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Abstract

We consider the inverse resonance problem in scattering theory in one dimension. The signal is
in form of Fourier transform, which has various sorts of representation theorem via its zero set. We
are interested at the question if certain bound states information are disregarded, then how much
more information on the potential V is needed to recover the potential? If partial knowledge of the
potential function is given, certain amount of zeros or bound states can be removed to locally recover
a representation theorem of the Fourier transform. Once the representation form is recovered, we
compare to conclude the inverse uniqueness.
MSC: 34B24/35P25/35R30.
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1 Introduction

In this note, we consider the scattering theory of one-dimensional Schrödinger equation.

ψ′′(k, x) + k2ψ(k, x) = V (x)ψ(k, x), x ∈ I := [0, 1], (1.1)

which we assume that

V (x) = V1(x) + V2(x) ∈ L1
1(R) := {V

∣∣ ∫
R
|V (x)|(1 + |x|)dx <∞}, (1.2)

I is the convex hull of the support of V, (1.3)

I = I1 ∪ I2 := [0, a] ∪ [a, 1], 0 < a < 1, where Ij is the convex hull of the support of Vj , (1.4)

and V1(x) is a known functional parameter placed on interval I1 a priori.
The scattering solution of (1.1) are asymptotic to the linear combinations of e±ikx as x → ∓∞, for

all k ∈ R \ {0}. Among all such solutions [6, 8, 10, 17, 19], we consider the Jost solutions of (1.1) from
the left and right satisfy

φ+(x, k) =

{
eikx, x� 1;

X̂(k)
ik eikx + Ŷ (−k)

ik e−ikx, x� 0;
(1.5)

φ−(x, k) =

{
X̂(k)
ik e−ikx + Ŷ (k)

ik eikx, x� 1;

e−ikx, x� 0,
(1.6)

where X̂(k) and Ŷ (k) are certain Fourier transform that are entire in C, and there is the unitary identity
for real k:

X̂(k)X̂(k) = k2 + Ŷ (k)Ŷ (k), (1.7)

in which X̂(k) = X̂(k) = X̂(−k) for real k.
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In this paper, the scattering matrix S(x) is defined to be

S(k) =

 ik
X̂(k)

Ŷ (k)

X̂(k)

Ŷ (−k)
X̂(k)

ik
X̂(k)

 :=

(
T (k) R(k)

L(k) T (k)

)
, (1.8)

in which

T (k) :=
ik

X̂(k)
(1.9)

is the transmission coefficient, and R(k) and L(k) are the reflection coefficients from the right and left
respectively. In particular, the zeros of X̂ are the resonances of (1.1), which we refer to [19, 21, 24, 25],
and we denote the resonant set of potential function V in C− as Σ. The scattering matrix S(k) is
meromorphic in C, and its poles in {=k > 0} are the square roots of the bound-states of (1.1), say,
{iκ1, iκ2, · · · , iκN}. It is well-known that T (k) in (1.9) is understood via X̂(k) which is constructed
through the one-dimensional wave equation{ (

D2
x −D2

y + V (x)
)
A±(x, y) = 0;

A±(x, y) = δ(x− y), ±x� 0,
(1.10)

where DyA−(x, y) = X(y − x) + Y (y + x). In particular [19, p. 727],

X(x)− δ′(x) +

∫
V (t)dt

2
δ(x) ∈ L1(R) ∩ L∞(R); (1.11)

Y (y)− V (y/2)

4
∈ L1(R) ∩ L∞(R). (1.12)

Thus, A±(x, y) satisfies the wave equation with x taking the place of time (this choice is dictated by
the forcing condition imposed). The uniqueness part then follows from the energy estimates of the wave
equation [21].

