REFERENCES
Agerer, R. 1987-2006. Colour Atlas of Ectomycorrhizae. Schwäbisch Gmünd: Einhorn–Verlag.
Agerer, R. 1991. Characterization of ectomycorrhiza. Methods in Mycrobiology, 23: 26–65.https://doi.org/10.1016/S0580-9517(08)70172-7
Agerer, R. 2001. Exploration types of ectomycorrhizae: A proposal to classify ectomycorrhizal mycelial system according to their patterns of differentiation and putative ecological importance. Mycorrhiza,11: 107–114.
Ahonen-Jonnarth, U., van Hees, P. A. W., Lundstrm, U. S., Finlay, R. D. 2000. Organic acids produced by mycorrhizal Pinus sylvestris exposed to elevated aluminium and heavy metal concentrations. New Phytologist, 146(3): 557–567.https://doi.org/10.1046/j.1469-8137.2000.00653.x
Almeida, J. P, Rosenstock, N. P., Forsmark, B., Bergh, J., Wallander, H. 2019. Ectomycorrhizal community composition and function in a spruce forest transitioning between nitrogen and phosphorus limitation.Fungal Ecology, 40: 20–31.https://doi.org/10.1016/j.funeco.2018.05.008
Alonso, J., García, M. A., Pérez-López, M., Melgar, M. J. (2003) The con-centrations and bioconcentration factors of copper and zinc in edible mushrooms. Archives of Environmental Contamination and Toxicology, 44: 180–188https://doi.org/10.1007/s00244-002-2051-0
Bardgett, R. D, Mommer, L., De Vries, F. T. (2014) Going underground: root traits as drivers of ecosystem processes. Trends in Ecology & Evolution, 29: 692–699.https://doi.org/10.1016/j.tree.2014.10.006
Barrett, G., Campbell, C. D, Fitter, A. H, Hodge, A. (2011) The arbuscular mycorrhizal fungus Glomus hoi can capture and transfer niterogen from organic patches to its associated host plant at low temperature. Applied Soil Ecology, 48(1): 102–105.https://doi.org/10.1016/j.apsoil.2011.02.002
Beltrano, J., Ruscitti, M., Arango, M. C., Ronco, M. (2013) Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. Journal of Soil Science and Plant Nutrition, 13(1): 123–141.https://doi.org/10.4067/S0718-95162013005000012
Boomsma, C. R., Vyn, T. J. (2008) Maize drought tolerance: Potential improvements through arbuscular mycorrhizal symbiosis? Field Crops Research, 108: 14–31.https://doi.org/10.1016/j.fcr.2008.03.002
Brandes, B., Godbold, D. L, Kuhn, A. J, Jentschke, G. (1998) Nitrogen and phosphorus acquisition by the mycelium of the ectomycorrhizal fungus Paxillus involutus and its effect on host nutrition. New Phytologist, 140: 735–743.https://doi.org/10.1046/j.1469-8137.1998.00313.x
Cappellazzo, G., Lanfranco, L., Fitz, M., Wipf, D., Bonfante, P. 2008. Characterization of an amino acid permease from the Endomycorrhizal fungus Glomus mosseas . Plant Physiology, 147: 429–437.
