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Abstract 22 

Catchment-scale response functions, such as transit time distribution (TTD) and 23 

evapotranspiration time distribution (ETTD), are considered fundamental descriptors of a 24 

catchment’s hydrologic and ecohydrologic responses to spatially and temporally varying 25 

precipitation inputs. Yet, estimating these functions is challenging, especially in headwater 26 

catchments where data collection is complicated by rugged terrain, or in semi-arid or sub-humid 27 

areas where precipitation is infrequent. Hence, we developed practical approaches for estimating 28 

both TTD and ETTD from commonly available tracer flux data in hydrologic inflows and 29 

outflows without requiring continuous observations. Using the weighted wavelet spectral 30 

analysis method of Kirchner and Neal [2013] for δ18O in precipitation and stream water, we 31 

specifically calculated TTDs that contribute to streamflow via spatially and temporally variable 32 

flow paths in a sub-humid mountain headwater catchment in Arizona, USA. Our results indicate 33 

that composite TTDs most accurately represented this system for periods up to approximately 34 

one month and that a Gamma TTD was most appropriate thereafter. The TTD results also 35 

suggested that some contribution of subsurface water was beyond the applicable tracer range. For 36 

ETTD and using δ18O as a tracer in precipitation and xylem waters, a Gamma ETTD type best 37 

matched the observations, and stable water isotopes were capable tracers for the majority of 38 

vegetation source waters. This study contributes to a better understanding of a fundamental 39 

question in mountain catchment hydrology; namely, how tracer input fluxes are modulated by 40 

spatially and temporally varying subsurface flow paths that support evapotranspiration and 41 

streamflow at multiple time scales.  42 

 43 
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 46 

1. Introduction 47 

Mountain systems are regarded as the “water towers for humanity” [Viviroli et al., 2007]. They 48 

provide critical ecosystem services including groundwater recharge to adjacent alluvial basins, 49 

particularly in arid and semi-arid regions [Milly and Dunne, 2020] that cover ~41% of earth’s 50 

surface [Reynolds et al., 2007] and are expected to grow by ~34% due to climate change [Zeng 51 

and Yoon, 2009]. Despite the importance of mountain systems for water supply, knowledge of 52 

their ecohydrological and biogeochemical functioning remains limited [Milly and Dunne, 2020]. 53 

Fundamental hydrologic questions remain, such as how spatially and temporally varying 54 

subsurface flow that supports evapotranspiration and streamflow modulates solute fluxes at 55 

multiple time scales. To address this question, the current study examines relationships between 56 

input (precipitation) and output (streamflow and evapotranspiration) tracer fluxes by estimating 57 

catchment-scale transit time (TTD) and evapotranspiration time (ETTD) distributions. TTDs and 58 

ETTDs are is succinct descriptors, in terms of length and velocity, of the numerous flow paths 59 

that connect streams and evapotranspiration to multiple source regions [Godsey et al., 2010; 60 

Kirchner, 2016a]. Both TTD and ETTD are helpful metrics for understanding the short- and 61 

long-term memories of subsurface storage systems.   62 

Many studies have estimated stream water TTDs using time-domain convolution,  63 

assuming that a whole watershed can be treated as a single elementary volume [McGuire and 64 

McDonnell, 2006]. In this way, a dominant period-band is assumed for input and output fluxes 65 

and storages, such that the TTD type does not change and the TTD parameters are the only 66 
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variable quantities [Birkel et al., 2012; Heidbüchel et al., 2012]. Similarly, estimating TTD by 67 

wavelet analysis of tracer time series entails a priori assumption of distribution type [Onderka 68 

and Chudoba, 2018]. A principal limitation of these approaches is the requirement of continuous 69 

observations at a uniform sampling interval for both hydrologic fluxes and stable water isotopes 70 

[Kirchner, 2016a], with some approaches also requiring an unknowable estimate of total 71 

catchment storage [Benettin et al., 2017; Harman, 2015]. These requirements are difficult to 72 

fulfill for many field studies [Berghuijs and Kirchner, 2017; Kirchner, 2016b], especially in 73 

rugged mountainous areas where access is difficult due to rugged terrain and fractured bedrock 74 

aquifers are poorly characterized. If data gaps are filled by interpolation, the effects on the 75 

estimated TTD or ETTD are rarely reported, which is problematic because interpolated values 76 

may have lower variance than observed values [Birkel et al., 2012; Feng et al., 2004; Hirsch et 77 

al., 2010; Zhang et al., 2018]. As a result, the current research seeks to develop catchment-scale 78 