In this paper, we consider the complex analysis of entire function X̂(k) and Ŷ (k) which are represented
in the form of

X̂(k) =

∫ 0

−2
X(x)e−ikxdx; (1.13)

Ŷ (k) =

∫ 2

0

Y (y)e−ikydy, k ∈ C, (1.14)

in which Fourier transform
X̂(0) = −Ŷ (0), (1.15)

and we refer the details to Mellin [19, p. 734] and [21, 24, 25]. The upper and lower limits in integral (1.13)
and (1.14) are proved by Zworski in [24].

The bound-state solutions decay exponentially as x→ ±∞, and they occur only at the bound-states,
{iκ1, iκ2, · · · , iκN}, with 0 < κ1 < κ2 < · · · < κN . Each bound-state at k = iκj , j = 1, · · · , N , is simple.
The bound-state norming constants {clj} from the left and {crj} from the right respectively are defined
as

clj = [

∫ ∞
−∞

fl(iκj , x)2dx]−
1
2 ; (1.16)

crj = [

∫ ∞
−∞

fr(iκj , x)2dx]−
1
2 (1.17)

The coefficients of the scattering matrix plays a role in determining the norming constant [4].
In literature [6, 8, 10, 17, 19], the potential function is determined by either by the left scattering

data {R, {κj}, {clj}} or by the right scattering data {L, {κj}, {crj}}. In inverse resonance problem, we
consider to determine the potential V from the resonances of (1.1) which includes the square root of
L2-eigenvalues. That is, we consider the meromorphic structure of R(k) = Ŷ (k)/X̂(k) in the context
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of certain sorts of zero representation theorem in complex analysis. Such an inverse process to identify
the knowledge of the emitting source by measuring all sorts of respects of the emittance or perturbed
wave-field in observational area. The inverse spectral-scattering problem of Schrödinger operator on the
line with various conditions have been studied in [2, 3, 7, 12, 13, 18, 21, 23, 24, 25] and in many other
references. For the half line case, the unique recovery of the potential from the resonances is justified in
[12]. Moreover, if the potential is known a priori on a larger interval, then infinitely many resonances can
be removed from the unique determination of potential on the interval [23]. However, in the full line case,
the inverse resonance problems mainly remain open for a long time. It is known that the potential cannot
be solely determined by the eigenvalues and resonances. Specifically, Zworski [25] proved the uniqueness
theorem for the symmetric potentials along with certain isopolar results. Furthermore, Korotyaev [12, 13]
applied the value distribution theory in complex analysis to prove that all eigenvalues and resonances,
and a signed sequence condition can uniquely determine the potential V . In this paper, we consider the
inverse problem without full knowledge of neither {{κj}, {clj}} nor {{κj}, {crj}} [3, 11, 22].

In photonics, we consider the example of Fourier optics in the Saleh and Teich’s book [20, Ch. 4]
when the Fresnel number is small, that is, NF = B2/λd� 1, where B is the radius confining the object
in the object plane, d is the distance between the object and the measured intensity plane. The λ is the
wavelength of light. The relationship between the measured intensity Iout and the intensity of wavefield
at the object plane Ein is given proportionally as

Iout(x, y) ∝
∣∣Êin(x/λd′, y/λd)

∣∣2,
in which Êin = F{Ein} and F denoting the Fourier transform. We refer the details to [20]. Once the
far-field intensity is measured, the goal is to recover Ein, which is equivalent to recovering the object
from Iout. In this case, the phase information is not provided. This is a typical phaseless problem in
mathematical physics. Therefore, we are interested to study the inverse problem of (1.1) in the context
of phaseless setting. In our case, that is to determine the potential V by the measurements partially
or fully on functional modulus {|R(k)|, |L(k)|, |T (k)|} in (1.8). When there are no bound states, the
potential is determined by the reflection coefficient R(k) by Levinson’s theorem [8, 16, 17].

We state the following result in this paper.

Theorem 1.1. If the Lebesgue measurement |I1| > 0, then the non-trivial potential V2 is uniquely
determined by scattering data {|T (k)|, V1}, k ∈ R.

Furthermore, we ask the question if certain bound states information are lost, then how much more
information on the potential V is needed to recover the potential [3, 11, 22]?

