝑖𝑖𝑖
(ℎ)(𝑢𝑢) = ∑ 𝑦𝑦𝑖𝑖,𝑘𝑘

(ℎ)𝑦𝑦𝑖𝑖,𝑘𝑘
(ℎ)𝑢𝑢

𝑘𝑘=1                                  (S31) 

                                                                  𝑘𝑘𝑟𝑟 = 1𝑟𝑟 , 2𝑟𝑟 ,⋯ , (𝑛𝑛ℎ𝑟𝑟 − 1),∀𝑟𝑟 

                                                                  𝑖𝑖, 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝, and 𝑟𝑟 = 1,2,⋯ ,𝑚𝑚 

For each xr, a cutting point k *r is derived, which satisfies: 

                                             Λ(𝑘𝑘∗𝑟𝑟 ,𝑛𝑛ℎ𝑟𝑟) = min𝑘𝑘𝑟𝑟=1𝑟𝑟
�𝑛𝑛ℎ

𝑟𝑟−1�{Λ(𝑘𝑘𝑟𝑟 ,𝑛𝑛ℎ𝑟𝑟)}                            (S32) 

For each explanatory variable, the index of response that will be used for cutting 
judgments (denoted as r *) is derived, which satisfies: 

                                             Λ�𝑘𝑘∗𝑟𝑟∗ ,𝑛𝑛ℎ𝑟𝑟� = min𝑟𝑟=1𝑚𝑚 {Λ(𝑘𝑘𝑟𝑟 ,𝑛𝑛ℎ𝑟𝑟)}                                  (S33) 

Thus, the optimal cutting point of cluster h is 𝑘𝑘∗𝑟𝑟∗, and the relevant value of explanatory 
variable (i.e., the reference for new pattern prediction) is 𝑥𝑥

𝑟𝑟∗,𝑘𝑘∗𝑟𝑟
∗

(ℎ) .Then a F-test can be 
undertaken.  

If 

                                    𝐹𝐹(𝑃𝑃′,𝑛𝑛ℎ𝑟𝑟∗ − 𝑃𝑃′ − 1) = 1−Λ(𝑘𝑘∗𝑟𝑟
∗

,𝑛𝑛ℎ
𝑟𝑟∗)

Λ(𝑘𝑘∗𝑟𝑟∗ ,𝑛𝑛ℎ
𝑟𝑟∗)

𝑛𝑛ℎ
𝑟𝑟∗−𝐴𝐴′

𝐴𝐴′
≥ 𝐹𝐹1                         (S34) 

is satisfied, cluster h can be cut into two sub-clusters according to the distribution of 
𝑥𝑥𝑟𝑟∗: (a) data in explanatory sets with 𝑘𝑘𝑟𝑟∗ ≤ 𝑘𝑘∗𝑟𝑟∗ are allocated into sub-cluster e ( < f ); 
(b) data in explanatory sets with 𝑘𝑘𝑟𝑟∗ > 𝑘𝑘∗𝑟𝑟∗ are allocated into sub-cluster f, where P' is 
number of responses under consideration. Among explanatory variables, 𝑥𝑥𝑟𝑟∗ is the most 
important one affecting the response. If equation (S12) is not satisfied, cluster h cannot 
be cut. Then the other clusters will be tested to decide whether to cut or not, i.e., to test 
h = 1, 2, …, H (H is total number of clusters at the current stage). When no cluster can 
be cut, the next step is to merge the clusters.  

The third step is the mergence of clusters. To test the mergence of clusters e and f for 
existing clusters, the total-sample SSCP matrix and within-groups SSCP matrix should 
be calculated firstly: 
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          𝑑𝑑𝑖𝑖𝑖𝑖�𝑛𝑛𝑒𝑒,𝑛𝑛𝑓𝑓� = 𝐴𝐴𝑖𝑖𝑖𝑖
(𝑒𝑒)(𝑛𝑛𝑒𝑒) + 𝐴𝐴𝑖𝑖𝑖𝑖

(𝑓𝑓)�𝑛𝑛𝑓𝑓� − �𝑛𝑛𝑒𝑒𝐵𝐵𝑖𝑖
(𝑒𝑒)(𝑛𝑛𝑒𝑒) + 𝑛𝑛𝑓𝑓𝐵𝐵𝑖𝑖

(𝑓𝑓)�𝑛𝑛𝑓𝑓�� ⋅

                                         �𝑛𝑛𝑒𝑒𝐵𝐵𝑖𝑖
(𝑒𝑒)(𝑛𝑛𝑒𝑒) + 𝑛𝑛𝑓𝑓𝐵𝐵𝑖𝑖

(𝑓𝑓)�𝑛𝑛𝑓𝑓�� (𝑛𝑛𝑒𝑒 + 𝑛𝑛𝑓𝑓)�                                         (S35) 

            𝑏𝑏𝑖𝑖𝑖𝑖�𝑛𝑛𝑒𝑒,𝑛𝑛𝑓𝑓� =
𝑛𝑛𝑒𝑒𝑛𝑛𝑓𝑓�𝐴𝐴𝑖𝑖

(𝑒𝑒)(𝑛𝑛𝑒𝑒)−𝐴𝐴𝑖𝑖
(𝑓𝑓)�𝑛𝑛𝑓𝑓��⋅�𝐴𝐴𝑗𝑗

(𝑒𝑒)(𝑛𝑛𝑒𝑒)−𝐴𝐴𝑗𝑗
(𝑓𝑓)�𝑛𝑛𝑓𝑓��

(𝑛𝑛𝑒𝑒+𝑛𝑛𝑓𝑓)
                                            (S36) 