TTDs and ETTDs that are resilient to data gaps in both tracer and hydrometric time series.  79 

Major obstacles to estimating ETTDs include a lack of continuous stable isotope data for 80 

xylem water and poor understanding of sources of local evapotranspiration and streamflow, 81 

which can lead to significant uncertainty [Brooks et al., 2009]. Because source water 82 

identification is difficult, most existing approaches use either numerical modeling [Botter et al., 83 

2010; van der Velde et al., 2012] or base ETTD on transport models calibrated to stream water 84 

tracer concentrations [Benettin et al., 2017; Harman, 2015]. Benettin et al. [2017] specifically 85 

reported difficulty identifying ETTD parameters in a catchment-scale study based on hydrologic 86 

fluxes and stable water isotopes in precipitation and streamflow. Accordingly, a practical 87 

approach is needed for estimation of catchment-scale ETTD in the context of discontinuous or 88 

incomplete datasets. 89 
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The current study proposes novel practical approaches to estimate catchment-scale TTD 90 

and ETTD that are moderately resistant to data gaps in tracer time series and hydrometric 91 

observations. The proposed approaches do not assume specific TTD or ETTD types, in contrast 92 

to existing approaches. Instead, multiple TTD and ETTD types are objectively evaluated for 93 

suitability to the observed long-term data. The proposed approaches are practical in the sense 94 

that they do not require input from time-consuming detailed flow and transport models. It is 95 

therefore expected that the proposed approaches will have wide applicability, especially in 96 

remote areas where many study catchments are located and where data gaps are unavoidable. At 97 

sites where environmental water samples have been analyzed for several years at irregular 98 

intervals, the proposed approaches can also be employed to estimate catchment-scale response 99 

functions. The overarching goal of this work was to leverage TTD and ETTD to improve 100 

understanding of how the subsurface environment controls hydrologic and transport behavior in 101 

a sub-humid mountain headwater catchment.   102 

 103 

2. Materials and Methods 104 

2.1. Study site 105 

The proposed approaches for estimating TTD and ETTD with discontinuous time-series data 106 

were tested at Marshall Gulch Catchment (MGC; Figure 1), a 1.55 km2 headwater catchment 107 

within the Santa Catalina Mountains Critical Zone Observatory near Tucson, Arizona, USA. The 108 

estimated average annual precipitation at MGC for 1981-2010 was ~920 mm [PRISM Climate 109 

Group, 2018], but the observed average between water years (WY) 2008 and 2017 was only 654 110 

mm. Water year n is defined as the period from July 1 of year n-1 through June 30 of year n. 111 

Surface elevations range from 2285 to 2632 m above sea level (asl) with a mean of 2428 m asl. 112 



Estimation of catchment-scale response functions through wavelet analysis 

6 | P a g e  

 

The mean topographic gradient is approximately 22°. Existing instrumentation provides 113 

spatially-distributed measurements of hydrologic and chemical fluxes (Figure 1). MGC is 114 

covered by Rocky Mountain aspen forest and woodlands (~32%), madrean upper montane 115 

conifer-oak forest and woodland (~28%) at upper elevations, and madrean pine-oak forest and 116 

woodlands (~40%) at lower elevations (GIS data obtained from NatureServe [2004]). The 117 

dominant tree species are Douglas-fir (Pseudotsuga menziesii), white fir (Abies concolor), 118 

ponderosa pine (Pinus ponderosa), aspen (Populus tremuloides) and bigtooth maple (Acer 119 

gradidentatum). Bedrock is mostly granite at upper elevations and micaceous schist at lower 120 

elevations [Dickinson et al., 2002]. The prevailing soil type is sandy loam [Holleran, 2013] from 121 