Theorem 1.2. Let {iκ1, iκ2, · · · , iκN} be the bound states of potential function V = V 1 + V 2, and
Σ′ := Σ \ {iκ1, iκ2, · · · , iκN}. If the Lebesgue measurement |I1| > 0, then the non-trivial potential V2 is
uniquely determined by data {Σ′, V 1}.

We may compare our results to [3, 7, 11, 22, 23].

2 Lemmata

To count the zero set of Λ(k), we review some results from complex analysis [5, 14, 15].

Definition 2.1. Let F (z) be an entire function. Let

MF (r) := max
|z|=r

|F (z)|.

An entire function of F (z) is said to be a function of finite order if there exists a positive constant k such
that the inequality

MF (r) < er
k

is valid for all sufficiently large values of r. The greatest lower bound of such numbers k is called the
order of the entire function F (z). By the type σ of an entire function F (z) of order ρ, we mean the
greatest lower bound of positive number A for which asymptotically we have

MF (r) < eAr
ρ

.
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That is,

σF := lim sup
r→∞

lnMF (r)

rρ
.

If 0 < σF <∞, then we say F (z) is of normal type or mean type. For σF = 0, we say F (z) is of minimal
type.

Definition 2.2. If an entire function F (z) is of order one and of normal type, then we say it is an entire
function of exponential type (EFET).

Definition 2.3. Let F (z) be an integral function of finite order ρ in the angle [θ1, θ2]. We call the
following quantity as the indicator function of function F (z).

hF (θ) := lim
r→∞

ln |F (reiθ)|
rρ

, θ1 ≤ θ ≤ θ2.

The type of a function is connected to the maximal value of indicator function.

Lemma 2.4 (Levin [14], p.72). The maximal value of indicator function hF (θ) of F (z) on the interval
α ≤ θ ≤ β is equal to the type σF of this function inside the angle α ≤ arg z ≤ β.

Definition 2.5. Let f(z) be an integral function of order 1, and let N(f, α, β, r) denote the number of
the zeros of f(z) inside the angle [α, β] and |z| ≤ r. We define the density function as

∆f (α, β) := lim
r→∞

N(f, α, β, r)

r
,

and
∆f (β) := ∆f (α0, β),

with some fixed α0 /∈ E such that E is at most a countable set [5, 14, 15]. In particular, we denote the
density function of f on the open right/left half complex plane as ∆+

f /∆−f respectively. Similarly, we
can define the set density of a zero set S. Let N(S, r) be the number of the discrete elements of S in
{|z| < r}. We define

∆S := lim
r→∞

N(S, r)

r
, (2.1)

The class of function of completely regular growth is important is in this paper. We refer the
definition to Levin [14, p. 139]. The definition seems complicated, but this will be compensated by all
sorts of integral conditions provided by Cartwright’s theory.

Definition 2.6. A function F (z) that is holomorphic and of proximate order ρ(r) within some angle
(θ1, θ2) will be called a function of completely regular growth on the ray arg z = θ if the limit

hF (θ) = lim
r→∞

ln |F (reiθ)|
rρ(r)

exists under the condition that r goes to infinity by taking on all positive values except possibly those
of a set of zero relative measure (an E0-set). We will say that a function is of completely regular growth
on some set of rays RM(M is the set of values of θ) if the function

hF,r(θ) =
ln |F (reiθ)|

rρ(r)

converges uniformly to hF (θ) for θ ∈ M, when r goes to infinity by taking on all positive values except
possibly for a set EM of zero relative measure, this set being the same for all rays RM. The set EM will
be called the exceptional set for the given function. We shall say that F (z) is a function of completely
regular growth within the angle (θ1, θ2) if this is true for every closed interior angle, and we simply say
that F (z) is of completely regular growth if it is an entire function and is of completely regular growth
in the entire plane.
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Lemma 2.7. Let f , g be two entire functions. Then the following two inequalities hold.

hfg(θ) ≤ hf (θ) + hg(θ), if one limit exists; (2.2)

hf+g(θ) ≤ max
θ
{hf (θ), hg(θ)}, (2.3)

where the equality in (2.2) holds if one of the functions is of completely regular growth, and secondly the
equality (2.3) holds if the indicator of the two summands are not equal at some θ0.