Chen, W. L., Koide, R. T., Adams, T. S., DeForest, J. L., Cheng, L. (2016) Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proceedings of the National Academy of Sciences of the United States of America, 113(31): 8741–8746.https://doi.org/10.1104/pp.108.117820
Chen, W. L., Koide, R. T., Eissenstat, D. M. 2018. Nutrient foraging by mycorrhizas: From species functional traits to ecosystem processes.Functional Ecology, 32(4): 858–869.https://doi.org/10.1111/1365-2435.13041
Chen, M. M., Yin, H. B., OConnor, P., Wang, Y. S., Zhu, Y. G. (2010) C: N: P stoichiometry and specific growth rate of clover colonized by arbuscular mycorrhizal fungi. Plant and Soil326: 21–29.https://doi.org/10.1007/s11104-009-9982-4
Chien, S. H., Gearhart, M. M., Villagarcia. S. 2011. Comparison of ammonium sulfate with other nitrogen and sulfer fertilizers in increasing crop production and minimizing environmental impact: a review. Soil Science, 176(7): 327–335.https://doi.org/10.1097/SS.0b013e31821f0816
Courty, P. E.,Buee, M., Diedhiou, A. G., Fre-Klett, P., Le Tacon, F., Rineau, F., Turpault, M. P., Uroz, S., Garbaye, J. (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biology and Biochemistry, 42: 679–698.https://doi.org/10.1016/j.soilbio.2009.12.006
Cornelissen, J. H. C, Aerts, R., Cerabolini, B., Werger, M. J. A, van der Heijden, M. G. A. (2001) Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia, 129: 611–619.https://doi.org/10.1007/s004420100752
Craine, J. M., Elmore, A. J, Aidar, M. P., Bustamante, M., Dawson, T. E., Hobbie, E. A., Kahmen, A., Mack, C., McLauchlan, K. K, Michelsen, A. (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist, 183: 980–992.https://doi.org/10.1111/j.1469-8137.2009.02917.x
Craine, J. M, Lee, W. G. (2003) Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia, 134: 471–478.https://doi.org/10.1007/s00442-002-1155-6
Einsmann, J. C, Jones, B., Pu, M., Mitchell, R. J. (1999) Nutrient foraging traits in 10 co-ocurring plant species of contrasting life forms. Journal of Ecology, 87: 609–619.https://doi.org/10.1046/j.1365-2745.1999.00376.x
Florin, R. (1963) The distribution of conifer and taxad genera in time and space. Acta Hortie Berg 20: 121–312.
Franklin, O., Nasholm, T., Hogberg, P., Hogberg, M. N. (2014) Forests trapped in nitrogen limitation–an ecological market perspective on ectomycorrhizal symbiosis. New Phytologist, 203: 657–666.https://doi.org/10.1111/nph.12840
Gallaher, R. N, Weldon, C. O, Boswell, F. C. (1976) A semi-automated procedure for total nitrogen in plant and soil samples. Soil Science Society of America Journal 40: 887–889.https://doi.org/10.2136/sssaj1976.03615995004000060026x
Graefe, S., Hertel, D., Leuschner, Ch. (2010) N, P and K limitation of fine root growth along an elevation transect in tropical mountain forests. Acta Oecologica, 36: 537–542.https://doi.org/10.1016/j.actao.2010.07.007
Güsewell, S. 2004. N:P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 164: 243–266.https://doi.org/10.1111/j.1469-8137.2004.01192.x
Güsewell, S., Koerselman, W. (2002) Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Ecology, Evolution and Systematics, 5: 37–61.https://doi.org/10.1078/1433-8319-0000022
Han, W., Fang, J., Guo, D., Zhang, Y. (2005) Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China.New Phytologist, 168 (2): 377–385.https://doi.org/10.1111/j.1469-8137.2005.01530.x
Hajong, S., Kumaria, S., Tandon, P. (2013) Comparative study of key phosphorus and nitrogen metabolizing enzymes in mycorrhizal and non-mycorrhizal plants of Dendrobium chrysanthum Wall. ex Lindl.Acta Physiol Plant, 35: 2311–2322.https://doi.org/10.1007/s11738-013-1268-z
