Lower and upper bounds of Dirichlet eigenvalues for Grushin type
degenerate elliptic operators in weighted divergence form
with a potential
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Abstract

In this paper, we consider the estimates of Dirichlet eigenvalues for Grushin type degenerate
elliptic operator in weighted divergence form with a potential —divg(AVg)+(AVad, V) —V.
Using the method of Fourier transformation, we get precise lower bound estimates for the
eigenvalues. Then, through the way of trail function, we obtain Yang-type inequalities which
give upper bounds of eigenvalues.
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1 Introduction

The so-called Dirichlet eigenvalue problem is stated as

—Au=Au in Q,
{ u =0 on 0f2, (1.1)

where A is the classical Laplace operator, and (2 is a bounded domain in R™. There is a sequence
of discrete eigenvalues for this problem which can be ordered as

0< A <A< <-- <A<+, and A — +oo (= 400).

Here each eigenvalue is repeated according to its multiplicity.
The problem of estimates for eigenvalues has attracted many mathematician’s attention over
the years. In 1912, Weyl [35] obtained the asymptotic formula
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k n

A ~ Cry <> , k= o0,
192

where C,, = 472 (Bn)_% with B,, being the volume of the unit ball in R™, and |2, is the Lebesgue
measure of . In 1961, Pélya [32] proved the inequality
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where  is a tiling domain in R™. In 1980, Lieb [26] proved that there exists a constant CJ,, such
that
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for any domain Q C R™. However, C/, is different from the constant C,,. In 1983, Li and Yau [25]
proved that

nC'n, n+2 -2
>onz R (12)

for k=1,2,--- . In 2006, Meals [27] obtained that

k

nCy,  nt2 |2
)\i k n |Q n Cn
; > kI e %)’

where ¢,, depends only on the dimension n and

= mln/ |z — al?dx

acR”

is called the moment of inertia of €.
As to the upper bounds for eigenvalues, some famous inequalities are concluded as follows. In

1956, Payne-Pdyla and Weinberger [30] proved
L
Ak+1 — A < nkZ;)V

for Q C R?, which is called the PPW inequality. In 1980, Hile and Protter [22] proved inequality

which is referred as HP inequality. In 1991, Yang [37] obtained

k k

D M —X)* < %Z()\IH-I = Ai)Ai (1.3)

i=1 =1

and
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which is called Yang’s first inequality and Yang’s second inequality, respectively.

The inequalities for classical Laplacian in R™ have also been extended to more general operators
and more general manifolds. Here we mention the work in [1-4,6-18,21,24,28,31,33,34] as well as
the references therein. Especially, using the method of Fourier transformation, Chen and Luo [5]

considered the lower bounds of Dirichlet eigenvalues for Grushin type operator

Y X2u=Xu inQ,

u =20 on 012,

(1.5)



0
l s s y I 5 n—1 €, axn—l’ n ZL‘] 8$n,

i je{1,2,--,n—2)
They proved that there exist constants C’ and C” such that
K 2
S N 2 ORI - O (pg)k (1.6)
j=1
for all £ > 1, where v = n + p + ¢ is the Métivier index. Inequality (1.6) implies that

A= Ok = C"(p,q).

Niu and Zhang [29] studied the upper bounds of Dirichlet eigenvalues for the degenerate elliptic

operator

h n
doxP+ >V (1.7)
=1

i=h+1
on Grushin type vector fields
0 0
Xi=—,i=1,--- h,Y;=|z|*—,j=h+1,---
(3 aﬂfi7z ) sy 1y 49 ‘$| ayj?j + 9 7n7

a > 1, € R. They obtained an inequality for eigenvalues of PPW type as

k
4n Aoy
M1 = Mg < g max{1, d }Z;)\i (1.8)
for all k£ > 1, where d is the diameter of 2, the projection of Q in (z1,x9,- - ,x}) space.

The estimates of eigenvalues for operators on manifolds with density have been investigated
with increasing interest in recent years [17,36]. Xia and Xu [36] considered the eigenvalue estimate
problem of drifting Laplacian Ay = —A + (V¢, V) on Riemannian manifold (M, g, e~%dv), where
¢ is a real-valued positive function defined on M. They got a Yang type inequality for eigenvalues
as

k 1 k

1
DOt = A7 < =D kgt = ) (AN + 400A? + 0 HG + 6),

i=1 i=1
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where Hy = supg, |H|, H is the mean curvature vector and ¢y = supg |V¢|.