Proof. We can find the details in [14].

Definition 2.8. The following quantity is called the width of the indicator diagram of entire function
f :

d = hf (
π

2
) + hf (−π

2
).

Theorem 2.9 (Cartwright). Let f be an entire function of exponential type with zero set {ak}. We
assume f satisfies one of the following conditions:

the integral

∫ ∞
−∞

ln+ |f(x)|
1 + x2

dx exists.

|f(x)| is bounded on the real axis.

Then

1. all of the zeros of the function f(z), except possibly those of a set of zero density, lie inside arbitrarily
small angles | arg z| < ε and | arg z − π| < ε, where the density

∆f (−ε, ε) = ∆f (π − ε, π + ε) = lim
r→∞

N(f,−ε, ε, r)
r

= lim
r→∞

N(f, π − ε, π + ε, r)

r
, (2.4)

is equal to d
2π , where d is the width of the indicator diagram in (2.8). Furthermore, the limit

δ = limr→∞ δ(r) exists, where

δ(r) :=
∑

{|ak|<r}

1

ak
;

2. moreover,
∆f (ε, π − ε) = ∆f (π + ε,−ε) = 0;

3. the function f(z) can be represented in the form

f(z) = czmeiκz lim
r→∞

∏
{|ak|<r}

(1− z

ak
),

where c,m, κ are constants and κ is real;

4. the indicator function of f is of the form

hf (θ) = σ| sin θ|. (2.5)

We refer the last statement to Levin [15, p. 126].

Lemma 2.10. The Fourier transform X̂(z) as in (1.13) is of Cartwright class, and the function can be
represented in form

X̂(z) = czmeiδz lim
R→∞

∏
|σn|<R

(1− z

σn
), z = x+ iy,

where δ ∈ R, and the following integral converges:∫ ∞
−∞

ln+ |X̂(x)|
1 + x2

dx <∞. (2.6)

Similar results hold for Ŷ (k).
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Proof. We refer the definition of Cartwright class to [14, 15].

Theorem 2.11 (Nevanlinna-Levin). If the function F (z) is holomorphic and of exponential type in the
half-plane =z ≥ 0, and if (2.6) holds, then

1.

F (z)

∞∏
k=1

1− z
ak

1− z
ak

= eiγeu(z)+iv(z),

where

u(z) =
y

π

∫ ∞
−∞

ln |F (t)|
(t− x)2 + y2

dt+ σ+
F y,

σ+
F = hF (π2 ), v(z) is the harmonic conjugate of u(z), and {ak} are the zeros of the function F (z)

in the half-plane =z > 0;

2.

ln |F (z)| = y

π

∫ ∞
−∞

ln |F (t)|
(t− x)2 + y2

dt+ σ+
F y + ln |χ(z)|, z = x+ iy,

where

χ(z) =

∞∏
k=1

1− z
ak

1− z
ak

.

Proof. We refer the proof to [14, p. 240].

Lemma 2.12. Let X̂(z) =
∫ 0

−2X(x)e−izxdx, z = |z|ei arg z. Then,

1. the width of indicator diagram of X̂(z) and Ŷ (z) is 2;

2.

∆X̂(−ε, ε) = ∆X̂(π − ε, π + ε) =
ch supp(V )

π
=
I

π
;

∆Ŷ (−ε, ε) = ∆Ŷ (π − ε, π + ε) =
ch supp(V )

π
=
I

π
; (2.7)

Proof. It is straightforward from Boas [5, p. 109] that the indicator function at arg z = π
2 and arg z = −π2

can be computed respectively as

hX̂(
π

2
) = 0;

hX̂(−π
2

) = 2.