He, J. S, Wang, L., Flynn, D. F. B, Wang, X. P, Ma, W. H, Fang, J. Y. (2008) Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia1, 55: 301–310.https://doi.org/10.1007/s00442-007-0912-y
Hobbie, E. A, Agerer, R. (2010) Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant Soil, 327: 71–83.https://doi.org/10.1007/s11104-009-0032-z
Hobbie, E. A, Högberg, P. (2012) Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytologist, 196: 367–382.https://doi.org/10.1111/j.1469-8137.2012.04300.x
Hobbie, E. A, Jumpponen, A., Trappe, J. (2005) Foliar and fungal15N:14N ratios reflect development of mycorrhizae and nitrogen supply during primary succession: testing analytical models. Oecologia, 146: 258–268.https://doi.org/10.1007/s00442-005-0208-z
Hodge, EA. (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 162: 9-24.https://doi.org/10.1111/j.1469-8137.2004.01015.x
Hobbie, J. E, Hobbie, E. A. (2006) 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in arctic tundra. Ecology, 87: 816–822.https://doi.org/10.2307/20069010
Houlton, B. Z, Sigman, D. M, Schuur, E. A. G, Hedin, L. O. (2007) A climate-driven switch in plant nitrogen acquisition within tropical forest communities. Proceedings of the National Academy of Sciences of the United States of America, 104: 8902–8906.https://doi.org/10.1073/pnas.0609935104
Jackson, R. B., Caldwell, M. M. (1996) Integrating resource heterogeneity and plant plasticity: modelling nitrate and phosphate uptake in a patchy soil environment. Journal of Ecology, 84: 891–903.https://doi.org/10.2307/2960560
Jiang, J., Moore, J. A, Priyadarshi, A., Classen, A. T. (2017) Plant-mycorrhizal interactions mediate plant community coexistence by altering resource demand. Ecology, 98: 187–197.https://doi.org/10.1002/ecy.1630
Johnson, N. C., Rowland, D. L., Corkidi, L., Egerton-Warburton, L. M., Allen, E. B. (2003) Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology, 84: 1895–1908.https://doi.org/10.1890/0012-9658(2003)084[1895:NEAMAA]2.0.CO;2
Johnson, N. C. (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist, 185 (3): 631–647.https://doi.org/10.1111/j.1469-8137.2009.03110.x
Johnson, N. C, Angelard, C., Sanders, I. R, Kiers, E. T. (2013) Predicting community and ecosystem outcomes of mycorrhizal responses to global change. Ecology Letters, 16: 140–153.https://doi.org/10.1111/ele.12085
Keyimu, M., Li, Z. S., Wu, X. C., Fu, B. J., Liu, G. H., Shi, S. L., Fan, Z. X., Wang, X. C. (2020) Recent decline of high altitude coniferous growth due to thermo-hydraulic constrains: evidence from the Miyaluo Forest Reserve, Western Sichuan Plateau of China.Dendrochronologia, 63:125751.https://doi.org/10.1016/j.dendro.2020.125751
Koele, N., Dickie, I. A., Oleksyn, J., Richardson, S. J, Reich, P. B. (2012) No globally consistent effect of ectomycorrhizal status on foliar traits. New Phytologist, 196: 845–852.https://doi.org/10.1111/j.1469-8137.2012.04297.x
Koerselman, W., Meuleman, A. F. M. (1996) The Vegetation N: P Ratio: A New Tool to Detect the Nature of Nutrient limitation. The Journal of Applied Ecology, 33(6): 1441–1450.https://www.jstor.org/stable/2404783
Köhle, J., Yang, N., Pena, R., Rahavan, V., Polle, A., Meier, I. C. (2018) Ectomycorrhizal fungal diversity increases phosphorus uptake efficiency of European beech. New Phytologist, 220(4): 1200–1210.https://doi.org/10.1111/nph.15208
Ladd, J. N., Butler J. H. A. (1972) Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biology and Biochemistry 4(1): 19–30.https://doi.org/10.1016/0038-0717(72)90038-7
Lande, R. (1996) Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76: 5–13.https://doi.org/10.2307/3545743
Landis, F. C., Fraser, L. H. (2008) A new model of carbon and phosphorus transfers in arbuscular mycorrhizas. New Phytologist 177 (2): 466.https://doi.org/10.1111/j.1469-8137.2007.02268.x