           𝑤𝑤𝑖𝑖𝑖𝑖�𝑛𝑛𝑒𝑒,𝑛𝑛𝑓𝑓� = 𝑑𝑑𝑖𝑖𝑖𝑖�𝑛𝑛𝑒𝑒,𝑛𝑛𝑓𝑓� − 𝑏𝑏𝑖𝑖𝑖𝑖�𝑛𝑛𝑒𝑒,𝑛𝑛𝑓𝑓�                                                                 (S37) 

where Aij and Bi or j have the same formulation as equations (S30) and (S31); i, j = 1, 
2, …, p. Then a F-test can be undertaken. If 

                          𝐹𝐹�𝑃𝑃′,𝑛𝑛𝑒𝑒 + 𝑛𝑛𝑓𝑓 − 𝑃𝑃′ − 1� = 1−Λ(𝑛𝑛𝑒𝑒,𝑛𝑛𝑓𝑓)
Λ(𝑛𝑛𝑒𝑒,𝑛𝑛𝑓𝑓)

�𝑛𝑛𝑒𝑒+𝑛𝑛𝑓𝑓�−𝐴𝐴′−1
𝐴𝐴′

< 𝐹𝐹2                   (S38) 

is satisfied, clusters e and f can be merged into a new cluster h. Otherwise, it should be 
similarly tested whether other clusters can be merged for e = 1, 2, …, (H-1) and f = 2, 
3, …, H. 

The final step is the prediction of the response according to new explanatory variables. 
After all calculations and tests have been completed (i.e., all hypotheses of further 
cutting or mergence are rejected), a cluster tree can be derived for each response. Each 
cutting point, which leads to two branches, corresponds to the value (𝑥𝑥

𝑟𝑟∗,𝑘𝑘∗𝑟𝑟
∗

(ℎ) ) of an 
explanatory variable. When a new pattern set of explanatory variables {𝑥𝑥𝑟𝑟} is examined, 
its 𝑥𝑥𝑟𝑟∗  value can be compared with 𝑥𝑥

𝑟𝑟∗,𝑘𝑘∗𝑟𝑟
∗

(ℎ)  at the cutting point, and classified into 
relevant branches. Step-by-step, the pattern will finally enter a tip cluster which cannot 
be either cut or merged further. The criterion to classify a new sample to relevant 
branches is that, (a) sample data with 𝑥𝑥𝑟𝑟∗ ≤ 𝑥𝑥

𝑟𝑟∗,𝑘𝑘∗𝑅𝑅
∗

(ℎ)  are merged into cluster e ( < f ) and 

(b) sample data with 𝑥𝑥𝑟𝑟∗ > 𝑥𝑥
𝑟𝑟∗,𝑘𝑘∗𝑅𝑅

∗
(ℎ)  are merged into cluster f. Let e' be the tip cluster 

where the new sample enters. Then the predicted dependent variable {𝑦𝑦𝑖𝑖} is: 
                                                 𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑖𝑖

(𝑒𝑒′) ± 𝑅𝑅𝑖𝑖
(𝑒𝑒′)                                                          (S39) 

where 𝑦𝑦𝑖𝑖𝑒𝑒′ is mean of dependent variable i in sub-cluster e', and 𝑅𝑅𝑖𝑖𝑒𝑒′ is radius of yi in 
cluster e': 

                              𝑦𝑦𝑖𝑖
(𝑒𝑒′) = �max𝑘𝑘=1

𝑛𝑛𝑒𝑒′ (𝑦𝑦𝑖𝑖,𝑘𝑘
�𝑒𝑒′� + min𝑘𝑘=1

𝑛𝑛𝑒𝑒′ (𝑦𝑦𝑖𝑖,𝑘𝑘
�𝑒𝑒′�)� /2, ∀𝑖𝑖                             (S40) 

                              𝑅𝑅𝑖𝑖
(𝑒𝑒′) = �max𝑘𝑘=1

𝑛𝑛𝑒𝑒′ (𝑦𝑦𝑖𝑖,𝑘𝑘
�𝑒𝑒′� − min𝑘𝑘=1

𝑛𝑛𝑒𝑒′ (𝑦𝑦𝑖𝑖,𝑘𝑘
�𝑒𝑒′�)� /2, ∀𝑖𝑖                              (S41) 
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Text S7. Filtering Process Model 

After the clustering process, a number of leaf clusters are produced. Each leaf cluster 
contains a group of modeling outputs with similar statistical attributes; these modeling 
outputs provide an output value range for the leaf cluster. The purpose of filtering is to 
calculate an optimal estimate for each leaf cluster; this estimate can be used as an 
optimal output value for the leaf cluster. The set of leaf clusters for all well patterns 
thus can be regarded as all possible results for the remediation design. 

Among various filtering methods, the well-known Kalman filter has been recognized 
as a powerful tool in supporting estimations of past, present, and future states. In this 
study, a filtering process model based on the Kalman filter method was developed to 
calculate the optimal estimate for each leaf cluster. 

Generally, the Kalman filter addresses the problem of estimating the state of a discrete-
time controlled process, z (𝑧𝑧 ∈ 𝑅𝑅𝑓𝑓), that is governed by the following linear stochastic 
difference equation: 

                                         𝑧𝑧𝑘𝑘 = 𝐴𝐴𝑧𝑧𝑘𝑘−1 + 𝐵𝐵𝑢𝑢𝑘𝑘−1 + 𝑤𝑤𝑘𝑘−1                                              (S42) 

with a measurement (𝑞𝑞 ∈ 𝑅𝑅𝑔𝑔) as follows: 

                                               𝑞𝑞𝑘𝑘 = 𝐻𝐻𝑧𝑧𝑘𝑘 + 𝑣𝑣𝑘𝑘                                                               (S43) 

where uk is the optional control input (𝑢𝑢 ∈ 𝑅𝑅𝑙𝑙); wk and vk represent the process and 
measurement noise (random variables), respectively. They are assumed to be 
independent (of each other), white, and with normal probability distributions 
𝑝𝑝(𝑤𝑤)~𝑁𝑁(0,𝑄𝑄𝐴𝐴𝑃𝑃𝐶𝐶)  and 𝑝𝑝(𝑣𝑣)~𝑁𝑁(0,𝑅𝑅𝑆𝑆𝑃𝑃𝐶𝐶) , respectively. A white noise process is 
defined as a random process of random variables that are uncorrelated, have mean zero, 
and a finite variance. The process noise covariance QPNC and measurement noise 
covariance RMNC matrices are assumed to be constant. 