0 m to 1.5 m deep [Pelletier and Rasmussen, 2009]. Soils overlying schist are generally deeper 122 

and richer in clay than soils overlying granite [Heidbüchel et al., 2013; Holleran, 2013].  123 

2.2. Data sources 124 

2.2.1. Hydrologic fluxes 125 

We used MGC-scale daily precipitation (P), streamflow (Q) and actual evapotranspiration (AET) 126 

data between WY 2008 and 2017, (Figure 2A and B). Precipitation records from eight 127 

measurement sites (Fig. 1A) were combined into a single time-series using Thiessen polygon-128 

derived weights [Dwivedi et al., 2019b]. Streamflow was measured at 30-minute intervals at the 129 

MG-Weir site (Figure 1) using a pressure transducer (U20-001-01; Onset) with maximum error 130 

of 0.62 kPa, accuracy of 0.02 kPa, and a known stage-discharge relationship [Heidbüchel et al., 131 

2012]. AET was based on evapotranspiration (ET) measured at the nearby Mt. Bigelow US-MtB 132 

eddy covariance tower (see Knowles et al. [2020] for details). To obtain the catchment-scale 133 

daily AET time series, the observed ET time series was corrected using precipitation, 134 
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streamflow, and soil-water storage data and a catchment-scale water balance method (Figure 2B) 135 

[Dwivedi et al., 2019b; Troch et al., 2017].  136 

2.2.2. Stable water isotopes 137 

2.2.2.1. Precipitation  138 

Bulk precipitation samples were collected at the Schist, Fern Valley, and Granite bulk samplers, 139 

the Mt. Lemmon and MG-Weir ISCO autosamplers, and the Mt. Bigelow station (Figure 1A; for 140 

site details, see also Dwivedi et al. [2019b]). Samples from the MGC and from the Mt. Lemmon 141 

sites were analyzed using a DLT-100 laser spectrometer, Los Gatos Research, Inc., model # 908-142 

171 0008 [Lyon et al., 2009], with an analytical precision (1σ) of ±0.37‰ and ±0.12‰ for δ2H 143 

and δ18O, respectively. Samples from Mt. Bigelow were analyzed on a L2120-I cavity ring-down 144 

spectrometer, Picarro, Inc., with analytical precision of ±0.20‰ for δ18O and ±0.7‰ for δ2H  145 

[Johnson et al., 2017]. Measurements were standardized relative to international standards 146 

VSMOW and SLAP [Coplen, 1993].  147 

Data were averaged arithmetically [Heidbüchel et al., 2012] to yield a catchment-scale 148 

time series (Figure 2C; Section S1.1). Dataset intervals between WY 2008 and WY 2012 149 

(reflecting many rainless days) were: minimum 1 d, mean 4 d, median 1 d, and maximum 78 d. 150 

For WYs 2015 and 2016, the dataset intervals were minimum 1 d, mean 15 d, median of 4 d, and 151 

maximum 280 d. For WY 2015 alone, the dataset had a minimum interval size of 1 d, a mean 152 

interval size of 8 d, a median interval size of 4 d, and a maximum interval size of 79 d. 153 

2.2.2.2. Stream water 154 

Samples were collected at the MG-Weir using an autosampler taking daily samples (including 155 

sub-daily samples during large runoff events) prior to 2012 and thereafter by grab sampling. 156 

Sub-daily samples were volume-weighted to daily resolution (Figure 2C). The stream is 157 
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ephemeral; hence, the isotope time series has irregular intervals: minimum 1 d, mean 2 d, median 158 

1 d, and maximum 50 d between WY 2008 and WY 2012.   159 

2.2.2.3. Xylem water 160 

Xylem water stable isotope data were collected, mostly bi-weekly, between July 16, 2014 and 161 

October 1, 2016 from Douglas-fir trees at Mt. Bigelow, and were analyzed using the L2130-I 162 

cavity ring-down spectrometer [Hamann, 2018]. For WY 2015, the dataset intervals were: 163 

minimum 13 d, mean 15 d, median 14 d, and maximum 35 d (Figure 2C). 164 

2.3. Estimation of catchment-scale TTD and ETTD functions  165 

Whereas spectral analysis is the preferred method for differentiating between TTD types 166 

