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1 | INTRODUCTION

Fractional derivatives generalize the notion of integer order derivatives and integrals to arbitrary order. The theory of
fractional differential equations(FDESs) is an increasing filed of research that has extensive applications in numerous scientific
areas. Recently, it has been observed that FDEs characterizes many irregular phenomena in various areas such as viscoelasticity,
chemistry, physics, biology, information processing system networking, picture processing, control hypothesis, fluid dynamics,
speculation, ground water problems , aerodynamics and hydrodynamics. In addition, FDEs gives the excellent description of
anomalous diffusion processes in some complex media and memory properties of several materials. During the last few decades,
FDEs gained considerable attention due to their flexible and realistic behavior. For more application of FDEs, reader can see' /234,
The Langevin equation expound the progress of some physical phenomena in changing environment. The Brownian motion of
a particles is firstly expressed by the ordinary form of Langevin equation®. The ordinary form of Langevin equations provides
the insufficient results for some fractal disorder regions. Therefore to describe the dynamical behavior of some fractal and
inherited properties FLEs was introduced by Kubo®Z, Recently, FLEs with various type of boundary conditions has been studied
extensivelySPHUIALIAL Deyij et al. discussed the stability and existence result for the FLEs involving integral conditions via
fixed point technique'l®. Fazli and Nieto analysis the FLEs involving nonlocal conditions by using technique of mixed monotone
mappings.Z. Baghani et al. studied the EU of results for the coupled system of FLEs associated with anti periodic conditions
by using lower and upper solution mathod*®. The HU stability defines that an exact solution exists very near to the approximate
solution for FDEs. The HU stability and EU of results for FLEs is discussed by Wang and Li.”. Mohammed et al. discussed
the EU and stability in the sense of Ulam-Hyres for coupled system of FLEs with nonperiodic boundary conditions involving
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Caputo-Hadamard derivative”. Devi et al. analyses the HU stability and existence for positive solution for general FDEs via
fixed point technique’?!. More about stability theory, can see222324125126127128

Inspired from above work, in this manuscript we discuss the HU stability and existence and uniqueness results for FLEs with
Hadamarad-Caputo fractional derivatives involving nonperiodic and fractional differential conditions:

{ HD™ (LD 4 wz(t) = P (L 2(8),  t €[1el,

¢ e 1
z0)=0, Z0)=0 2'0)=0, YD z1)=1I°2y), D z(e)+kz(e)=0, )

where k # y and D", D° denotes the Hadamard-Caputo derivatives of fractional order ¢ and e respectively p,6 > 0,2 <
€<3,0<0<2, 1<y <ex €R. The article is outlined as follows. Some essential lemmas and basic preliminaries results
are serves in section 2. 3"/ section contains main result. HU stability is reported in the next section. In last section, the obtained
results are illustrated by an application.

2 | PRELIMINARIES

We define the term ﬂC;"[a, b] which contains all absolutely-continuous functions y* and having y"~!-derivative absolutely
continuous on [a, 5] (y’""w* € AC([a, b],R)).

Definition 2.1.% Let the function w* : [1,00) — R, is integrable and continuous then Hadamard fractional integral of order
p € Ris defined as

t
N | A A,
Ip[lj (t)_@/<log;> Tlif, p>0, (2)
1

provided the integral exists.

Definition 2.2.% Let p > 0, n=p+ 1 and y* : [1,00) — R. The pth-order Hadamard fractional derivative of y is defined by

t

1
provided the right-hand side exists.

Definition 2.3.5Y Let p >0, n=p+1 and the pth-order Caputo-Hadamard fractional derivative of y* € fZlCZ'[a, b], where
0 < a < x < b <oo is defined by

t
CH P, = _ 1 E n=p-l i ®
@W(t)_—l"(n—p)/(logs> s

provided the right-hand side exists.

|

bl
S

“

Lemma 2.4.°% Let p > 0, n=[R(p)] + 1 and R(g) > 0. Then

- I'q +p—1
I?(lo 7(91=—10 ;qu ,
loe ) = Fggapy o2V
and rq
AP (1o X =— 1T (1o X -t

Lemma 2.5%% Let p > 0 and x € C[1, 00) N L![1, o0). Then, FDEs with Caputo-Hadamard derivative