In equation (S42), the f × f matrix A relates the state at the previous time step (k−1) to 
the state at the current step k, in the absence of a process noise. The f × l matrix B 
relates the optional control input u to the state z. The g × f matrix H in equation (S21) 
relates the state to the measurement q. Matrices A and H are assumed to be constants. 

It is defined that �̂�𝑧𝑘𝑘�  (�̂�𝑧𝑘𝑘� ∈ 𝑅𝑅𝑓𝑓) is a priori-state estimate at step k given knowledge of the 
process prior to step k, and �̂�𝑧𝑘𝑘 (�̂�𝑧𝑘𝑘 ∈ 𝑅𝑅𝑓𝑓) to be a posteriori-state estimate at step k given 
measurement qk. It is then defined a priori-estimate error and a posteriori-estimate error 
as 𝑒𝑒𝑘𝑘� ≡ 𝑧𝑧𝑘𝑘 − �̂�𝑧𝑘𝑘�  and 𝑒𝑒𝑘𝑘 ≡ 𝑧𝑧𝑘𝑘 − �̂�𝑧𝑘𝑘 , respectively. Thus, the priori-estimate error 
covariance can be written as 𝑃𝑃𝑘𝑘� = 𝐸𝐸[𝑒𝑒𝑘𝑘� 𝑒𝑒𝑘𝑘� 𝑆𝑆]  and the posteriori-estimate error 
covariance as 𝑃𝑃𝑘𝑘 = 𝐸𝐸[𝑒𝑒𝑘𝑘𝑒𝑒𝑘𝑘𝑆𝑆].  

The posteriori-state estimate (�̂�𝑧𝑘𝑘) can be calculated as: 

                                                         �̂�𝑧𝑘𝑘 = �̂�𝑧𝑘𝑘� + 𝐾𝐾(𝑞𝑞𝑘𝑘 − 𝐻𝐻�̂�𝑧𝑘𝑘� )                                       (S44) 

The difference between the actual measurement (qk) and the measurement prediction, 
(𝑞𝑞𝑘𝑘 − 𝐻𝐻�̂�𝑧𝑘𝑘� ), in equation (S44) is called the residual, which reflects the discrepancy 
between the predicted measurement and the actual measurement. 

The f × g matrix K in equation (S44) is Kalman gain, which is chosen to minimize the 
posteriori error covariance. The Kalman gain Kk can be given as follows (Maybeck, 
1979; Jacobs, 1993): 
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                                                  𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘�𝐻𝐻𝑆𝑆(𝐻𝐻𝑃𝑃𝑘𝑘�𝐻𝐻𝑆𝑆 + 𝑅𝑅)−1                                         (S45) 

As the RMNC approaches zero, the gain K weights the residual more heavily. Specifically, 
lim
𝐹𝐹𝑘𝑘→0

𝐾𝐾𝑘𝑘 = 𝐻𝐻−1 . On the other hand, as the priori-estimate error covariance 𝑃𝑃𝑘𝑘�  

approaches zero, the gain K weights the residual less heavily. Specifically, lim
𝐴𝐴𝑘𝑘�→0

𝐾𝐾𝑘𝑘 = 0. 

The Kalman filter consists of time-update equations and measurement-update equations. 
The discrete time-update equations are written as: 

                                                    �̂�𝑧𝑘𝑘� = 𝐴𝐴�̂�𝑧𝑘𝑘−1 + 𝐵𝐵𝑢𝑢𝑘𝑘−1                                                     (S46) 

                                                    𝑃𝑃𝑘𝑘� = 𝐴𝐴𝑃𝑃𝑘𝑘−1𝐴𝐴𝑆𝑆 + 𝑄𝑄𝐴𝐴𝑃𝑃𝐶𝐶                                                   (S47) 

The time-update equations are responsible for projecting forward (in time) the current 
state and error covariance estimates to obtain the priori-estimates for the next time step. 
The discrete measurement-update equations are given as: 

                                                   𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘�𝐻𝐻𝑆𝑆(𝐻𝐻𝑃𝑃𝑘𝑘�𝐻𝐻𝑆𝑆 + 𝑅𝑅𝑆𝑆𝑃𝑃𝐶𝐶)−1                                 (S48) 

                                                   �̂�𝑧𝑘𝑘 = �̂�𝑧𝑘𝑘� + 𝐾𝐾𝑘𝑘(𝑞𝑞𝑘𝑘 − 𝐻𝐻�̂�𝑧𝑘𝑘� )                                                 (S49) 

                                                   𝑃𝑃𝑘𝑘 = (1 − 𝐾𝐾𝑘𝑘𝐻𝐻)𝑃𝑃𝑘𝑘�                                                          (S50) 

The measurement-update equations are responsible for the feedback—i.e., for 
incorporating a new measurement into the priori-estimate to obtain an improved 
posteriori-estimate. 

The operation of the filter is shown below. The first step is to compute the Kalman gain, 
Kk. The next step is to actually measure the process to obtain qk and then to generate a 
posteriori-state estimate by incorporating the measurement as in equation (S49). The 
final step is to obtain a posteriori error covariance estimate via equation (S50). After 
each iteration of time update and measurement update, the process is repeated with the 
previous posteriori-estimates used to predict the new priori-estimates. This recursive 
nature is one of the very appealing features of the Kalman filter. For example, compared 
with the implementation of a Wiener filter, which operates on all the data directly for 
each estimate, the implementation of the Kalman filter is much more feasible. 