Li, Z. S, Liu, G. H., Fu, B. J., Zhang, Q. B., Ma, K. P., Neil, P. (2013) The growth-ring variations of alpine shrub Rhododendron przewalskii reflect regional climate signals in the alpine environment of Miyaluo Town in Western Sichuan Province, China. Acta Ecologica Sinica 33: 23–31.https://doi.org/10.1016/j.chnaes.2012.12.004
Li, Y., Li, D., Xu, Z., Zhao, C., Lin, H., Liu, Q. (2015) Effects of warming on ectomycorrhizal colonization and nitrogen nutrition ofPicea asperata seedlings grown in two contrasting forest ecosystems. Scientific Reports 5: 17546.https://doi.org/10.1038/srep17546
Li, Z. S., Keyimu, M., Fan, Z., Wang, X. C. (2020) Climate sensitivity of conifer growth doesn’t reveal distinct low–high dipole along the elevation gradient in the Wolong National Natural Reserve, SW China.Dendrochronologia, 61: 125702.https://doi.org/10.1016/j.dendro.2020.125702Lilleskov, E., Hobbie, E., Horton, T. (2011) Conservation of ectomycorrhizal fungi: Exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecology, 4: 174–183.https://doi.org/10.1016/j.funeco.2010.09.008
Liu, G. F., Freschet, G. T., Pan, X., Cornelissen, J. H. C., Li, Y., Dong, M. (2010) Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems.New Phytologist, 188: 543–553.https://doi.org/10.1111/j.1469-8137.2010.03388.x
Lõhmus, K., Truu, M., Truu, J., Ostonen, I., Kaar, E., Vares, A., Uri, V., Alam, S., Kanal, A. (2006) Functional diversity of culturable bacterial communities in the rhizosphere in relation to fine-root and soil parameters in alder stands on forest, abandoned agricultural, and oil-shale mining areas. Plant and Soil, 283: 1–10.https://doi.org/10.1007/s11104-005-2509-8
Magyar, G., Kun, Á., Oborny, B., Stuefer, J. F. (2007) Importance of plasticity and decision-making strategies for plant resource acquisition in spatio-temporally variable environments. New Phytologist, 174: 182–193.https://doi.org/10.1111/j.1469-8137.2007.01969.x
Matsuda, Y., Hijii, N. (2004) Ectomycorrhizal fungal communities in anAbiea firma forest, with special reference to ectomycorrhizal associations between seedlings and mature trees. Canadian Journal of Botany, 83: 822–829.https://doi.org/10.1139/b04-065
Merrild, M. P., Ambus, P., Rosendahl, S., Jakobsen, I. (2013) Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants. New Phytologist, 200 (1): 229–240.https://doi.org/10.1111/nph.12351
Michelsen, A., Schmidt, I. K., Jonasson, S., Quarmby, C., Sleep, D. (1996) Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen.Oecologia, 105: 53–63.https://doi.org/10.1007/BF00328791
Mitchell, K. (2007) Quantitative analysis by the point-centered quarter method. PhD thesis. Hobart and William Smith Colleges, New York, USA.
Näsholm, T., Högberg, P., Franklin, O., Metcalfe, D., Keel, S. G., Campbell, C., Hurry, V., Linder, S., Högberg, M. N. (2013) Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytologist, 198: 214–221.https://doi.org/10.1111/nph.12139
Nehls, U., Kleber, R., Wiese, J., Hampp, R. (1999) Isolation and characterization of a general amino acid permease from the ectomycorrhizal fungus Amanita muscaria. New Phytologist 144(2): 343–349.https://doi.org/10.1046/j.1469-8137.1999.00513.x
Nehls, U., Plassard, C. (2018) Nitrogen and phosphate metabolism in ectomycorrhizas. New Phytologist, 220: 1047–1058.https://doi.org/10.1046/j.1469-8137.1999.00513.x
Nelson, D. W., Sommers, L. E. (1982) Total carbon, organic carbon, and organic matter. In A.L.Page, R.H.Miller &D.R.Keeney (Eds.), Methods of soil analysis (pp. 101-129). Madison: American Sociert of Afronomy and Soil Science Society of American.