P x(t) =0,
has a solution

m—1

x(t) = 2 ai(logt)i,
i=0
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also satisfies
ApPrix(t) =117 ¢>p,
m—1
17 DP () = x(8) + Z a;(logt)',

i=0
where g, e R,i=0,1,2,...,mandm— 1< p < m.
Lemma 2.6. The solution of the given problem (I) in the integral form is

t

t
_ 1 t o+e—1 N ds u t e—1 ds
Z(t) = m/ <10g ;) v (S, Z(S))? - % <10g ;) Z(S)?
1 1

e

e+1 e €= o
(log t) [u(K — 1) / <log 5) B L <log 5) s, 2()
s S y
1

I'e+2)+ (x — p) I'(e) s T(o)
1
e ) 5)
(k=) ( e)"““l . ds F(€+1)+(K—M)/< y)‘“ ds
- log - (s, —_ - log — —
To+e ) \ 85 (5, 2() T + DIG) 0gT) 7
1 1
1 r 5-1
t € _
—( og!) <logz> z(s)é.
I'(e + DI'(6) s s
1
Proof. Applying the Hadamard fractional integral operater 1° to (1)) we get
(LD + pyz(t) = I°W*(t, z(t)) + ¢,log t + ¢,
or
HD oty = I°W*(t, 2(t)) — z(t) + ¢ log t + ¢ ©6)
Again applying the Hadamard fractional integral operater integral operater 1€ to (6), we obtain
e . (log t)° (log t)<*!
z(t) = I°T°WH (¢, (b)) — ul€z(t) + COF(e ey ¢ T2 + ¢,(log t)* + ¢5(log t) + ¢, (7)
where ¢, ¢;, ¢,, ¢;, and ¢, are some real constants.
Using boundary conditions z(0) = 0, z’(0) = 0, 2”(0) = 0, gives that ¢, = 0, ¢; = 0, and ¢, = 0.
- (log t) (log t)°*!
og t)¢ og t)¢
t) = 177°W* (¢, z(t)) — ul°z(t . 8
z(t) (t,2(t) — p Z()+Cor(€+l) 01F(€+2) €]
Now from boundary conditions® D z(1) = I° z(x’) and D" z(e) + ez(e) = 0, we get
¢y = I°z(f). )
I'(e+2) Uk — p) /( e)e“ ds 1 < e)"“ . ds
= log - _ - — log - (s, —
T e+ +(k—p) [ T(e) 027) Ty %85 (8 2D~
e 1 1 (10)

Y

(kK — ) e\ote-l . ds Tle+1)+(k—p) 7\ ! ds

“Tore ] (leg) W - oS / (te25) Zm?]’
1 1

putting the values of ¢, and ¢, in (8], we have the solution of (I) in the integral form (3)). This accomplishes the proof.

Theorem 2.7.%% Let § is a nonempty convex, closed and bounded subset of a Banach space E. Let A, A, be the operators from
S to E such that:

(i) Ajx + A,y € S whenever x,y € S;

(i1) A, is continuous and compact;

(iii) A, is a contraction map.

Then there exists z € S suchthat z = A,z + A, z.



4 | AUTHOR ONE ET AL

3 | MAIN RESULTS

Let ¥ = (C[1, €] is the Banach space of all continuous functions from [, ¢] to R with norm given by || V|| = sup |z(t)].
te(1,e]
Let us define an operator H : 1V — 7/, such that

cr+€ 1 . u L£$'
(Hz)(t) = o +€)/ Og (s, Z(S))?_F_/ Z(S)?
1

e

(log £)°*! u(c — n) e\¢! ds 1 e\l . ds
[ / <10g;> z(s)— — —— (log;) P (s, z(.s))?
1

I'e+2)+(x—w| Te) s TI(o )