In this study, the modeling outputs (samples) in each leaf cluster can be regarded as 
measurements. For any leaf cluster, the time update equations were written as: 

                                                          �̂�𝑧𝑘𝑘� = �̂�𝑧𝑘𝑘−1                                                                     (S51) 

                                                      𝑃𝑃𝑘𝑘� = 𝑃𝑃𝑘𝑘−1 + 𝑄𝑄𝐴𝐴𝑃𝑃𝐶𝐶                                                   (S52) 

where A=1 (the state did not change from step to step), and u=0 (there was no control 
input). The measurement update equations were given as: 

                                                       𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘� (𝑃𝑃𝑘𝑘� + 𝑅𝑅𝑆𝑆𝑃𝑃𝐶𝐶)−1                                             (S53) 

                                                        �̂�𝑧𝑘𝑘 = �̂�𝑧𝑘𝑘� + 𝐾𝐾𝑘𝑘(𝑞𝑞𝑘𝑘 − �̂�𝑧𝑘𝑘� )                                            (S54) 

                                                          𝑃𝑃𝑘𝑘 = (1 − 𝐾𝐾𝑘𝑘)𝑃𝑃𝑘𝑘�                                                   (S55) 

where H=1 (the noisy measurement is of the state directly); k denotes the number of 
samples (modeling outputs) in each leaf cluster. 
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After the clustering and filtering, an optimal estimate can be obtained for each leaf 
cluster. A new sample can be grouped into a corresponding leaf cluster by comparing 
the values of xtr with those of 𝑥𝑥𝑟𝑟∗

𝛼𝛼 (ℎ∗) . The corresponding output variable can be 
predicted as 𝑦𝑦𝑖𝑖 = �̂�𝑧𝑘𝑘,𝑖𝑖, ∀𝑖𝑖. 
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Text S8. Nonlinear Optimization model of the FCI optimizer 

The Nonlinear Optimization model of the FCI optimizer can be formulated as follows 
(to identify the optimum control conditions): 

 

Min  𝑍𝑍 = ∑ 𝑈𝑈𝑖𝑖𝐼𝐼𝑛𝑛𝐼𝐼
𝑖𝑖=1 + ∑ 𝑈𝑈𝑖𝑖𝐴𝐴𝑚𝑚

𝐽𝐽
𝑖𝑖=1                                                    (S56) 

subject to: 

                           𝑋𝑋𝑘𝑘𝑘𝑘�𝑈𝑈𝑖𝑖𝐼𝐼𝑛𝑛,𝑈𝑈𝑖𝑖𝐴𝐴𝑚𝑚� ≤ 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚  for all k=1,2, …, K                                (S57) 

                                                          0 ≤ 𝑈𝑈𝑖𝑖𝐼𝐼𝑛𝑛 ≤ 𝑈𝑈𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚
𝐼𝐼𝑛𝑛                                           (S58) 

                                                          0 ≤ 𝑈𝑈𝑖𝑖𝐴𝐴𝑚𝑚 ≤ 𝑈𝑈𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚
𝐴𝐴𝑚𝑚                                                       (S59) 

                                                          ∑ 𝑈𝑈𝑖𝑖𝐼𝐼𝑛𝑛𝐼𝐼
𝑖𝑖=1 = ∑ 𝑈𝑈𝑖𝑖𝐴𝐴𝑚𝑚

𝐽𝐽
𝑖𝑖=1                                                 (S60) 

                                                                               

where Z is the total pumping rate for all injection and extraction wells; 𝑈𝑈𝑖𝑖𝐼𝐼𝑛𝑛 and 𝑈𝑈𝑖𝑖𝐴𝐴𝑚𝑚 are 
pumping rates for the ith injection well and the jth extraction well after a period of 
remediation; 𝑈𝑈𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚

𝐼𝐼𝑛𝑛  and 𝑈𝑈𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚
𝐴𝐴𝑚𝑚  are maximum pumping rates for the ith injection well 

and the jth extraction well; Xmax is environmental standard; I, J, K are numbers of 
injection well, extraction well, and monitoring well, respectively; Xkt is predicted 
benzene concentration at t. Constraint (S60) indicates that all the extracted water will 
be injected into the aquifer. This constraint is emphasized to ensure such a stable 
hydraulic gradient that the groundwater can flow directed toward the plume interior. 
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Text S9. Nonlinear Optimization model of the DPC system 

The Nonlinear Optimization model of the DPC system can be formulated as follows (to 
identify the optimum control conditions): 

                                       Min  
2

1 2( )( ( ) ) ( )Z w X S X H w U U= − +                  (S61) 

subject to: 

                                               
0 0( ) ( ) /S X X X X= −                                                (S62) 

                                                         ( )X F U=                          (S63) 

                                                         L UU U U≤ ≤               (S64) 

where Z is the optimization objective, representing the system cost; UL UU  and  are the 
lower and upper bounds of U, respectively; w1 and w2 are the weights to reflect different 
priorities for the remediation efficiency and cost. In this optimization model, S(X) is 
within the range of 0 to 1; therefore, the injection and extraction rates (U) are 
normalized to fit it. H is a constant greater than or equal to 1 which is the highest 
contaminant removal rate. In this optimization model, a pseudo-equation X=F(U) is 
used to describe the relationship between X and U. 
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Text S10. Nonlinear Optimization model of the SADPC system 

The Nonlinear Optimization model of the SADPC system can be formulated as follows 
(to update the optimum control conditions): 