If we endow the space R™ with density e~?, the triple (R™, (,),du = e~%dv) is a smooth metric
measure space, where dv is the Riemannian volume element related to (,). Let © be a bounded
domain in (R™, (, ), du) with non-characteristic smooth boundary. We can define the Grushin type

degenerate elliptic operator in weighted divergence form as

where divg ¢ X = e?divg(e~?X) is the weighted divergence of Grushin type vector fields X, A is

a smooth symmetric positive definite matrix, and

VG'LL = (X1u7 Tt 7Xhu7 Xh—l—lu, e ,Xnu), u € Cl(Rn,R),



divgy = X101 + -+ + Xnon + Xni10nt1 + -+ Xnn, 0= (01, ,n) € CHR",R™);

0

X; = i =1,2,--- , h;

(A 8]}17 ? = » 'Yy

Xj=a"—, j=h+1--,n 1€{1,2,---,h}, pjeZ".
8.7Uj

In this paper, we consider the Dirichelet eigenvalue problem

{ Lyu—Vu = Apu in (Q,

u=~0 on 0, (1.9)

where V is a nonnegative potential function, p is a positive function continuous on . Through

integration by part, we have

/ f(ZLy —V)gdp = / 9(Zy = V) fdp
Q Q

where f, g are smooth functions defined on Q and f|sn = g|lsn = 0. So the operator £, — V' is a
positive defined self-adjoint operator in L?(€2). Thus this Dirichlet eigenvalue problem (1.9) has

discrete eigenvalues [20] which can be ordered as
O< A< A<l <+ and A — 400,

where each eigenvalue is repeated according to its multiplicity.

Through direct calculation, we have
Ly = —divg ¢(AVg) = —divg(AVe) + (AVeo, Va).

Obviously, when A is the identity matrix I, p =1,V =0, h = n—2, and ¢ is a constant, problem
(1.9) is just problem (1.5). So the problem we study in this paper is a generalization of problem
(1.5). When A =1,V =0, the operator Ag 4 = —Ag + (Vao, Va) is just the drifting Lapacian
(or witten Laplacian) of Grushin type vector fields, where Ag = Y1 | X?.

Because of the degenerate property of Grushin vector fields, the order of action between
different vector fields can not be exchanged. So it is difficult to generalize the methods and
results in the classical case to the degenerate case. In order to overcome this difficulty, we follow
the similar way of Chen in [5] when dealing with the problem of lower bounds estimation. When
dealing with the estimation of the upper bound, we use the method of trail function which is
extensively used in the study of universal upper bounds. But due to the degeneration of vector
fields, it is much more complex in the calculation and the results will include some constants
depending on the property of the domain € which is different from the classical case.

The paper is organized as follow. In Section 2, we present some basic definitions and the main

results. In Section 3, the proofs of main results will be given.

2 Preliminaries and main results

For n > 2, the following space
HY(Q) = {u e L*(Q)|Xju € L*(Q),j = 1,2,--- ,n}

is a Hilbert space with norm HUH%{X @ = HUH%Q(Q) + HVGu|]2L2(Q). The subspace H)lf,o () is defined
as a closure of C§° in H(€2), which is also a Hilbert space [28].
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Definition 2.1 ( [23]) For J = (ji, - ,Jx) with 1 < j < m, We denote |J| = k. We say that
X ={X1,Xo, -+, X} satisfies the Hormander’s condition on  if there exist a positive integer
Q, such that for any k < Q, X together with all k—th repeated commutators

X = [Xj1, [ X2, [ Xz, [Xjr—1, Xjr] -+ ]]]

span the tangent space at each point of Q. We call Q the Hormander index of X on §2, which is

defined as the smallest positive integer for the Hormander’s condition above being satisfied.

Definition 2.2 ([5,38]) Let Vj(x) be the subspace of the tangent space Ty(Q2) which is spanned
by the vector fields X j with |J| < j. Let vj(x) be the dimension of Vj(x) of each x € 2. Namely

Q
vj(z) = dimVj(x). Set v(z) = le(vj(z:) —vj—1(x)) with vo(x) = 0. The generalized Métivier’s
J:

index is defined as

v = max v(x).

The Métivier’s index is also called the homogeneous dimension of ) related to the sub-elliptic
metric induced by the vector fields X.

In this paper, we consider the following Grushin type vector field on Q satisfying Q({z; =
0} #0,i=1,2--- ,h.

0

X; =
% 6901-’

i=1,---,h,

X; j=h+1,---,n, 1€{1,2,---,h}, pjezZ".