1D
e v
(k= ) e\otem ds F(€+1)+(K—M)/ 7\°! ds
- log = ‘I’* <1 = —=
T +e) ( 05 5> & 2D = —F o3 Dre) 8 5> 297
1 1
1 y 5-1
t € —
L ( log Z) z(‘g)é‘
['(e + DI'(S) s s
1
It is percived that the problem (1)) has a solution iff operator # has a fixed point.
3.1 | Existence result
In this section, we establish the existence of solutions by using the fixed point technique and following assumptions:
o (R Y*(t, 2z(t)) : [1,e] x R — R is continuous.
o (Ry) |W*(t,z(t)| < A(t) V (t,z) €[l,e] xR and A(t) € C([1L €], RY).
o (R |Y*(t,2) —P*(t,z)| < L(z—2z]) V t€[Lel, z,z,€V, L>0.
o (R, Take M = sup |¥*(¢,0)| < .
te[1,e]
Also we use the following notations:
A = 1 + | — ul
! LCo+e+1) |T€e+2)+&—plc+e+1) a2
+ 1
ITe+2)+(xk —wlc+1) [’
_ (ogyy |xc — pl |
2 re+nDrEe+1) IEe+2)+&—-wlE+1) (13)
4 M IC(e + 1) + (x — wl(log y)°
IFe+1) Te+2)+x&—-wle+DrGE+1) J’
Al = & = ullpl
’ IT(e +2) + (x — w)|T(e + 1)
L —
L |x — ul (14)

* Te+2)+ (x —wl'(c+1) * Te+2)+(x—wl'(c+e+1)
IT(e + 1) + (k — w)|(log y)° N (logy)’ }
Te+2)+ (& —w|l'(e+DI'G+1) TG+ DI'(e+1)
Theorem 3.1. Let us assume (&), (X;)and (X;) holds. Then the problem (EI) has atleast one solution on [1, e] if

Ay <1, (15)
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where A, is defined in @

Proof Let us take 7 > a IHAH)
Let the operators #, and #4, on ‘B. are defined as

_ 1 t o+e—1 " L£§ U t e—1 L£S'
(H,2)(B) = r(0+e)/(1°g§) ¥ (s,z(s»?—@/(log;) EORS
1 1

t

and B. = {z € V : ||z|| £ F} is a closed ball.

o+te—

1 1 . u t e—1 ££$
Teto ( log S P(s, z(s))— - m <log ;) Z(S)T
1

(H,2)(t) =

e

(log £)°*! u(x — p) . e\ ! ds 1 e\’ L . ds
Te+2)+ (k — ) [ () / <1°g§> AN - T) <1°g §> T, D¢
1

e

4

(k — ) e\ote Lo ds Tle+1D)+x—p 7\ ! ds

“Tora ) (£f) s - T+ DrG) / (o) z(s)?]
1 1

Y
(logt)© 7\%! ds
T+ DI(G) ( log E) )¢
1

Noticed that Hz = H,z + H,z,z € B, on [1, e].
We will establish the conditions related to Theorem 2.1 in below mentioned three steps:

1. To prove Hz = H,z + H,z, € B,.
For any z, z; € B,

| H,z + Hyz)|| = sup |H,z(t) + Hyz (b))

te[1e]

_ ! BN e & _ _n LA
_ til[lfe]{’F(ow) / <10gs> W' 56D~ s / <logs> 2(5)%
1 1

e+1 ¢
r ey [M(K_M) / 51(5)£
Cc+)+k-m| T© ;
1 r e\ol ds (k — u) 7 eyorel ds
A R Ry (R e

1

Y
e+ D+(k—p ds (log 1)° PNl s

(e + D) / log { Zl(s)?] " Ter DrG) (1°g§> 51(5)7’}
1

t

P (s, z(s))|% + % (10g§>5_1|z(5)|%
1

{ o+e—1
< sup og—
teire ( I'(0 +€) / s

og O [lullte=wl [ ey |ds
|r<e+2>+<rc—m|[ r© /<1°g§) [.0]
1

e

+$ (10g§>l7
1

R W (s, Z1(5))|? + |(x = 1) <10g §)6+s—1

» ds
I'(c +¢) s, Zl(s))’T
1
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+ IF(€+1)+(K—M)I/

"2 (s)| &
(e + DI(S) 2 s

|(log 1)|° -1
T e iglt)r(a) (log %) |zl(5)’7}

o'+e lcﬁ.
< ||l sup {
erre L IT'(o +€)

e

|(log £)]*! ) e Mg e\l ds
+ [T(e +2)+ (x — p)| [F(o-)/ 3 F(0'+€) (10gs) s]}
| p £\ ds
evet e {565 [ () 7}

+||z||sup{ |(log £)|°"! [I#II(K-#)I/ )
M etia UIT(e +2) + (c — p) T'(e)

IFe+ 1)+ (x — p) 5 U ds |(log )|* =1 s
T e+ Do) / ] M+ DI G) <1°g§> 7}

I rorg e~ i v ! }
Totetl) Te+)+k-—mlot+etr) Me+2)+ k- mlo+1)
+r{ (logy)° |& — pllul
TG+ Dle+1)  [Te+2)+ (k- mTe+1)
+ | ] IT(e + 1) + (x = w)|(log y)° }
Te+D)  Te+2)+(x—mle+ DG+ 1)
< |IAIIA; + A7 < F,
which shows that Hz = H,z + H,z, € ‘B..