Min     𝐽𝐽 = �∑ 𝜔𝜔𝑖𝑖
𝑝𝑝
𝑖𝑖=1 (𝑋𝑋)�𝑋𝑋𝑟𝑟(𝑑𝑑 + 𝑖𝑖) − 𝑋𝑋𝑝𝑝(𝑑𝑑 + 𝑖𝑖)�2 + ∑ 𝜔𝜔𝑖𝑖(𝑈𝑈)𝑈𝑈(𝑑𝑑 + 𝑖𝑖 − 1)𝑝𝑝

𝑖𝑖=1 �     (S65) 

subject to: 

                                                                𝑋𝑋 = 𝐹𝐹(𝑈𝑈)                                                                (S66) 

                                                                0 ≤ 𝑋𝑋𝑟𝑟(𝑑𝑑 + 𝑖𝑖) ≤ 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚                                      (S67) 

                                                                0 ≤ 𝑋𝑋𝑝𝑝(𝑑𝑑 + 𝑖𝑖) ≤ 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚                                     (S68) 

                                                                𝑈𝑈𝐿𝐿 ≤ 𝑈𝑈 ≤ 𝑈𝑈𝐴𝐴                                                       (S69) 

where J is the optimization objective, representing the system cost; P is the prediction 
horizon; wi(X) and wi(u) are the weights to reflect different priorities for the remediation 
efficiency and cost. 𝑋𝑋𝑟𝑟(𝑑𝑑 + 𝑖𝑖)  and 𝑋𝑋𝐴𝐴(𝑑𝑑 + 𝑖𝑖)  are setpoint and predicted value, 
respectively; 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 is environmental standard. U is the operating condition; 𝑈𝑈𝐿𝐿 and 𝑈𝑈𝐴𝐴 
are the lower and upper bounds of U, respectively. In this optimization model, a pseudo-
equation 𝑋𝑋 = 𝐹𝐹(𝑈𝑈) is used to describe the relationship between X and U. 
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Text S11. Genetic algorithms (GA) 

GAs are heuristic search procedures based on the mechanisms of genetics and Darwin’s 
natural selection principles, combining an artificial survival of the fittest with genetic 
operators abstracted from nature (Holland, 1975). 

An initial random population of genomes within the search space is generated. Each 
genome represents a possible solution to the search/optimization problem and is 
represented by a string of values (genes), one per each search variable. Survival of the 
fittest is accomplished by evaluating each genome’s fitness through an appropriate 
objective function and a biased random selection procedure of individuals for 
“reproduction”, where higher rated genomes are more likely to be selected. Generation 
of a new population is achieved by means of crossover (partial exchange of information 
between pairs of strings) and mutation (a random change in a random location within 
the string). The fittest individuals are transferred unchanged to the next generation, an 
approach known as “elitism”. Every new generation of genomes is expected to be more 
closely concentrated in the vicinity of the optimal solution. The process is repeated until 
a convergence criterion is met or a pre-set maximum number of generations reached. 
GA input parameters include: population size, number of generations, range limits of 
each gene, crossover and mutation rates and a fitness function for genome evaluation. 

In this study, GA is used to solve the developed discrete and nonlinear model. A set of 
parameters are needed to be predefined for guiding the genetic algorithm (Kuo et al., 
2006; Matott et al., 2006; Stramer et al., 2010; Opher and Ostfeld, 2011; Liao et al., 
2020), including: (1) chromosome length LCHR which is the product of the number of 
decision variables (n) and the length of a string (k); (2) population size M which is 
usually within the range of 30 to 200; (3) crossover rate RCRO which is usually within 
the range of 0.6 to 0.95; (4) mutation rate RMUT which is usually within the range of 
0.001 to 0.05; and (5) convergence criterion which is used to judge whether stop the 
search process. Normally the process is stopped after a predetermined generation 
number NG is reached or when there are no significant differences among the best 
solutions. 
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Text S12. MPC control module procedure 

The running procedures are as follows:  

Step 1.  Set the prediction time domain P and the weighting coefficients ωi; 

Step 2.  Use the expected output sequence xr(t) in the future, and the reference trajectory 
comes from the first-order exponential form fitting the actual output value of the DPC 
system;  

Step 3.  The control amount obtained in this sampling time period from the DPC system 
is brought into the biodegradation process to obtain the actual system output x(t); 

Step 4.  Use the DPC system to obtain the model output xm(t) of the current sampling 
time period and the predicted output xm(t+i) of the future time period, and obtain the 
system predicted output value xp(t+i) after feedback correction; 

Feedback correction:                                 𝑥𝑥𝑝𝑝(𝑑𝑑 + 𝑖𝑖) = 𝑥𝑥𝑚𝑚(𝑑𝑑 + 𝑖𝑖) + ℎ𝑒𝑒(𝑑𝑑)                           (S70) 

                                                                  𝑒𝑒(𝑑𝑑) = 𝑥𝑥(𝑑𝑑) − 𝑥𝑥𝑚𝑚(𝑑𝑑)                                      (S71) 

h is the compensation coefficient; 

Step 5.  The optimization algorithm is used to solve the rolling optimization, and the 
optimal sequence U(t+i-1) is obtained;  

Step 6.  Apply the first control variable U(t) of the optimal sequence to the system, and 
then return to step 2. 
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Text S13. General procedure for developing a process control system for enhanced 
in situ biodegradation 

Step 1.  A 3D pilot-scale model is designed for supporting the operation of enhanced 
in-situ biodegradation. 

Step 2. After the occurrence of a hydrocarbon spill, an enhanced in-situ biodegradation 
process is to be undertaken. A subsurface LNAPLs biodegradation model is then 
developed to reflect the in-situ LNAPL biodegradation process. 

Step 3. After calibration and verification, the interactions between contaminant 
concentrations and operating conditions are simulated through the subsurface model. 