[McGuire and McDonnell, 2006; Onderka and Chudoba, 2018], it can only be applied to 167 

stationary time series data [Cottis et al., 2016]. Therefore, we employed the wavelet analysis 168 

method that is suited to both stationary and non-stationary time series data [Farge, 1992; 169 

Onderka and Chudoba, 2018; Torrence and Compo, 1998]. 170 

Following McGuire and McDonnell [2006], for inflow and outflow tracer fluxes that are 171 

related by a time-varying TTD, ℎ(𝑡, 𝜏): 172 

𝑄(𝑡)𝑐𝑄(𝑡) = ∫ ℎ(𝑡, 𝜏)𝑤(𝑡 − 𝜏)𝑐𝐼(𝑡 − 𝜏)𝑑𝜏
∞

0
                            (1) 173 

where Q(t) is the discharge flux at any time t, cI(t) is the input tracer parameter at time t, cQ(t) is 174 

the discharge tracer concentration at time t, and w(t-τ) is the “weighting term” [McGuire and 175 

McDonnell, 2006], considered as the amount of precipitation that contributes to outflow Q. For 176 

estimating the “weighting-term” i.e., the fraction of precipitation that contributes to streamflow 177 

or AET, two time-varying partitioning functions FP1 (t) and FP2 (t) are used. For streamflow, 178 

Equation (1) becomes: 179 

𝑄(𝑡)𝑐𝑄(𝑡) = ∫ ℎ(𝑡, 𝜏)(𝐹𝑃1(𝑡 − 𝜏) 𝑃(𝑡 − 𝜏))𝑐𝑃(𝑡 − 𝜏)𝑑𝜏
∞

0
                  (2) 180 
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where P(t-τ) is the precipitation flux at time t-τ and 𝐹𝑃1(𝑡 − 𝜏) is the partitioning function for 181 

precipitation that contributes to streamflow at time t-τ. Representing the tracer flux (the product 182 

of hydrologic flux and corresponding tracer concentration), as m, Equation (2) can be expressed 183 

as: 184 

𝑚𝑄(𝑡) = ∫ ℎ(𝑡, 𝜏)𝑚𝑃(𝑡 − 𝜏)𝑑𝜏
∞

0
                               (3) 185 

Power spectra (�̂�) of tracer flux in streamflow (or AET) and precipitation are estimated as 186 

functions of time (t) and period (𝜆). Letting �̂�𝑃(𝑡, 𝜆) and �̂�𝑄(𝑡, 𝜆) be the time- and period-187 

dependent power spectra of  𝑚𝑃(𝑡) and 𝑚𝑄(𝑡), respectively, then the time-variant TTD can be 188 

estimated using Equation (4) by fitting the analytical solutions for various types of TTDs (or 189 

ETTDs), seeking the  best match to the ratio of power spectra between inflow and outflow  190 

[Godsey et al., 2010; Kirchner et al., 2001]: 191 

              |�̂�𝑇𝑇𝐷(𝑡, 𝜆)|2 =
�̂�𝑄(𝑡,𝜆)

�̂�𝑃(𝑡,𝜆)
                       (4) 192 

Similarly, for ETTD: 193 

              |�̂�𝐸𝑇𝑇𝐷(𝑡, 𝜆)|2 =
�̂�𝐴𝐸𝑇(𝑡,𝜆)

�̂�𝑃(𝑡,𝜆)
                    (5) 194 

For estimating the time-averaged TTD (or ETTD), all available power spectra are combined into 195 

global power spectra for inflow and outflow [Torrence and Compo, 1998] by taking their 196 

weighted mean (weighting by degrees of freedom) along the time axis, following the approach of 197 

Kirchner and Neal [2013]. Letting 𝜑𝑃(𝜆) and 𝜑𝑄(𝜆) be the time-averaged power spectra of 198 

tracer flux in inflow and outflow respectively, then the final time-averaged 𝐻𝑇𝑇𝐷(𝜆) or 𝐻𝐸𝑇𝑇𝐷(𝜆) 199 

are estimated using Equations (6) and (7): 200 

                |𝐻𝑇𝑇𝐷(𝜆)|2 =
𝜑𝑄(𝜆)