2. Now we prove #H, is contraction map. For z, z, € V/,

19,2 — Hyz)ll = sup

te[1e]

|(log £)|°*! |u||(z<—m|/ 3 ds
< tzl[lfe]{|r(e+2)+(’(—ﬂ)|[ T© e ZJ(S)‘

+ ﬁ/ <log§)a_1
1

=@l [ e\ohe!
" Te+e <1°g_)
1

H,z(t) — }[zl(t)|

Wi(s, 2(9) ~ WG, zAs))j%

Wi (s, 2(s)) — P (s, zl(s))‘%

+ IF(€+1)+(K—u)|/

s
(e + DIG) Z(S) - 5(9) 7]

|(log 1)|* 7\%! ds
T et DI o) <1°g§> |25) - Z1(5)|7}
1
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<{ |k — pl|pl
VT +2) + (k — )T+ 1)

4 L 4 L]k = pl
Te+2)+(k —wTc+1) |Te+2)+ (k- p(c+e+])
D + 1) + (< = )| (log y)° (logy)? }” 2
Te+2)+x—-—wl'e+DI'G+1) TG+ DI(e+1) 1
SMllz—zll,  V tellel,

as A, < 1. Therefore #, is contraction map.

3. In view of assumption (&;), P* is continuous function on ¢ € [1, e],
therefore the operator # is continuous.
To prove #, is bounded uniformly on B;.
| #H,zll = sup |7,z

te[1,e]
t

s, z(s))|— + F'f') <10g§>€_1|z(.§)|%},

sup { I
etz (T'(c +¢) /

t t
1 a+e ]L£$ |M| t e—1 ££$
A|| su (10 }+ {— (10 —) = 3,
I ”te[fe]{r(ff+€) / &5 s 2 ”te[le] I'(e) / s s

Al lul7
T T(ec+e+1) T(e+1)
Hence #; is uniformly bounded.
Now we prove compactness of operator # .
By Lagrange mean value theorem, we have

IA

|(10g tz)ﬁs_l - (log% e 1| < bilt, -ty

t2 o+e—1 t1 o+e—1
[(1062)™ = (102 2) ™| < bl

where b, and b, are independent of ¢.

t, t,
1 tZ o+e— N ££5 u tz e—1 (£$
9H,2(t) = Hy2(t)| < ’r(a—m/ (1og ?> s, a(s)< m <10g ?) 2(5)2
1
tl o+e— N g tl e—1 L£S'
— Foto) log ?> ‘I’ (s, z(s))T + m ( log ?> z(s)?‘
1

<frig [ () (e )™ Y
1
ty

.
Wuam%

* I'lc +¢)
1

4 ty

g [ ((3)7 () )i f ()]
1 n
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L

t
F(al+e>{/‘<1°g%>m_l‘(1°g%>6+_1‘%+/(1 e2)" l‘f}

1

< IAll

t

,4F||(z)||{/‘ -1 <10gt2>61¢£$ /(log%>e—l%}

|H,z(t,) — Hyz(t)| — 0 as  (t,—t) — 0,

Therefore, #, is an equicontinuous. Thus, by Arzela Ascoli theorem we canclude that #, compact on B;. As from (1) — (3)
steps, all the conditions of Theorem 2.7 are satisfied. Thus, there exist a point z € B; such that z = H,z + H,z. Hence, given
Equ. (EI) has at least one solution on [1, e].

3.2 | Uniqueness of Solutions

Theorem 3.2.. Assuming that assumptions (RX,), (R,), (X;)and (&,)are satisfied. Then the problem has unique solution on
[1,e] if

A* =LA +A, <1, (16)
where A and A, are defined in (T2) and (T3) respectively .
Proof. Let By = {z €V : ||V|| £ R} is a covex, bounded and closed subset of 4/’ where

MA,
1—A, - A,
and To show }[QSR is bounded i.e., }[fBR C By and H is contractive.