Step 4. Considering high complexities and computational requirements in incorporating 
numerical simulation model directly into optimization frameworks, coupled with the 
inability to obtain enough samples due to the high cost of sampling, a statistical relation-
ship between remediation system performance and operating condition will be 
developed based on a large number of runs for the developed simulation model under 
various system conditions. Different scenarios of contamination situations and 
operating conditions are considered for the simulation. Under each contamination 
situation, the effects of various operation conditions on contaminant concentrations at 
concerned locations are examined. 

Step 5. The stepwise cluster analysis method or the filtered clustering analysis method 
is used to develop to reflect the effects of variations of operating-condition on 
contaminant concentrations. Thus, a bridge between the subsurface model and the 
operating decision is established for further determining the desired operating 
conditions. 

Step 6. Based on the established statistical relationships, a corresponding nonlinear 
discrete optimization model for groundwater control is established to determine optimal 
operating conditions corresponding to specific contamination situations. The GA 
technique is used to solve the developed optimization model. 

Step 7. After the optimal operation conditions for each scenario are determined, the SI 
emulator is developed through the obtained knowledge base. 

Step 8. A new nonlinear discrete optimization model is formulated by using the part 
that meets the expectation and its epitaxial as the setpoint curve for the contamination 
situations that do not meet the expectation in each scenario. Rolling optimization 
determines the optimal operating conditions corresponding to a specific contamination 
situation. The GA technique is used to solve the newly developed optimization model, 
and the optimal operating conditions of each scene are updated. 
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Text S14. Collinearity test of the independent variables  

The presence of high collinearity in an FCI simulator implies that the conclusions of 
the analysis can be questioned. For example, the accuracy of estimations cannot be 
guaranteed due to high variances of the estimators. Thus, detection of collinearity 
should be a compulsory first step in every correlation analysis. Collinearity measures 
have been widely applied to examine if there are any co-relations among the 
independent variables. Variance Inflator Factor (VIF)is commonly used to evaluate the 
level of collinearity, which can be calculated as follows: 

                                                         (S72) 

                                                (S73) 

                                             (S74) 

where  represents the random disturbance and  is the negative correlation 
coefficient of the independent variable for the regression analysis of the remaining 
independent variables. 

If the data matrix has no full column rank that can be considered “severe 
multicollinearity”, e.g., an independent variable can be expressed linearly by other 
independent variables. The closer the VIF value near 1, the lower the collinearity level 
is. The threshold value is usually 10. In this study, we selected groundwater injection 
rates of oxygen and nutrient in Well I and Well II (u1 and u2), and groundwater 
extraction rates in Well III and Well IV (u3 and u4) as the independent variables (called 
control variables in this paper) (Table S6). Results show that the corresponding VIF 
values of all the independent variables are much less than the threshold value (10), 
indicating that the variables are independent and do not have the multicollinearity 
(Table S8).  
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Figure S1(a). Plan view of the pilot scale system 

 

 
Figure S1(b). Front view of the pilot scale system 
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Figure S1(c). Bottom view of the pilot scale system 

 

 
Figure S1(d). End elevation of the pilot scale system 
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Figure S1(e). Well locations (plan view) 
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Figure S1(f). Well locations and soil types (section view) 

 
Figure S2. Framework of the FCI Optimizer 
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Figure S3. Framework of the SI Emulator 

 

 
Figure S4. Locations of the hypothetical wells 
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Figure S5. Benzene concentrations of the DPC system from Day 2 to Day 22, where 
Figs. (a) to (i) represents the concentrations at HW-40, HW-42, HW-48, HW-52, 

HW-56, HW-62, HW-95, HW-102, and HW-106 
 

 
 

 
 

Figure S6. The concentration distribution of Benzene on Day 57 of the experiment 
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Figure S7(a). The concentration distribution of Benzene on Day 40 

 

 
Figure S7(b). The concentration distribution of Benzene on Day 57 
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Figure S8. Verification results for well 5 and well 6 
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Table S1. Input parameters for contaminant transport simulation  

Parameter Value 

Flow and transport simulation parameters  
Hydraulic conductivity of sand/ till/ clay 10 / 5 / 2.5 m/d 
Permeability of sand/ till/ clay  1500/430/ 890 MD 
Porosity of sand/ till/ clay  0.35 / 0.30 / 0.45 
Longitudinal dispersivity of sand/ till/ clay 0.1 / 0.1 / 0.1 m 
Transverse dispersivity of sand/ till/ clay 0.01 / 0.01 / 0.01 m 
Van Genuchten's alpha of sand/ till/ clay 10 m-1 
Van Genuchten's n of sand/ till/ clay 6.8 
First-order reaction rate coefficient of benzene 0.21 /d 
Endogenous decay coefficient 0.2544 /d 
Residual water saturation 0.01 
Water dynamic viscosity 1.0 cp 
Water interfacial tension 45 Dynes/cm 
Benzene density 0.713 g/cm3 
Hydraulic gradient 0.03 m/m 
Water partition coefficient of benzene 0.00203 
Benzene solubility 1750 mg/L 
Aquifer thickness 1.2 m 
Time step 0.101 day 
Maximum time step size 10 day 
Tolerance for concentration change 0.001 

Enhanced biodegradation simulation parameters  
Water injecting rate 20 L/d 
NH4NO3 nutrient injecting rate 1750 mg/L 
NH4HPO4 nutrient injecting rate 1100 mg/L 
Heterotrophs microorganism injecting rate 20 mg/L 
Oxygen injecting rate 8 mg/L 
Water pumping rate 30 L/d 
Microorganisms maximum specific growth rate 4.2 per day 
Biomass density  0.09 g/cm3 
Yield coefficient (g cell/g benzene) 1.0 cells/g soil 
Half-saturation coefficient  0.77 mg/L 
Bulk density of porous medium 1.64 g/cm3 

Simulation period 12 day 
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Table S2. Initial Geochemical and Microbial Properties of the Soil 