P
= J %7

Through direct calculations, it is easy to verify that the Hérmander’s index of the vector field
X ={Xy,-,Xp}is Q =1+max{pjlj =h+1,--- ,n}. So X is a finitely degenerate system of
vector fields on €. Next, we will calculate the Métivier’s index of X in the case h =n — 2 as an

example. In order to simplify the calculation, we suppose

8 Xn Pn i

Xpoq =" =x
n 1 2 8.73n,

0rp_1 '

and p,—1 < p, on the base of no loss of generality. It is easy to verify that

0
Zy = [ X1, [ X1, [Xq, -, [ X1, Xpa]]]] anq!a
~~ - Tn—1
Pn—1
and
2o = X X, X, X Xl = P2l
) ) I ) ) n (pn_pn—l)' 2 axnv
Pn—1
0
Z3 = [X27 [X25 [X27 R [X27XnHH — pn'%
Pn
Obviously, when 1 = 0,29 = 0,
Vi(z) =span{ Xy, Xo, -+, X;i—1, X0}, v; =dimV; =n — 2;



VQ(I’) = Span{X17 e 7XTL7 [X17Xn—1]7 [XQa Xn]}a V2 = dlmVl =1n-— 2)

‘/1+pn71($) = Spa'n{X17X27 e 7Xn7 Z17 ZQ}? /Upnfl = dimvpnfl =n-— 1’

Vitp, () = span{ Xy, Xo, -+ , Xy, Z1, Z3}, vp, = dimV, =n.

Then v(z) = pp+pn—1+n. When z1 # 0 or x9 # 0, it is easy to verify that v(x) < p, +pn—1+n.
So the generalized Métivier’s index is p, + pn—1 + n. Thus we can deduce that the generalized
Meétivier’s index of the vector fields considered in this paper is v =n + Z?:h 11D5-

In this paper, we get lower bounds of Dirichlet eigenvalues for the weighted divergence oper-

ator.

Theorem 2.1 Let Q) be a bounded domain with smooth non-characteristic boundary, and Q ({x; =
0} #0 for anyi=1,2---  h, A be a symmetric and positive definite matriz satisfying (11 < A <
GI, p(z) be a positive continuous function defined on ), and V(x) be a nonnegative potential

function. Let u; be the eigenfunction corresponding to the Dirichlet eigenvalues \; of problem

(L = V)u; = Apu; in Q,

/ puiujd,u = 5ij7 (2'1)
Q
uilan = 0.

Then we have

koo .

> =N+ Vao) = CEMY — o,

2 G,

j=
where

v =2 2

O onp =55t [(2m) 02| ]] 2 B
3+3(n—h)max{Culj=h+1,-- n} |wpr [[j_pyi (05 +1)

and

~ (n—h)max{leng\j:h—i—l,“- ,n}

a 14+ (n—h)max{Cji|j=h+1,--- ,n}’

Cj1,Cja are constants in (3.1) below, v = n + Z?’:l pj 1s the generalized Métivier’s index, T =
sup,.qap) 0 = (inf_.5p) "+, Vo = sup,.qV(x), wn_1(x) is the area of the unit sphere in R™,

cap) ! inf,cqp) !,V weaV s th th it sph n R™
and |Q|,, is the volume of .

Remark 2.1 (1) Considering the monotonicity of sequence {\; }‘;‘;1, we can deduce that the k—th

Dirichlet eigenvalue \; satisfies

GC

M > kv — Coty — Voo, forall k> 1.
g

(2) When A = I,V = 0,p = 1,p; = 0,j = h+ 1,--- ,n, the operator —divg(AV¢g) +
(Vad, Vi) — V is just the classical Laplace operator, the result in Theorem 2.1 is just the same
to Li-Yau’s [25].



(3) When A =1,V =0,p =1,h = n — 2, the result in Theorem 2.1 is just the same to the
result (1.6) in [5].

(4) We can find that the result has no relation with the density e=¢.

Especially, if the potential function V(x) satisfies the Hardy type inequality

/ V fdu(a) / Ve fl2du(),

then we have the following theorem:

Theorem 2.2 Let Q) be a bounded domain with non-characteristic smooth boundary, and Q ({z; =
0} #0 for anyi=1,2--- ' h, A be a symmetric and positive definite matrixz satisfying (11 < A <
GI and (1 > 1, p(x) be a positive continuous function defined on Q, and V(x) > 0 be a potential
function satisfying

/ V 2dp(x) / Ve Pdu()

for all f € H}(’O(Q). Let u; be the orthonormal eigenfunction corresponding to the Dirichlet
eigenvalues \; of problem (2.1). Then we have

k
g

2 CEYE — Cok,

where C,C are the same to the constants in Theorem 2.1.