Olde Venterink, H., Wassen, M., Verkroost, A. W. M., de Ruiter, P. C. (2003) Species richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology, 84: 2191–2199.https://doi.org/10.1890/01-0639
Ostonen, I., Helmisaari, H. S., Borken, W., Tedersoo, L., Kukumagi, M., Bahram, M., Lindroos, A-J, Nojd, P., Uri, V., Merila, P., Asi, E, Lõhmus, K. (2011) Fine root foraging strategies in Norway spruce forests across a European climate gradient. Global Change Biology, 17: 3620–3632.https://doi.org/10.1111/j.1365-2486.2011.02501.x
Ostonen, I., Lõhmus, K., Helmisaari, H. S., Truu, J., Meel, S. (2007) Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests. Tree Physiology, 27: 1627–1634.https://doi.org/10.1093/treephys/27.11.1627
Ostonen, I., Tedersoo, L., Suvi, T., Lõhmus, K. (2009) Does a fungal species drive ectomycorrhizal root traits in Alnus spp.? Canadian Journal of Forest Research, 39: 1787–1796.https://doi.org/10.1139/X09-093
Perez, T. J., Testillano, P. S., Balestrini, R., Fiorilli, V., Azcon, A. C., Ferrol, N. (2011) GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices.Fungal Genetics and Biology, 48(11): 1044–1055.https://doi.org/10.1139/X09-093
Plassard, C, Dell, B. (2010) Phosphorus nutrition of mycorrhizal trees.Tree Physiology, 30(9):1129–1139.https://doi.org/10.1093/treephys/tpq063
Pritsch, K., Garbaye, J. (2011) Enzyme secretion by ECM fungi and exploitation of mineral nutrients from soil organic matter. Annals of Forest Science, 68: 25–32.https://doi.org/10.1007/s13595-010-0004-8
Read, D. J. (1991) Mycorrhizas in ecosystems. Cellular and Molecular Life Sciences, 47: 376–391.https://doi.org/10.1007/BF01972080
Reich, P. B., Oleksyn, J. (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101(30): 11001–11006.https://doi.org/10.1073/pnas.0403588101
Rosinger, C., Sandén, H., Matthews, B., Mayer, M. Godbold, D. L. (2018) Patterns in ectomycorrhizal diversity, community composition, and exploration types in European Beech, Pine, and Spruce forests.Forests, 9: 445.https://doi.org/10.3390/f9080445
Schinner, F., Ohlinger, R., Kandeler, E., Margesin, R. (1996)Methods in Soil Biology . Berlin: Springer.
Smith, S., Read, D. (2008) Mycorrhizal symbiosis. Cambridge, UK: Academic Press.
Smith, S. E., Jakobsen, I., Grönlund, M., Smith, F. A. (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology, 156: 1050–1057.https://doi.org/10.1104/pp.111.174581
Steven, A. T., Rygiewcz, P. T., Edmonds, R. L. (2004) Patterns of nitrogen and carbon stable isotope ratios in macrofungi, plants and soils in two old-growth conifer forests. New Phytologist, 164: 317–335.https://doi.org/10.1111/j.1469-8137.2004.01162.x
Taylor, A. H., Jang, S. W., Zhao, L. J., Liang, C. P., Miao, C.J., Huang, J. Y. (2006) Regeneration patterns and tree species coexistence in old-growth Abies-Picea forests in southwestern China.Forest Ecology Management, 223: 303–317.https://doi.org/10.1016/j.foreco.2005.11.010
Tedersoo, L., Naadel, T., Bahram, M., Pritsch, K., Buegger, F., Leal, M., Kõljalg, U., Põldmaa, K. (2012) Enzymatic activities and stable isotope patterns of ectomycorrhizal fungi in relation to phylogeny and exploration types in an afrotropical rain forest. New Phytologist, 195: 832–843.https://doi.org/10.1111/j.1469-8137.2012.04217.x
Tessier, J. T., Raynal, D. J. (2003) Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Apllied Ecology, 40(3): 523–534.https://doi.org/10.1046/j.1365-2664.2003.00820.x
Tjoelker, M. G., Craine, J. M., Wedin, D., Reich, P. B., Tilman, D. (2005) Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytologist, 167: 493–508.https://doi.org/10.1111/j.1469-8137.2005.01428.x