Parameter Value 

Soil classification Silty clay, sand, and clay matrix 
till 

Hydraulic conductivity In the range of 10-7 to 10-5 (m/s) 
Moisture content 7.5-32.5% (by volume) 
Porosity 30-53.1% 
Na 436-548 mg/L 
K 16-19.7 mg/L 
Ca 562-629 mg/L 
Mg 338-407 mg/L 
Fe 0.12-1.04 mg/L 
Cl 10-79 mg/L 
N, NO2

-, NO3
- 31-115 mg/L 

Soil organic carbon  1.14% 
Dissolved oxygen concentration <1.0 mg/L to 1.5 mg/L 

Initial microbial species 
Pseudomonas sp. Strain CFS-215, 
Geobacter sp., and Rhodocuccus 
sp. Strain 33 
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Table S3. Observed benzene concentrations (mg/L) 

Well Day 13 Day 15 Day 17 Day 19 Day 21 Day 24 Day 26 Day 28 Day 32 Day 34 Day 36 Day 38 Day 40 

1  0.032   1.073 0.033  0.174 0.696 0.837 0.738 0.462 0.439 
2 0.484 0.564 0.262 0.360 0.672 0.978 0.732 0.699 1.054 1.252 0.682 0.542 0.702 
3 0.643 0.734 3.169 2.391 3.408 1.777 2.137 1.858 1.834 1.897 1.077 0.712 0.606 
4 0.236    0.245   0.090 0.663 0.827 0.671 0.409 0.415 
5 1.347 2.074 1.362 0.888 0.842 0.204 0.601 0.745 0.825 0.974 0.993 0.578 0.685 
6 8.131 7.482 7.795 5.530 7.438 7.068 8.696 5.716 4.080 4.887 6.337 3.519 7.340 
7 0.279       0.392 0.875 1.370 0.756 0.761 0.566 
8 0.296   0.357    0.175 0.851 1.117 0.738 0.594 0.720 
9     1.198 0.186  0.300 0.884 1.067 0.724 0.637 0.741 
10 1.359 1.218 0.498  1.284 4.698 1.029 1.278 1.384 1.890 1.663 0.546 2.488 
11   0.507     0.851 0.508 0.213 0.474 0 0.203 
12  0.502 0.808     0.843 0.578 0.288 0.502 0.036 0.352 
13              
14              
15              

16         0.485 0.211   0.324 

 
Table S3. (continued) 

Well Day 42 Day 44 Day 46 Day 48 Day 52 Day 53 Day 54 Day 57 
1 0.304        
2         
3 0.526 1.593 1.429 0.508 0.501 0.733 0.386 0.285 
4   0.090 0.400 0.285 0.293 0.292 0.245 
5 1.497 1.920 2.070  0.824 0.651 0.581 0.575 
6 0.444   0.472 0.265 0.361 0.284 0.291 
7 0.385 0.733 1.227 0.686 0.300 0.268 0.241 0.224 
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8 0.524 0.703 0.366 0.527 0.359 0.316 0.310 0.273 
9 1.070 0.918 0.698 1.357 0.831 0.874 0.397 0.633 
10 1.366 1.628 0.947 1.590 2.055 1.292 1.162 0.292 
11 0.349 0.710 0.163 0.554 0.363 0.280 0.288 0.249 
12 0.417 0.741 0.166 0.443 0.322 0.267 0.263 0.285 
13   0.079 0.376     
14    0.376 0.231    
15 0.512  0.090 0.398 0.261 0.248 0.237 0.235 

16 0.334 0.373 0.453 0.776 0.563 0.507 0.296 0.296 
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Table S4. Error analysis for the biodegradation simulation results 

Well 
number 

Observed concentration 
(mg/L) 

Simulated 
concentration (mg/L) 

Absolute          
Error (mg/L) 

3 0.00 0.03 0.03 
4 0.00 0.05 0.05 
5 0.51 0.25 0.26 
6 0.40 0.35 0.05 
7 0.80 0.80 0.00 
8 0.47 0.16 0.31 
9 0.69 0.49 0.20 
10 0.53 0.78 0.25 
11 1.36 1.70 0.34 
12 2.00 2.40 0.40 
15 0.41 0.80 0.19 
16 0.44 0.20 0.24 

Mean absolute error 0.21 

Root mean square error 0.27 
Correlation coefficient 0.93 
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Table S5. Fifty levels of contamination situation (mg/L) 