Remark 2.2 (1) Considering the monotonicity of sequence {\;}°2,, we have

j:17
C1

Lokt —o(c - e (2.2)

(2) When A =1,V =0,p =1, the result in Theorem 2.2 is just the same with Chen’s [9].

Next, we present two theorems about the upper bounds of eigenvalues for problem (2.1).

Theorem 2.3 Let Q be a bounded domain with smooth non-characteristic boundary, and Q ({z; =
0} # 0 for any i = 1,2---  h, A be a symmetric and positive definite matriz satisfying (11 <
A < (oI, p(x) be a positive continuous function defined on Q, ¢ be a smooth function satisfying
IVao| < Co and V(z) be nonnegative potential function. Let u; be the orthonormal eigenfunction
corresponding to the Dirichlet eigenvalues \; of problem (2.1). Then we have

k k
> (ks = A < A3 (s = A) | PO + o) + Coloa) O -+ Vao)

NI

1
+ ZCIC(%U 3

2 n

h2.2
Gt j=h+1

and P = max{1,d*r+1 d?r+2 ... d?Pr} d is the diameter of Q,, the projection of Q in the

(z1,22, -+ ,Tp) Space .



Remark 2.3 (1) Under the condition of Theorem 2.3, Let V' = 0 and ¢ be a constant. Then we
have

. 4PGy0 (h + ) d2pj> .
=kt
D (ki1 =) < T D k1 = A\

=1 i=1

(2) It is easy to find that our method can also be used to get the upper bound of Dirichlet

eigenvalues for the operator (1.7) in [29]. Through similar calculation, We can get

k 20 k
4[n — h)d
> g1 =) < [+ (”2 )] max{L,d**} > (As1 — Ao Ai,
=1 h =1

which is sharper than the result in (1.8).

(3) When A =1,V =0,p=1,p; =0,(j =h+1,---,n), and ¢ is a constant, the operator
—divg(AVg) + (Vao, Vi) — V is just the classical Laplace operator. The result in Theorem 2.3
is just the same to Yang’s [37].

(4) Under the condition of Theorem 2.3, we have

k k k k 2 k k 2
Akﬂgi QZAi+AZB+ <2ZAi+AZB> —4k<ZA%+AZ)\ZB> ,
=1 =1 =1 1=1 =1 =1
(2.3)

where
1
B =P\ + Voo) + Co(0¢1)2 (N + Voo) 2 + GG

The inequality (2.3) is a kind of the Yang’s second inequality. Through this inequality, we can
find that A\;41 can be up bounded by the first k eigenvalues and the upper bounds depend on the

domain.

Theorem 2.4 Let Q) be a bounded domain with smooth non-characteristic boundary, and Q ({x; =
0} #0 for anyi=1,2---  h, A be a symmetric and positive definite matrixz satisfying (I < A <
GI and (1 > 1, p(x) be a positive continuous function defined on Q,¢ be a smooth function on Q

satisfying |Vao| < Cy, and V(x) > 0 be a potential function satisfying
| viau < [ 19erPin)

for all f € H}(?O(Q). Let u; be the orthonormal eigenfunction corresponding to the Dirichlet
eigenvalues \; of problem (2.1). Then we have

k k

1
D Mk — A2 <A (e — Ni) [P)\Z- +Co(G— 1)2(o))2 + 1Coo(G =1,
=1 i=1
where
402y - .
Al — 2p
G ) h+ Y d

j=h+1



Remark 2.4 Through direct calculation, we have the second Yang’s inequality

1
2

k k 2 k k
Ak+1§2— 2Z>\ —|—AZB’ (22)\i+AZB’> —4k<ZA$+AZAiB') ,
=1 =1 =1 =1

B' = PX\i + Co(G1 — 1)2(oA)2 + LC2a (¢ — 1).

3 The proof of main results

Lemma 3.1 ( [19]) Suppose the system of vector fields X1, Xa,- -+ , Xy, satisfy the Homander’s
condition on Q with index Q > 1. Then the following subelliptic estimate

11913 £122(0) < C1(@) (IVx fl32(0) + CLQIS (o))

holds for all f € C3°(S2), where V = (0p,,0py, -+ ,0s,) and ]V|% is a pesudo-differential operator
1 ~ _
with the symbol ||@, C1(Q) > 0 and C1(Q) > 0.