𝜑𝑃(𝜆)
                     (6) 201 

                |𝐻𝐸𝑇𝑇𝐷(𝜆)|2 =
𝜑𝐴𝐸𝑇(𝜆)

𝜑𝑃(𝜆)
                (7) 202 
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In this study, we tested two approaches for estimating time-averaged TTD. The first [Godsey et 203 

al., 2010] uses power spectra of tracer concentration time series in inflow and outflow, while the 204 

second is based on tracer flux rather than concentration.  205 

2.3.1. Method 1 (existing method), tracer concentrations  206 

 207 

Previous research suggested that the TTD relating stream flow and precipitation can be estimated 208 

by: (i) determining the power spectra as a function of wavelength or period (𝜆) for the 209 

concentration time series of a conservative tracer, (ii) taking the ratio of the power spectra, and 210 

then (iii) selecting the TTD function whose power spectrum |𝐻(𝜆)|2 or the frequency content of 211 

a signal [Ljung, 2007], best fits the observed spectrum ratio (Equation 8) [Godsey et al., 2010; 212 

Kirchner, 2016a; Kirchner et al., 2001]: 213 

            |𝐻𝑇𝑇𝐷(𝜆)|2 =
𝜑𝐶𝑄

(𝜆)

𝜑𝐶𝑃
(𝜆)

                (8) 214 

where 𝜑𝐶𝑄
(𝜆) and 𝜑𝐶𝑃

(𝜆) are the global power spectra of a conservative tracer in streamflow 215 

and precipitation and |𝐻𝑇𝑇𝐷(𝜆)|2 is the power spectrum of the TTD. Note that Method 1 does not 216 

yield an ETTD. 217 

2.3.2. Method 2 (proposed method), tracer fluxes  218 

An alternative approach allows for variable streamflow and subsurface storages (see Figure 2B 219 

and Figure 3 for the catchment-scale soil-water storage). Following previous approaches that use 220 

the convolution integral method in the time domain for TTD estimation [Botter et al., 2010; 221 

2011; Hrachowitz et al., 2010; Hrachowitz et al., 2011; Hrachowitz et al., 2009], calculations are 222 

based on tracer fluxes rather than tracer concentrations. In equations (6) and (7), precipitation 223 

that contributes to Q or AET is estimated by the time-varying flow-partitioning functions FP1(t) 224 

and FP2(t): 225 
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               𝐹𝑃1(𝑡) =
𝑄𝑙𝑜𝑛𝑔−𝑡𝑒𝑟𝑚+𝑄(𝑡)

𝑃𝑙𝑜𝑛𝑔−𝑡𝑒𝑟𝑚+𝑃(𝑡)
                                                                               (9) 226 

               𝐹𝑃2(𝑡) =
𝐴𝐸𝑇𝑙𝑜𝑛𝑔−𝑡𝑒𝑟𝑚+𝐴𝐸𝑇(𝑡)

𝑃𝑙𝑜𝑛𝑔−𝑡𝑒𝑟𝑚+𝑃(𝑡)
                                                                       (10) 227 

In Equations (9) and (10), 𝑃𝑙𝑜𝑛𝑔−𝑡𝑒𝑟𝑚, 𝑄𝑙𝑜𝑛𝑔−𝑡𝑒𝑟𝑚, and 𝐴𝐸𝑇𝑙𝑜𝑛𝑔−𝑡𝑒𝑟𝑚 are the long-term annual 228 

averages of precipitation, streamflow, and AET, whereas P(t), Q(t) and AET(t) are precipitation, 229 

streamflow and AET for any daily time step t. The time series of FP1(t) and FP2(t) for the whole 230 

period of record at MGC are shown in Figure 3. 231 

The partitioning functions FP1(t) and FP2(t) in Method 2 are similar to the partitioning 232 

coefficients of Botter et al. [2010; 2011] and the “partial partition function” of Harman [2015] 233 

with a few differences. The partitioning coefficient in the Botter et al. [2010; 2011] approach is 234 

defined in terms of an infinite integral. Thus, for a particular flux, the partitioning coefficient 235 

depends on the entire hydrologic history of a water parcel from the moment it enters the 236 

catchment until discharge. The partitioning coefficient for any outflux is obtained using 237 

parameters from a numerical hydrologic model. The “partial partition function” of Harman 238 