No. 
M 5 

1x  
M 7 

2x  
M 8 

3x  
M 10 

4x  
M 11 

5x  
M 12 

6x  No. 
M 5 

1x  
M 7 

2x  
M 8 

3x  
M 10 

4x  
M 11 

5x  
M 12 

6x  

1 1.68 22.07 5.63 14.10 2.88 1.62 26 6.53 25.45 3.99 2.86 19.79 1.63 
2 7.67 4.59 7.35 22.43 22.71 2.05 27 2.34 19.26 20.82 2.65 1.62 1.84 
3 8.71 16.50 24.76 4.73 2.57 26.12 28 19.72 5.72 3.73 1.72 3.64 2.33 
4 7.53 1.79 12.45 2.26 16.31 20.51 29 9.30 1.93 2.93 4.55 10.89 22.91 
5 3.63 4.24 17.74 3.50 2.12 27.21 30 10.25 23.75 24.24 4.31 16.00 2.81 
6 14.59 7.04 14.73 10.55 23.17 2.34 31 1.63 1.64 2.38 2.57 5.30 6.46 
7 5.27 5.12 6.76 10.95 4.93 20.10 32 5.95 10.31 3.53 3.53 2.17 19.80 
8 1.63 16.66 19.79 10.25 16.10 6.22 33 3.71 16.88 14.63 6.29 4.52 3.29 
9 3.72 1.89 4.63 13.64 23.44 3.41 34 2.61 14.90 20.27 21.74 2.42 1.92 
10 2.17 1.73 6.10 4.88 14.01 5.45 35 6.79 18.64 1.62 12.37 2.39 10.58 
11 4.22 1.73 6.59 4.60 2.49 2.37 36 19.48 2.16 27.50 15.27 20.50 3.13 
12 10.04 24.28 18.27 10.83 12.57 9.21 37 17.92 2.97 1.64 25.34 2.14 2.30 
13 4.99 6.13 25.44 2.06 18.22 2.28 38 4.85 21.68 7.44 26.07 16.37 2.87 
14 1.76 21.19 2.29 2.09 2.04 1.72 39 9.17 4.35 3.61 19.46 2.53 23.10 
15 2.62 15.15 27.64 3.16 4.30 2.92 40 3.93 19.13 13.06 4.08 23.73 5.44 
16 14.17 2.00 15.40 7.13 9.85 13.62 41 14.76 20.89 2.40 19.80 14.06 2.47 
17 8.58 27.04 6.77 13.23 15.66 2.10 42 5.04 1.65 21.25 17.10 6.10 17.77 
18 15.63 18.38 13.20 6.81 1.68 25.45 43 2.60 4.41 25.02 2.85 1.62 3.82 
19 2.22 4.55 7.90 17.96 2.70 2.71 44 4.25 1.73 17.42 1.63 17.27 1.62 
20 2.60 15.15 18.04 16.46 25.59 4.85 45 1.63 15.60 22.53 15.09 1.65 23.74 
21 2.50 6.36 9.61 4.93 11.25 15.38 46 8.25 1.74 24.30 22.94 1.63 2.68 
22 5.41 15.46 5.02 9.83 3.44 22.02 47 3.28 4.63 20.23 4.99 20.29 15.02 
23 2.40 5.94 2.23 2.01 12.77 2.09 48 2.42 2.76 1.62 3.05 4.78 6.56 
24 4.23 20.07 3.26 16.44 1.83 1.68 49 2.91 1.77 3.79 14.65 8.37 4.08 
25 2.21 4.79 2.15 14.61 9.72 2.07 50 19.04 5.04 2.13 1.91 23.67 19.58 
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Table S6. Fifty scenarios of operating conditions 

No. u1  
(L/d) 

u2  
(L/d) 

u3  
(L/d) 

u4 
 (L/d) No. u1 

 (L/d) 
u2 

 (L/d) 
u3  

(L/d) 
u4 

 (L/d) 

1 37.62 19.42 21.12 13.24 26 10.12 14.16 37.08 10.02 
2 15.7 34.46 36.14 30.24 27 11.48 15.66 17.82 27.96 
3 34.42 10.84 25.2 11.16 28 13.16 19.38 34.78 21.78 
4 14.16 11.48 12.92 38.64 29 20.1 11.08 29.9 18.21 
5 32.78 30.18 20.34 12.74 30 23.2 25.1 32.2 12.62 
6 27.92 13 11.36 29.72 31 20.5 38.76 10.68 22.76 
7 16.64 18.46 32.78 31.4 32 14.6 13.34 19.05 18.76 
8 13.08 23.5 30.16 10.08 33 19.8 31.98 26.36 31.88 
9 15.6 30.4 13.92 14.92 34 14.92 17.24 38.68 37.88 

10 15.6 13.5 29.8 12.78 35 30 27.5 13.6 15.56 
11 29.7 26.88 12.6 24.9 36 21.3 12.32 23.36 29.28 
12 28.56 29.3 13.26 25.98 37 18.38 16.08 38.64 10.14 
13 12.96 15.24 25.28 13.9 38 38 23.6 30.42 32.76 
14 35.4 26.68 11.6 13.6 39 17.04 33.84 11.3 14.78 
15 26.14 26.98 39.82 20.66 40 19.6 8.42 32.14 38.56 
16 27.7 39.78 13.92 11.88 41 29.46 24.22 15.74 23.58 
17 28.7 34.9 39.52 12.42 42 16.12 15.06 36.32 33.98 
18 34.54 39.78 35.78 22.16 43 16.64 10.66 17.42 34.34 
19 14.1 37.58 23.2 13.28 44 33.4 24.4 17.02 17.04 
20 24.4 17.66 18.02 38 45 23.32 31.86 28.54 12.72 
21 12.12 16.9 20.24 17.32 46 19.06 18.24 11.92 22.44 
22 21.34 14.3 35.96 15.78 47 33.96 13.1 32.56 15.09 
23 33.42 13.48 23.92 32 48 13.98 13.8 39.72 39.6 
24 22.5 36.2 13 22.64 49 20.06 34.96 16.54 38.44 
25 20.2 27.94 34.72 25.84 50 39.8 26.42 38.82 21.52 

 
  



 
 

43 
 

Table S7. Input and output variables for SI emulator and FCI simulator 

SI Emulator Input (I) or 
Output (O) Symbol FCI Simulator Input (I) or 

Output (O) 
 

Symbol 

Highest contaminant 
concentration anywhere 
in the mesh 

I ЪMAX Highest contaminant 
concentration anywhere 
in the mesh 

I ЪMAX 

Percentage of benzene 
mass removal 

I η Percentage of benzene 
mass removal 

I η 

Injecting rate of well I O u1 Injecting rate of well I I u1 
Injecting rate of well II O u2 Injecting rate of well II I u2 
Pumping rate of well III O u3 Pumping rate of well III I u3 
Pumping rate of well IV O u4 Pumping rate of well IV I u4 
   Highest contaminant 

concentration anywhere 
in the mesh 

O ЪMAX 

   Percentage of benzene 
mass removal 

O η 
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Table S8. The result of the collinearity test 

 
 

Variable VIF Tolerance
u1 1.068 0.936
u2 1.128 0.886
u3 1.043 0.959
u4 1.067 0.937
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