Lemma 3.2 Suppose Q is a bounded domain and f € C3°(). Then there exist constants C3,Cy
such that

Z/ et 3 [ (107555) aw s [ Nosfans o [ pange oo

j=h+1

Proof. It is obviously that

Z/af dula) < | Ve fPdua).

Let V= (8, - ,8xh,a:fj8xj) be defined on 2; for any h+1 < j < n, where €2, is the projection
of  on the direction 2’ = (z1,- -+ ,xp, ;). Considering the Plancherel’s formula and Lemma 3.1,
we have

/Qj <|8lepj'1+1f>2du(x) = /Rn <|§jlpjl+1f>2du(:c) < /Rn (If”fl“ffdu(x)
:/n <W"”1“f>2dﬂ<f>=/ﬂ_ <|@|pfl+1f>2du<x)

J

/ IV fdu(z) + Cja / deu(:v)], (3.1)
Q; Q;

<Cin

1 1
where |0,,|?*! are pesudo-differential operators with the symbol |¢;|?3** for any A +1 < j < n,
and € = (&1,62, -+ ,&ny &), Cj1, Cja are constants depending on the Hémander index Q; = 1+p;.

Then through direct calculation, we have

Z/ (O F () + 3 / (Iﬁle”fl“f>2du(x)

j=h+1



< [ IVasPana SN

j=h+1

.7

JRERICE fgdu(w)]

n

= [ 1VetPduta) + 3

j=h+1

Q;

le/ |@f|2d,u(x)+Cj1Cj2/Q'f2d,u(x)]

< /Q Ve f 2du(z) + C /Q Vel Pdu(z) + C /Q Pdu(z)

_ 2 2

—Cy /Q Vi) + €, /Q Fu(z), (3.2)

where C5 = (n — h)max{Cj1|j = h+1,--- ,n},Csy = (n—h)max{C;1Cj2|j = h+1,--- ,n},Cs =
1+ Cs. O

Lemma 3.3 Let u; be the orthonormal eigenfunction corresponding to the Dirichlet eigenvalues

\; of problem (2.1), o = (infqp)~t, 7 = (supgp) L. Set ¥(x,y) = Z?Zl uj(z)u;j(y). Then we have

o< [ ]y Pdu)duty) < ok
Q n
and

/Q (. ) Pduy) < (2m) 0|,

where \if(z,y) is the partial Fourier transformation of V(z,y) in the x—wvariable,

n

Uey) = 20 8 [ e duta).

Proof. Using the Plancherel’s formula and the orthonormality of u;, we have

//n () du(z)duly //n (2, y)Pdu(@)du(y) //I‘Ifﬂ:y!du()dﬂ()

= [ [ SV Pauaduts) <o [ ;!w(y)lzdu(y)
k
éaQ/ > IVoly)u(y)Pduly) =
Qo

Similarly, we have

||t Pauinty //Q|Fwy|du> uly)

wi(y)?
ZT/QJ;\ () du(y)
k
> / S IV () Pdu(y) = k.
Q=

On the other hand, considering the definition of Fourier transformation of ¥(x,y) in the
r—variable, we have

[ 1eePaut) = [ o

10

2

/n U(z,y)e " Zdu(z)| du(y)




2
[ v e )| duty) (3.0)

- [em

Recall that the sequence {u;}32; is a standard orthogonal basis in L?(2) which implies that a
function e~* can be written in the form

< (2m) "o? /Q

k o)
= (2m)"0” Y a;(2) < (2m) "0 ) lay(2)]
=1 j=1

du(y)

k
Z vV (y)a;(2)u;(y)

= (277)_”02/ le™22dg = (21) "% .
Q

Lemma 3.4 Suppose f,g € CZ(Q) and Q be a bounded domain in R"™. Then
/Q f Logdn = /Q (AVag, Ve f)dn (3.1)
Proof. We have
| fiva(AVagdn(z) = [ faiva(aVag)e (o)
—~ [ 1A¥a9, Ve(re )i
—— | (V0. af) - F(AVas. Vao) e dvta)

_ /Q ((AVag,Vaf) — [{AVag, Vo)) du(x)

Then

/Q<Angava>dM—/Qf<_diVG(AVG9)+<AngavG¢>)d,U-

Then we have finished the proof. ]
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Lemma 3.5 Let u; be the orthonormal eigenfunction corresponding to the Dirichlet eigenvalues
Ai of problem (2.1), ({1 < A < (o, o0 = (infg p)~t, 7 = (supgp) !, Vo = supg V(z). Then we

have

(Aj + Voo).