Toljander, J. F., Eberhardt, U., Toljander, Y. K., Paul, L. R., Taylor, A. F. S. (2006) Species composition of an ectomycorrhizal fungal community along a local nutritional gradient. New Phytologist,170: 873–884.https://doi.org/10.1111/j.1469-8137.2006.01718.x
Treseder, K. K. (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytologist, 164: 347–355.https://doi.org/10.1111/j.1469-8137.2004.01159.x
Treseder, K. K., Allen, M. F. (2002) Direct nitrogen and phosphorus limation of arbuscular mycorrhizal fungi: a model and field test.New Phytologist, 155(3): 507-515.https://doi.org/10.1046/j.1469-8137.2002.00470.x
Vandenkoornhuyse, P., Ridgway, K. P., Watson, I. J., Fitter, A. H., Young, J. P. (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Molecular Ecology, 12: 3085–3095.https://doi.org/10.1046/j.1365-294X.2003.01967.x
Vitousek, P. M., Porder, S., Houlton, B. Z., Chadwick, O. A. (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecological Applications,20(1):1–5.https://doi.org/10.1890/08-0127.1
Walker, T. W., Syers, J. K. (1976) The fate of phosphorus during pedogenesis. Geoderma, 15: 1–19.https://doi.org/10.1016/0016-7061(76)90066-5
Wang, L., Mou, P. P., Jones, R. H. (2006) Nutrient foraging via physiological and morphological plasticity in three plant species.Canadian Journal of Forest Research, 36: 164– 173.https://doi.org/10.1139/x05-239
New, M., Hulme, M., Jones, P. (2000) Representing twentieth-century space-time climate variability. Part II: Development of 1901-96 monthly grids of terrestrial surface climate. Journal of Climate, 13(13): 2217-2238.https://doi.org/10.1175/1520-0442(1999)0122.0.CO
Xu, Y., Gao, X. J., Shen, Y., Xu, C. H., Shi, Y., Giorgi, F. (2009) A daily temperature dataset over China and its application in validating a RCM simulation. Advances in Atmospheric Sciences, 26(4): 763–772.https://doi.org/10.1007/s00376-009-9029-z
Zavišić, A., Nassal, P., Yanga, N., Heuck, C., Spohn, M., Marhan, S., Pena, R., Kandeler, E., Polle, A. (2016) Phosphorus availabilities in beech (Fagus sylvatica L.) forests impose habitat filtering on ectomycorrhizal communities and impact tree nutrition. Soil Biology and Biochemistry, 98: 127–137.https://doi.org/10.1016/j.soilbio.2016.04.006
Zhang, W. R. (1983) The forest soils of Wolong Natural Reserve and its vertical zonalties distribution. Scientia Silvae Sinicae, 19(3): 254–268.
Zhang, Z., Li, N., Xiao, J., Zhao, C., Zou, T. T., Li, D. D., Liu, Q., Yin, H. (2018) Changes in plant nitrogen acquisition strategies during the restoration of spruce plantations on the eastern Tibetan Plateau, China. Soil Biology and Biochemistry, 119: 50–58.https://doi.org/10.1016/j.soilbio.2018.01.002
Zhang, Z. L., Yuan, Y. S., Liu, Q., Yin, H. J. (2019) Plant nitrogen acquisition from inorganic and organic sources via root and mycelia pathways in ectomycorrhizal alpine forests. Soil Biology and Biochemistry, 136: 1–9.https://doi.org/10.1016/j.soilbio.2019.06.013
Zhao, Z. J., Eamus, D., Yu, Q., Li, Y., Yang, H. W., Li, J. Q. (2012) Climate constraints on growth and recruitment patterns of Abies faxoniana over altitudinal gradients in the Wanglang Natural Reserve, eastern Tibetan Plateau. Australian Journal of Botany, 60: 602–614.https://doi.org/10.1071/BT12051
Zhao, T. B., Guo, W. D., Fu, C. B. (2008) Calibrating and evaluating reanalysis surface temperature error by topographic correction.Journal of Climate, 21(6): 1440–1446.https://doi.org/10.1175/2007JCLI1463.1