R >

|‘P*(5, zl(s)| = |‘P*(y, 2,(s) — P*(5,0) + P (s, 0)|
< |‘I’*(s, 2,(s) — W (s, 0)| +
< (L|z1(s)| + |‘I’*(s, 0)|

(s, 0)|

LR+ M,
then
a+e 1 . |/’l| t e—1 ££§
|Il-[z(t)| < tzlé?e]{r(0+€)/ log |‘P (s, z(s))‘— +— e ) <log;> |z(s)’7
|log )| [IuII(K—u)I/ Z(5)|_
IT(e +2) + (k — p)l I'(e)
1 ; _”)| : e o+e—1 . ££S'
+ %/ <10g |‘P (s, z(s))‘— + — F(a+ ) <log ;) “I‘ (s,z(s))’T
1
IT(e + 1) + (x — p)| / z(s)|—
I'(e + DI'(6)

|(log 1)|°
+r(eiglt)r(5) <1°g§> |z(5)|?}
1
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(LR M { cr+€ 1L£§
< +
) sup Fo+),

e

L lGog &)™ [ / "lafs |(x = ) (10 g)”"“é]}
Te+2)+ k-l T " T 2y g5 P

|yl =1 fs |(log £)|*! Ll (= ) flrﬁs
+”z”ti‘€£’e]{@ <1°g§> T+|r<e+2>+(:<—u>|[ r© /

14
LMt D+ (e - / )] oDy
I'(e + DI'(6) F(e + 1)F(5) s S

[k — ul
< (LK+-‘M){1—(G+€+1)+ IT(e +2)+ (k — w|T(c +e+1)

1
T Ter)+ -t + 1)}
(logy)’ & = ullul
* K{ TG+ DI+ D Met2) + -t D
|ul + IT(e + 1) + (k — w)|(logy)° }
T+ T+t -mIiE+DIG+ D
< (LR + M)A + AR < R,

which implies that || #z|| < R.
HB, C By (17)
Consider for all z, z;, € V/,

o+e—1
19 — 9z, < su {
= gr T+

Wi (s, 2(5)) — P*(s, 2,(5)) é

ds
FL/ log z(s)— zl(s)‘T
1

Gog I [lulltc =l [ (1 eyer! &
+|r(e+2)+(;<—,4)|[ (e /(log;) |z(5)_z1(5)|7
1
c—1
+ <10g f) |‘P*(s, 2(5)) — W (s, zl(s))|é
(o2 S S

— o+e—1
L k=) <log g)
S

T(c +¢)
1

Y
IT(e + 1) + (x — p)l 7\%! ds
T T e+ Do) /<1°g§) ’Z(S)_Zl(s)h]
1

Y
|(log 1)|* 7\%! ds
T et DL G <1°g§> |z(5)_z1(5)|T}
1

Wi (s, 2(s)) — P (s, zl(s))|%
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<{ |k — pllpul
= ITe+2)+ (k — w)|T(e + 1)

4 L 4 L]k = pl
TEe+2)+&—-—wc+1) [Te+2)+x&—-—wlc+e+1)
IC(e + 1) + (k = w)l(log )’ (logy)’ }”z_z |
TEe+2)+(xk—wl(e+DI'G+1) TG+ DI e+1) 1
S[LA + A dllz = 2], V te[le]

in view of , (LA + A,) < 1. Thus A is contraction map. Also implying , holds. Hence by Banach fixed point theorem
H has a unique fixed point. Therefore unique solution exist for Equ. .