f\‘q

k
/Q /Q Ve (z, y) Pdu(x)du(y) sz

Proof. Considering the orthogonality of {u;}5°,, we have

2

[ [ 1Vev ) Pante)inty //QZ Xzzug Jus(y)| du(@)du(y)

=1
2

<cr/ /QZ ijzlu; VoW (y)| du(z)du(y)
=0 U\ T 2 x). .
- ;/ﬂwa (@) 2dp(z) (3:2)

Because of (11 < A < (oI and Lemma 3.4, we have
/ﬂlVGUj(Jf)IQdM(%) <G /Q<AVGUJ‘($)7 Veu;(x))du(z) = ¢ /Q uj(x)Lyu;j(x)dp(z)
— 6| [ i) = Viws@dnto) + [ Vidanta)] < 6705 + Vao) 33)
Substituting (3.3) into (3.2), we can finish the proof. O

Lemma 3.6 Let f be a real-valued function defined on R™ with 0 < f < My, and for ppi1,---pn €
zZt,

/ Zz £S5 125 | FGdnt) < s (3.4)

j=h+1

Then

n+ZJ h+1P]
n+2+Z] ht1Pj

= g , (3.5)

++Z

| #Ghdutz) < D,

where -
n+>37 Py
n j=h+1%J n
Hj:h+1(pj + l)wn,l [ 3 } n 2T Py n+3l 1 Pj
n 2

n+3 0 D) 2"

and w,_1 18 the area of the unit sphere in R™.

D=

Proof. It is easy to verify the correctness of this lemma following the way of Chen’s in [5]. O

Proof of Theorem 2.1. Using Plancherel’s formula and Lemma 3.2, we have

h n 5 .
L+ X ko™ | 1P autdute)
i=1

j=h+1

12



h n 1 2
- / / S0 ()P S 00T y)| | duty)du()
"I\ = j=h+1
h n 1 2
-/ S0 e+ 3 |00, )| | o)
QI =1 j=h+1
<03//|VG‘1’SE3/)| dpu(z)dp(y >+c4//|\11 o) 2dpu(z) du(y). (3.6)

Substituting the results in Lemma 3.3 and Lemma 3.5 into inequality (3.6), we can obtain that

L] Zz £ 3 P 1) Pu)dut: V];

j=h+1

(Aj + Voo) + Cyo’k.

J\‘q

Then we set,
- /Q (2 ) Pduly), My = (27) 0|, (3.7)

and
K g
Z? (\j + Voo) + Cyo’k. (3.8)

Substituting (3.7), (3.8) into (3.5), we have

o ZL%%

n ‘ " j=h+1%5 | n f=h+1P3

Hj=h+1(p3 + 1)’LUn_1 ((27T)_n0'2|Q |)"+2+Z?ﬁ 3n ? ’ X
n+ Z?:h-i—l pj "

2k <
271

n+Z?:h+1 pPj
DN Y
)\ + Voo) + Cyo’k

for any k£ > 1. Thus

J\‘q

bR ~
> O+ Voo) 2 Ok T - o
1
j=1
where
I+ 2 —
R n ] =
C 2n M%lpj T (n+2]=h+1p]) [(27_‘_)—110_2’9 H W
3(]3 H;L:h—&—l(pj + Dwn—1 |
and C = Cy/Cs. -

Proof of Theorem 2.2. Through similar method in the proof of Lemma 3.5, one has

/ Vg (@) Pdp(x) <
Q

13



Then substituting (3.9) into (3.2), we obtain that

g

k
L (e Pduta)di) < 3 o7 (3.10)

Then combining (3.10), (3.6), and the result in Lemma 3.3, we have

h
2
/n/Q ;zz—k

Then we set

n k
_2 “ o
> Jeal 5T 1) Pan()n(=) < O Y0 =gy + Cao®h (311)
j=h+1 j=1

f(z) = /Q U (2, ) Pdu(y), My = (27)"0”|Qnl, (3.12)
and
b o
_ . 2
My = C3 ]EZI Cli_l)\] + Cyok. (3.13)

Through similar argument in the proof of Theorem 2.1, we have

k
P N 2 Ck* — Co?k.
G-

0

Lemma 3.7 Let u; be the orthonormal eigenfunction corresponding to the Dirichlet eigenvalues
Ai of problem (2.1). Then the inequality

k k

2 e - W/ u{(Vaf, Vafidu(@) < ey e = N)? / WAV f, Ve f)du(x)
=t “ i=1 Q
k .
i ; @ /Q ;(WGW Vaf)+ %Uiﬁc,qbf)zdu(w) (3.14)

holds for all k > 1 and f € C3(Q) N C?(9N), where € is any positive constant.