[2015] represents a conditional probability for a water parcel to exit the catchment either as 239 

streamflow or as AET after entering the catchment as precipitation. The function is derived by 240 

model calibration to a stream water chloride time series.  241 

In this work, FP1(t) and FP2(t) are estimated using observations, the time-varying runoff 242 

coefficient (Q/P) and the evaporative index (AET/P). To account for the hydrologic history 243 

before the study period, the long-term annual averages of inflow and outflow are used to estimate 244 

the time-varying FP1(t) and FP2(t). Such partitioning functions remain ≤ 1, consistent with the 245 

axioms of probability [Devore, 2008]. Thus, the probability that a water parcel will exit the 246 

catchment can be estimated without performing data-intensive numerical modeling. Moreover, as 247 
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the sum of the annual AET and Q is not always P (see Figure 3B), any interactions between P, 248 

AET, Q, and soil and bedrock storages are also implicitly considered.  249 

The present work estimates time-averaged TTDs or ETTDs, referred to as “marginal 250 

distributions” in Benettin et al. [2017] and “master TTDs” in Heidbüchel et al. [2012] and 251 

Onderka and Chudoba [2018]. Method 2 uses global power spectra for inflow and outflow rather 252 

than data collected on a precipitation event basis, as is customary when using the convolution 253 

integral method [Harman, 2015; Heidbüchel et al., 2012]. The global power spectrum of a time 254 

series serves as an unbiased estimate of its true power spectrum [Percival, 1995; Torrence and 255 

Compo, 1998]. Using the amplitude ratio of sinusoidal tracer-concentration cycles can lead to 256 

aggregation biases in mean transit times (mTT) [Kirchner, 2016b], and large differences between 257 

estimated and true mTTs for a spatially heterogeneous landscape. Aggregation biases are 258 

reduced for hypothetical two-box non-stationary models (Figure 5d in Kirchner [2016b]). Since 259 

both Method 1 and Method 2 fit sinusoidal cycles, albeit with various periods, to the observed 260 

tracer fluxes in precipitation and streamflow, it is expected that the mTT from the global power 261 

spectrum ratio, which approaches the average behavior of a non-stationary system [Kirchner, 262 

2016b], will be more representative of true catchment behavior than seasonal mTTs. Therefore, 263 

we propose the use of time-averaged response functions as a basis for practical examination of 264 

catchment hydrologic and transport behavior.  265 

2.3.3. Spectral time series analysis  266 

For Method 1 and new Method 2, Foster’s [Foster, 1996] Weighted Wavelet Transform (WWT) 267 

method, adapted by Kirchner and Neal [2013], was used for estimating time- and period-268 

dependent power spectra of δ18O time series data as fitted sinusoidal cycles. Zhang et al. [2018] 269 

recommended the WWT method for analysis of time series data with irregular time steps.  270 
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To estimate the TTD using Method 1, power spectra were estimated in input and output 271 

δ18O time series data. Given the irregularity of data intervals, we estimated Nyquist frequencies 272 

using the median time intervals [Godsey et al., 2010], which was 1 d for both precipitation and 273 

stream water data; however, the fundamental frequency was based on the full analysis period, 274 

i.e., WY 2008 through WY 2012. For ETTD estimation, precipitation and xylem water time 275 

series data for WY 2015 only were utilized. The Nyquist frequency was based on the median 276 

time interval, 14 d, for δ18O in xylem waters and the fundamental frequency was based on the 277 

full analysis period, WY 2015. For both TTD and ETTD, the limiting frequency was set to twice 278 

the fundamental frequency [Godsey et al., 2010].  279 

For Method 2, daily precipitation fluxes were either used as observed or combined into 7-280 

d brackets when precipitation was irregularly distributed. Data from Mt. Bigelow were available 281 

as 14-d brackets. Daily streamflow and AET values were used to estimate tracer fluxes in these 282 

outflows. The power spectra of tracer concentrations or fluxes were computed at even multiples 283 

of the fundamental frequency up to the Nyquist frequency for both methods. Although δ18O 284 

values are strictly not tracer concentrations, the mathematics for TTD estimation are the same for 285 

