References
1. Lu R, Zhao X, Li J, Niu P, Yang B,
et al. (2020) Genomic characterisation and epidemiology of 2019 novel
coronavirus: implications for virus origins and receptor binding. Lancet
395: 565-574.
2. Chan JF, To KK, Tse H, Jin DY, Yuen
KY (2013) Interspecies transmission and emergence of novel viruses:
lessons from bats and birds. Trends Microbiol 21: 544-555.
3. Zhou P, Yang XL, Wang XG, Hu B,
Zhang L, et al. (2020) A pneumonia outbreak associated with a new
coronavirus of probable bat origin. Nature 579: 270-273.
4. Lam TT, Shum MH, Zhu HC, Tong YG,
Ni XB, et al. (2020) Identifying SARS-CoV-2 related coronaviruses in
Malayan pangolins. Nature.
5. Azzi A, Lin SX (2004) Human
SARS-coronavirus RNA-dependent RNA polymerase: activity determinants and
nucleoside analogue inhibitors. Proteins 57: 12-14.
6. Ma Y, Wu L, Shaw N, Gao Y, Wang J,
et al. (2015) Structural basis and functional analysis of the SARS
coronavirus nsp14-nsp10 complex. Proc Natl Acad Sci U S A 112:
9436-9441.
7. Yuan Y, Cao D, Zhang Y, Ma J, Qi J,
et al. (2017) Cryo-EM structures of MERS-CoV and SARS-CoV spike
glycoproteins reveal the dynamic receptor binding domains. Nat Commun 8:
15092.
8. Walls AC, Park YJ, Tortorici MA,
Wall A, McGuire AT, et al. (2020) Structure, Function, and Antigenicity
of the SARS-CoV-2 Spike Glycoprotein. Cell 181: 281-292 e286.
9. Walls AC, Xiong X, Park YJ,
Tortorici MA, Snijder J, et al. (2019) Unexpected Receptor Functional
Mimicry Elucidates Activation of Coronavirus Fusion. Cell 176: 1026-1039
e1015.
10. Forni D, Cagliani R, Clerici M,
Sironi M (2017) Molecular Evolution of Human Coronavirus Genomes. Trends
Microbiol 25: 35-48.
11. Follis KE, York J, Nunberg JH
(2006) Furin cleavage of the SARS coronavirus spike glycoprotein
enhances cell-cell fusion but does not affect virion entry. Virology
350: 358-369.
12. Coutard B, Valle C, de
Lamballerie X, Canard B, Seidah NG, et al. (2020) The spike glycoprotein
of the new coronavirus 2019-nCoV contains a furin-like cleavage site
absent in CoV of the same clade. Antiviral Res 176: 104742.
13. Wrapp D, Wang N, Corbett KS,
Goldsmith JA, Hsieh CL, et al. (2020) Cryo-EM structure of the 2019-nCoV
spike in the prefusion conformation. Science 367: 1260-1263.
14. Du L, He Y, Zhou Y, Liu S, Zheng
BJ, et al. (2009) The spike protein of SARS-CoV–a target for vaccine
and therapeutic development. Nat Rev Microbiol 7: 226-236.
15. Du L, Yang Y, Zhou Y, Lu L, Li F,
et al. (2017) MERS-CoV spike protein: a key target for antivirals.
Expert Opin Ther Targets 21: 131-143.
16. Ceraolo C, Giorgi FM (2020)
Genomic variance of the 2019-nCoV coronavirus. J Med Virol 92: 522-528.
17. Chan JF, Kok KH, Zhu Z, Chu H, To
KK, et al. (2020) Genomic characterization of the 2019 novel
human-pathogenic coronavirus isolated from a patient with atypical
pneumonia after visiting Wuhan. Emerg Microbes Infect 9: 221-236.
18. Shen Z, Xiao Y, Kang L, Ma W, Shi
L, et al. (2020) Genomic diversity of SARS-CoV-2 in Coronavirus Disease
2019 patients. Clin Infect Dis.
19. Khailany RA, Safdar M, Ozaslan M
(2020) Genomic characterization of a novel SARS-CoV-2. Gene Rep 19:
100682.
20. Edgar RC (2004) MUSCLE: multiple
sequence alignment with high accuracy and high throughput. Nucleic Acids
Res 32: 1792-1797.
21. Cock PJ, Antao T, Chang JT,
Chapman BA, Cox CJ, et al. (2009) Biopython: freely available Python
tools for computational molecular biology and bioinformatics.
Bioinformatics 25: 1422-1423.
22. Koradi R, Billeter M, Wuthrich K
(1996) MOLMOL: a program for display and analysis of macromolecular
structures. J Mol Graph 14: 51-55, 29-32.