Proof. We define the trail function
k
i = fui = aijuy,
j=1
where a;; = fQ pfujujdp(z) = aj;. Then

/ ppiujdp(x) =0, ¢ilan =0, i,j=1--- k.
Q
Through direct calculation, we have

Loi = (—divg(AVa(-) + (AVas, Va () = V) @i

14



= fLu; + w;Lf +V fu; — 2<AVGf, Vgul> - Z aij)\jpuj. (3.15)

Substituting (3.15) into the well-known Rayleigh-Ritz inequality [3]

\ Jo eiLpidp(z)
k1S 57
Jo peidu(z)
we can obtain that
Ousr =X [ pebdu(e) < [ @i (LS +V fui = 2(AVGS. Vau) du(o). (310

Set
by = /Q (wLf +V fu; — 2(AVGf, Veus) yujdulz).

Considering du = e~?dv, we have

/(AVGﬁ Vaui)ujdp(z) = / (AVa f, Vau)uje ®dy = —/ uidiv(uje AV f)dv
Q Q Q
= —/ ui [ujdiv(AVaf) + wi(AVaf, Vauj) —ui(AVaf,Vao)] e %dv
Q
- /Q u; [ujdiv(AVaf) + ui(AVaf,Vau;) — uj{AVaf, Vo) du

Then we can find that
bij = —bji,bij = (/\Z — )\j)aij.

Considering (3.16), we get
(v =) [ pebuta) <
k
/ fus [us(diva(AV G f) — (AVGo, Ve f) +2(Vaus, AVe )] due) + 3 = Ap)a. (3.17)
7j=1

Set
Cij = /Q“j(<VGUz', V) + %uiAG@f)du(x).
Then through direct calculation, we have
Cij = —Cjis

and
1
/ pi((Vau, Vaf) + Suilde o f)dp(w)
/fuZ VGu“va>+ uZAG@f d,u ZCLUCU

1

- /Q 2(Vaf, Vol du(z Zam% (3.18)

15



Using Young’s inequality and considering (3.17), (3.18), we get

(M1 — N)? (/Q HVaf, Vaf)du(z) + 22“@]%)

~(p1 — A / (270 |

k
(<VGU1,VGf> + UzAG of) — Zcijﬁuj] du(z)

7j=1
<Ot — NP /Q po2dp(z)

2
/\k+1 Y 1 1 k ) |
+ E/Q {\/,5 <<VGUi,va> + 2u¢AG,¢f> - jzlcm/ﬁu]] dp(z)

—(Aes1 — ) /Q po2dp(z)

k

N1 — Ai 1 1 2 )
Al (Veui, Ve f) + quibeef | dp(z) — >

J=1

<

<e(Aet1 — )\i)2{ /Q —fuilui (divg(AVa f) = (AVe¢, Vaf)) + 2(Vaui, AVaf)] du(z)

k el — A

2 +1 %

+ §' 1(&- - Aj)aij} + =
]:

where € is any positive constant. Then summing over ¢ from 1 to k, we have

9 k
/Q; <<VGUiava> + ;UiAG@f) dp(z) ;C?]] 7

M-

(i =P [ 3V, Vafduto 1223 (- A0 — A

2,7=1

<
Il
—

B

<eS Oer — M)? /Q ~ s [us(Aiva(AV G f) — (AVad, Ve ) + 2(Vaui, AVa f)] dut

1

M=

s
I
—_

k
Jktl T [/ﬂ ;((VGUi7VGf> + §uiAG,¢f)2du B Z Oveer — M) — Aj)%a ?j]

€
ij=1

k
3 (M1 —Ai) o
€ K

ij=1
Because of a;; = aj;, cij = —cjj,

k

Z )\k+1 / uz2<va7 va>dM(x)

J=1 @
k

<€ (kg1 — / —fui [ui (dive(AVea f) — (AVad, Ve f)) + 2(Vaui, AV f)] du(z)
i=1
Merr — N [ 1 1 2

+ Z Hlf /Qp [(Vgui, Vaf)+ §U1AG,¢f du(z). (3.19)

i=1
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Considering du = e~®dv, we can obtain that
| pitdiva(avVa)du = [ ruddive(aVee i
=— /Q<AVGf, Vaf)ule ®dv — /Q<AVGf, Voui)2fuie *dy + /Q(AVGf, Vao) fuie ?dv
= - /Q (AVaf,Vaf)uidu — /Q (AVa f,Vaui)2 fuidp + /Q (AV G f, Vo) fuldp. (3.20)