δ18O values as for conservative tracer concentrations [Kirchner, 2016a]. As a result, we use the 286 

terms “tracer concentration” (Method 1) and “tracer flux” (Method 2) to describe the use of δ18O 287 

as a tracer for TTD or ETTD estimation.  288 

2.3.4. Data suitability assessment  289 

To assess the applicability of the WWT method to irregular time series data, we followed Zhang 290 

et al. [2018] in generating self-similar, normally-distributed white, pink, and red noises with no 291 

data gaps. These data were generated at a daily time scale between WY 2008 and WY 2012 and 292 

for WY 2015 (solid curves in Figure 4). The expected spectral slopes (βe) between power spectra 293 
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and period in log-log space for white, pink, and red noises are 0, 1, and 2, respectively [Witt and 294 

Malamud, 2013]. These are referred to as regular time series data. Synthetic irregular time series 295 

data were also generated by deleting data from the regular time series in intervals for which data 296 

were not available for precipitation, stream water, or xylem water (points in Figure 4). The 297 

WWT method was applied to each regular and irregular time series, and the results were used for 298 

correlation analysis and prediction of spectral slopes (βp) and standard errors. Following  299 

Kleinbaum and Kupper [1978], a t-statistic was used for statistical comparison (at the 95% 300 

confidence interval) of the predicted spectral slopes of regular and irregular time series data. As 301 

found by Zhang et al. [2018], the spectral slopes of synthetic noises were far from their expected 302 

values when the Kirchner [2005] filter was applied during benchmarking tests, but less so when 303 

the filter was not used (Table S1). Therefore, we did not apply the Kirchner [2005] filter in this 304 

study. 305 

2.3.5. Optimization of model parameters using the Downhill Simplex method 306 

The Downhill Simplex method was used for estimating the optimal model parameters for various 307 

TTD and ETTD types (for more details, see section S2). The Downhill Simplex method is a 308 

derivative-free local search method for estimating optimum model parameters using the model 309 

outputs closest to observations following pre-selected model performance criteria [Gupta, 2016; 310 

Nelder and Mead, 1965] within an allowed parameter space. The modified Kling Gupta 311 

efficiency or KGE’ [Gupta et al., 2009; Kling et al., 2012] is used as the criterion of best TTD fit 312 

[Heidbüchel et al., 2012]: 313 

              𝐾𝐺𝐸′ = √(
𝐶𝑜𝑣𝑚,𝑜

𝜎𝑚𝜎𝑜
− 1)2 + (

𝜎𝑚/𝜇𝑚

𝜎𝑜/𝜇𝑜
− 1)2 + (

𝜇𝑚

𝜇𝑜
− 1)2         (11) 314 

where 𝐶𝑜𝑣𝑚,𝑜 is the covariance between the modeled and observed time series, 𝜎𝑚and 𝜎𝑜 315 

represent one standard deviation, and 𝜇𝑚 and 𝜇𝑜 are the means of the modeled and observed time 316 
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series, respectively. A KGE’ value of zero indicates a perfect fit, and a value of ∞ indicates no fit. 317 

KGE’ criteria were estimated in a log-transformed space [Godsey et al., 2010]. A criterion 318 

response surface, which is the locus of all values of  KGE’ for a set of model parameters in the 319 

plausible parameter space was constructed for each TTD or ETTD [Gupta, 2016].  320 

The types of TTDs or ETTDs that we considered included piston flow, exponential, 321 

gamma, one-dimensional fixed path advection-dispersion (ADE-1x), and multiple-path 322 

advection-dispersion (ADE-nx) models. Mathematical expressions for the models and their 323 

power spectra are given in Section S2. For the piston flow and exponential TTD (or ETTD) 324 

models, the mTT (mTT; τo) was the only fitted parameter. For the gamma model, the fitted 325 

parameters were shape (α) and mTT (τo; note that the scale parameter β for a gamma distribution 326 

is τo/α). For the ADE-1x and ADE-nx models, the average Peclet number (Pe), i.e., the ratio of 327 

advective to dispersive transport rates, and mTT were the fitted parameters. In this work, we 328 

considered the following model parameter ranges: (i) 0.1 to 5 years (5 years is the maximum 329 

applicable range when using stable isotopes as tracers) for mTT [Godsey et al., 2010; McGuire 330 

and McDonnell, 2006; Stewart et al., 2010], (ii) 0.1 to 10 for the gamma shape parameter (α), 331 

and 0.1 to 100 for the Peclet number (Pe), following evaluated in ranges considered applicable 332 

for solutes at catchment scale [Kirchner and Neal, 2013; Kirchner et al., 2001]. 333 