Using Definition 2.8, we deduce the width of the indicator function, and the second statement is deduced
from the Cartwright-Levinson theorem [14, p. 251]. The effective support of X(x) is [−2, 0], and Y (y) is
[0, 2]. Similarly,

Ŷ (k) =

∫ 2

0

Y (x)e−izxdx,

and, then

hŶ (
π

2
) = 0;

hŶ (−π
2

) = 2.
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3 Proof of Theorem 1.1

Proof. We start with the assumption of Theorem 1.1, which leads to

|X̂1
12(k)| = |X̂2

12(k)|,

and then apply Theorem 2.11 to deduce that

X̂1
12(k)

N1∏
n=1

1− k
a1n

1− k
a1n

= eiγX̂2
12(k)

N2∏
n=1

1− k
a2n

1− k
a2n

, (3.1)

where {ajn} are the zeros of X̂j
12(k) in C+. Let

Bj(k) :=

Nj∏
n=1

1− k

ajn

1− z

ajn

.

We note that both sides of (3.1) are analytic in C. Now we apply Theorem 2.9 to obtain that there is a
non-empty set S such that

X̂1
12(k)B1(k) = X̂2

12(k)B2(k), k ∈ S. (3.2)

Therefore, eiγ = 1, and then γ = 0. Then, we deduce from (3.1) that

X̂1
12(k)B1(k) = X̂2

12(k)B2(k). (3.3)

Moreover, we compute the zero density of the zero set S′ for the equation

X̂1
12(k) = X̂2

12(k). (3.4)

Using Theorem 2.9 and Lemma 2.12, the zero density of S′ is

∆S′ =
|I|
π
. (3.5)

We then plug all of element of S′ into (3.3) and deduce that

B1(k) = B2(k), k ∈ S′. (3.6)

This is not possible unless B1(k) = B2(k). Therefore,

X̂1
12(k) = X̂2

12(k), k ∈ C. (3.7)

Now we consider the transition matrix [1, 9]

Λj12(k) =

 X̂j12(k)
ik − Ŷ

j
12(k)
ik

Ŷ j12(−k)
ik

X̂j12(−k)
−ik

 (3.8)

of potential V j1 + V j2 , and

Λj1(k)Λj2(k) =

 X̂j1(k)
ik − Ŷ

j
1 (k)
ik

Ŷ j1 (−k)
ik

X̂j1(−k)
−ik

 X̂j2(k)
ik − Ŷ

j
2 (k)
ik

Ŷ j2 (−k)
ik

X̂j2(−k)
−ik

 (3.9)

be the product of transition matrices of V j1 and V j2 . Then we use Aktosun’s identity [1]:

Λj12(k) = Λj1(k)Λj2(k)

=

 X̂j1(k)
ik − Ŷ

j
1 (k)
ik

Ŷ j1 (−k)
ik

X̂j1(−k)
−ik

 X̂j2(k)
ik − Ŷ

j
2 (k)
ik

Ŷ j2 (−k)
ik

X̂j2(−k)
−ik


=

 X̂j1(k)X̂
j
2(k)

−k2 +
Ŷ j1 (k)Ŷ j2 (−k)

k2 · · ·

−Ŷ j1 (−k)X̂j2(k)+X̂
j
1(−k)Ŷ

j
2 (−k)

k2 · · ·

 . (3.10)
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Here,

Λj12(k) =

 X̂j12(k)
ik − Ŷ

j
12(k)
ik

Ŷ j12(−k)
ik

X̂j12(−k)
−ik

 . (3.11)

Moreover, we observe that

X̂j
j′(k) ∼ ik −

∫
R V

j
j′(x)dx

2
+ o(

1

k
); (3.12)

Ŷ jj′(k) ∼ o(1), j = 1, 2; j′ = 1, 2. (3.13)

Hence, we use (3.7), (3.10) and (3.11) to deduce that

X̂1
1 (k)X̂1

2 (k)− Ŷ 1
1 (k)Ŷ 1

2 (−k) = X̂2
1 (k)X̂2

2 (k)− Ŷ 2
1 (k)Ŷ 2

2 (−k). (3.14)