Substituting (3.20) into (3.19), we can finish the proof of this lemma. O
Proof of Theorem 2.3. Considering (17 < A < (3! in (3.14), we have

k k

> Ot = A)? / i} (Vaf, Ve )du() < 6y (Aer = Xi) / ui(Vaf. Vaf)du(z)
i1 Q =1 @
k .
# 3N 2(Teu, Vaf) + gubael Pdula). (321
] € QP

Taking f = x4 and summing over « from 1 to n, then through direct calculation, we can obtain
that

n n n
> (Vata,Vaza) =h+ > |m|™ <h+ > d* (3.22)
a=1 Jj=h+1 Jj=h+1
and
n n
> Agza =0, Y (Va¢,Vaza)’ = |Vaol, (3.23)
a=1 a=1
n
> (Vaui, Vaza)(Vad, Vaza) = (Vaui, Vao), (3.24)
a=1
n h n
D (Veui, Vaza)? =Y 1Xjul> + ) |2l | Xjul* < P|Vaus (3.25)
a=1 j=1 j=h+1
where P = max{1,d?Ph+1 d?Pr+2 ... d?Pn} d is the diameter of 2, the projection of € in the
(1‘1,332, e 7$h) space.

Substituting (3.22), (3.23), (3.24), (3.25) into (3.21), then we have

k n k
B Ot = AP [ (o) < clht 32 a6 > (e = 0? [ addu(o)
i=1 Q j=h+1 i=1 Q
k
o 1
+ z ()\kJrl — )\z) /Q P|VGUZ“2 + Ui<vGUi; VG(Z5> + 1u12|V0¢>|2d,u(a:)

=1

Then considering the result in Lemma 3.5, we have

P\ + Vo)

/ P]VGui|2dp,(x) < ,
Q G1

17



Sluill 2 [V aui, Vo)l 2

/ ui(Vaui, Vao)du(z)
Q

1
2
<o [/ vaui|2|vG¢\2d4
Q

1
LN+ Voo 2
<Cyo? <+°U) , (3.26)
G
and
[ wEVeolduta) < Cho | putduta) = Cio (3.27)
Q Q
Thus
k n k
WY kg = A Se [t D d | oG (o1 — M)
i=1 j=h+1 i=1
k 1
P+ W 1 (A + W 2 1
+ %Z(AM - (gog) + Cyo2 <+C°U> +1Cio| . (328)
i—1 1 1

Obviously, the right hand of (3.28) attains its minimum at

k 1 1
Z()‘k—i-l Ai) [P()\eroa) + Coo2 (%)2 + }1080]

=1

€ =

k
ST UED WL DUEWERS O

Then we can finish the proof. O
Proof of Theorem 2.4. Using similar method in the proof of Theorem 2.3, we can obtain that

k k
RS Owr =N [ addute) < | b+ S @ | 63 e - A2 [ wdduta)
i=1 & j=h+1 i=1 Q@
k
o
+€Z()‘k+1 )‘)/P|VGUZ| +ui(Vaui, Vao) + u12|vG¢|2d:U’($) (3.29)
=1

Substituting the inequality

i
| IVouta)Pdute) <

which has been proved in the proof of Theorem 2.2, and the inequalities in (3.26),(3.27) into
(3.29), we have

(Akt1 — Ai)?

'Mk

hTZ )‘k-i-l <60‘<2 h+ Z d2p7

j=h+1 7

k 1
PX; 1 by 2 1
A . B d ~Cio| .
+ 23 0u = |2+t (25 ) gl

1

(3.30)
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Taking

1
k | VN 3
Zl(/\kﬂ - i) {gia + Coo? (Cfil) S+ icg‘f]
1=

€ =

k
Go (P4 Cjpn @) X (an = A2

i=1

the right hand of (3.30) attains its minimum. Then we can finish the proof. O

4 Conclusion

We consider the weighted Dirichlet eigenvalue problem of degenerate elliptic operator in divergence
form with a potential —divg(AVg) + (AVad, Vi) — V. Following the way of Fourier transfor-
mation, we obtain the lower bounds for eigenvalues. Through the way of trail function, we get
Yang’s type inequalities as upper bounds. Especially, we get the corresponding results when the
potential function V() satisfies the Hardy type inequality [, V f2du(z) < [ |Vaf|*du(z).
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