4 | STABILITY RESULTS

In this section, we discuss the HU stability of (I). The definition of the HU stability is given below:

Definition 4.12° The integral Equ. is said to be HU stable if there exists non negative constant Q*, for a constant Y* > 0
with given below conditions hold true:

If,

t

1 t o+e—1 By " e—1 L£§
2 - <r<a+€) / (log) " ¥ Z“”?‘m (log) a0
1

e+1 e e—
(og ) [M(K_M) / <log f) 1z(s)é
S S

T'e+2)+(xk—pu)| T(e)
) ) (18)
1 e o—1 . é B (K' — ﬂ) E o+e—1 . é
1 1
Y Y
e+ 1D+ (x— ) 7\ ! ds (log 1) r\*! ds ,
T T e+ DIG) / <1°g E) Z(S)T] e+ Dro) <1°g§> zw?)‘ =T
1
then 3 z,(¢), which is continuous and satisfies the given below equation:
__ 1 £) 7 g ds _ _n_ T 0 E
)= g W 5D~ R . (1og S) 2/(9)
1
(log t)°*! u(x — p) ‘ e\e! ds
TE+2)+(k—p) [ ) / (k’g}) 2=
e : e (19)
1 e o—1 . L£§ (K - l’l) e o+e—1 y tfs
_ % <log ;> W 5T - e <10g ;> (s, 2,0
1
F(€+1)+(K—H)/ 10 z(s)é N (log 1) 7<10 Z)is—lz (s)é
T + DIG) g 77 T Te + DIG) £85) ¥
1
with
|z2(t) — z,(t)] < Q*Y™. (20)

Theorem 4.1 . Assuming that assumptions (R,), (R;), (R;)and (R, )are hold true. Then the Equ. (1) is HU stable.
Proof: Firstly, we have to prove integral Equ. (TT) is HU stable.
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Consider
|2(t) — z,(8)]

zr +e—1 . . é
te[l e]{ ['(oc+ e) W (s, 2(5)) — W¥(s, 24(5)) p

ds
FL / log z(s)—zl(s)|7
1

|(log £)|*! Pmux—my/
IDe+2)+(k—w|| Tle)

+ %/ <log§>
1
AL (2
1

[Te+ 1)+ (x — p)| ds
+ e+ Dro) / log z(s) - zl(s)‘T]

|(log )| 7\t ds
e DTG (log;) |z(5)—z1(s)|?}
1

<{ Ik — pl|ul
(e +2) + (k — W+ 1)

_> _liz(s) - z1(5)|%

-1
(s, 5(5) — W5, ()| S

Wi (s, 2(s5)) — PH(s, zﬂs))’% @1

+ L + Lk — |
TEe+2)+&—-—wlc+1) [Ie+2)+&—wlc+e+1)
ICe+ D+ —pldogy”  (ogy) }”z ol
T(e+2)+(k—wle+ DI +1) TS+ DIEe+1) [T 72
S[LA + Mz — 24, V telle]
Consequently, by using (ZI)) the HU stability is proved for the Equ. (TI). Hence, the FDEs (I) is HU stable.

S | APPLICATION

Let us investigate the following FLEs:

{ HD™ (D 4 w)a(t) = P, 2(8),  t e[l el

22
20)=0, Z0)=0, 2z'0)=0, Dz =1I2@y), D z(e)+rKz(e)= 2

where o= - 622 K:i M:%, yzg, 5:%

« _ 1 ||

¥t 20l = =50 ((5 12D )

the assumptions (&;), (R,), (X;) and (RK,) hold true for W* (¢, z(t)).

Also,

[P (£, 2(1)| < A(t), (23)

1

where A(t) =

(t + 100)’
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. " 1
['P*(t, 2(t) — P (¢, z,(V))] < m|z -zl
Hence, A; =~ 0.298828, A, ~ 0.398094 and A; ~ 0.379803 < 1. all Thus the Theorem 3.1 implies there exist atleast one

solution of Equ.(22)
Also LA; + A, = 0.401012 < 1, then Theorem 3.2 shows that there exist a unique solution of the Equ. (22). In the easy way,
We can also find the conditions for HU stability. We canclude that, the Equ. is HU stable.

6 | CONCLUSION

The Langevin FDEs with Hadamard-Caputo’s derivative gained less attention as compare to Langevin FDEs with Caputo’s
derivatives. Although latest interests in the analysis of FDEs with differential boundary condition and to the best of our
knowledge, there is no paper concerning this type of problem.The present work let out some notable results about nonlinear
CaputoAASHadamard Langevin equations involving nonlocal condition. In this investigation, we analysed the EU of solutions
for FLE assosiated with nonperiodic and nonlocal condtions involving differential operator by using fixed point theorems. In the

same way under some conditions and assumptions, HU stability results for the solution also investigated. The obtained results
are demonstrated by an application that explain the reliability of results.
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