Let us look into the zero set S′′ of

Ŷ 1
1 (k)Ŷ 1

2 (−k) = Ŷ 2
1 (k)Ŷ 2

2 (−k). (3.15)

Using Theorem 2.9, we deduce the zero density of this zero set S′′ is

|I|
π
. (3.16)

We plug in all of elements in S′′ into (3.14), and deduce

X̂1
1 (k)X̂1

2 (k) = X̂2
1 (k)X̂2

2 (k), k ∈ S′′. (3.17)

Applying V 1
1 ≡ V 1

2 by the assumption of the theorem, we obtain from (3.17) that

X̂1
2 (k) = X̂2

2 (k), k ∈ S′′. (3.18)

This contradicts Theorem 2.9 and the computation of Lemma 2.12. Hence,

X̂1
2 (k) = X̂2

2 (k). (3.19)

Therefore, we conclude that
Ŷ 1
1 (k)Ŷ 1

2 (−k) = Ŷ 2
1 (k)Ŷ 2

2 (−k).

Applying V 1
1 ≡ V 1

2 again, we obtain
Ŷ 1
2 (k) = Ŷ 2

2 (k). (3.20)

Now we apply Zworski [24, Proposition 8], and Korotyaev [13] with the knowledge of the zeros of Ŷ j2 (z),
j = 1, 2, which implies the potential function with compact support is determined by the scattering
matrix, we deduce that

V 1
2 (x) ≡ V 2

2 (x). (3.21)

The theorem is thus proven.

4 Proof of Theorem 1.2

Proof. We begin with Lemma 2.10, and write

X̂j
12(k) = cjkm

j

eiδ
jk lim
R→∞

∏
|σjn|<R

(1− k

σjn
), k = x+ iy,

in its zero set, and δj ∈ R, j = 1, 2. Hence,

X̂j
12(k) = cjkm

j

eiδ
jk lim
R→∞

∏
{=σjn>0, |σjn|<R}

∏
{=σjn<0, |σjn|<R}

(1− k

σjn
).
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Now we consider the fraction

X̂1
12(k)

X̂2
12(k)

=
c1km

1

eiδ
1k limR→∞

∏
=σ1

n>0, |σ1
n|<R

(1− k
σ1
n

)

c2zm2eiδ2k limR→∞
∏
=σ2

n>0, |σ2
n|<R

(1− k
σ2
n

)

=
c1km

1

eiδ
1k
∏
=σjn>0(1− k

σjn
)

c2km2eiδ2k
∏
=σjn>0(1− k

σjn
)
, (4.1)

which is a rational function due to the finite number of bound states in the upper half complex plane,
and the assumption of Theorem 1.2. Therefore, we write

X̂1
12(k)

X̂2
12(k)

= R(k),

where R(k) = p(k)
q(k) represents a rational function in C, and p, q are polynomials. In this case, we obtain

X̂1
12(k)q(k) = X̂2

12(k)p(k). (4.2)

Now, we let D ⊂ C the zero set for the equation

X̂1
12(k) = X̂2

12(k).

According to Theorem 2.9, we compute the zero density of D as

∆D =
|I|
π
. (4.3)

We then plug all elements of D into (4.2), and deduce

q(k) = p(k), k ∈ D.

This is impossible unless p(k) ≡ q(k). Therefore, we deduce from (4.2) such that

X̂1
12(k) ≡ X̂2

12(k). (4.4)

Now we repeat the argument ever since (3.14) to deduce that

X̂1
2 (k) ≡ X̂2

2 (k) (4.5)

and
Ŷ 1
2 (k) ≡ Ŷ 2

2 (k). (4.6)

Using again Zworski [24, Proposition 8] and Korotyaev [13], we deduce that

V 1
2 (x) ≡ V 2

2 (x). (4.7)

This proves the theorem.
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