 334 

3. Results 335 

3.1. Evaluation of the irregular time series 336 

3.1.1. Long time series; Nyquist frequency based on median daily sampling interval  337 

The calculated spectral slopes (βc) of the regular time series data were very close to their 338 

expected (βe) values for all noise types when the Nyquist frequency was based on the median 339 
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daily time step (“regular” rows in Table 1 A and B). However, for irregular data that mimicked 340 

actual data gaps (Figure 2C), the correlation coefficient between spectral power and period was 341 

reduced relative to the regular time series data. Further, the βc for each noise type was lower than 342 

βe and the difference between βe and βc depended on the noise type (“irregular” rows in Table 1). 343 

For example, using a pink noise (βe = 1) time series based on precipitation δ18O, the values of R2 344 

and |βe – βc|, i.e., the absolute values of the difference between βe and βc, were 0.92 and 0.16 for 345 

the irregular time series, and 0.96 and 0.03 for the regular time series, respectively. Using red 346 

noise data (βe = 2) based on precipitation δ18O, R2 and |βe – βc| increased to 0.97 and 0.50 for the 347 

irregular time series and 0.99 and 0.03 for the regular time series. Moreover, the calculated slope 348 

difference between the irregular and regular time series data for the same noise type depended on 349 

the degree of irregularity in the time series data and the noise type. For white and red noises, 350 

|βc,regular – βc,irregular| was lower for stream water than for precipitation, but the opposite was true 351 

for pink noise. Overall, |βc,irregular – βc,regular| ≤ 0.5. 352 

3.1.2. Short time series; Nyquist frequency based on median bi-weekly sampling interval  353 

Agreement between the expected and calculated slopes was generally poorer in these cases 354 

(Tables 1C and D), especially for the regular time series data. For aggregated data, e.g., 355 

precipitation δ18O, |βe – βc| values based on regular time series data were 0.21, 0.25, and 0.59 for 356 

white, pink, and red noises, respectively. For instantaneous samples, e.g., xylem water δ18O, |βe – 357 

βc| values based on regular time series data were 0.17, 0.44, and 0.02 for white, pink, and red 358 

noises, respectively.  359 

3.1.3. Statistical comparison of calculated spectral slopes 360 

For the daily median sampling intervals, the t-values were generally greater than the critical 361 

value, while for the bi-weekly median sampling intervals, the t-values were generally less than 362 
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the critical value. In other words, the null hypothesis (that the calculated slopes of regular and 363 

irregular time series were statistically similar) was rejected with 95% confidence for all but one 364 

case with daily median sampling intervals, but could not be rejected for the cases with 14-d 365 

median sampling intervals. The effect of data gaps can therefore be evaluated for most of the 366 

datasets with 1-d median intervals, but not for the datasets with 14-d median intervals.   367 

3.2. TTD estimation using δ18O time series data with gaps; modeled tracer outflow  368 

3.2.1. Estimated TTD and TTD parameters using Method 1 and Method 2 369 

Both Method 1 and Method 2 indicated composite TTDs (Figure 5A1 and A2). For periods 370 

above 0.04 years with Method 1 and above 0.1 years with Method 2, the Gamma TTD type more 371 

closely matched observations within the permissible parameter space (Table 2; Figure 5A1; 372 

Figure 5A2). For Method 2, the ADE-nx TTD performed as well as the Gamma TTD type in 373 

terms of the KGE’ criterion, but the estimated Pe parameter was at the edge of the allowable 374 

range, i.e., 0.1 to 10. The simpler Gamma distribution (Equation S2.5) was therefore preferred 375 

for periods above 0.1 years. For the Gamma TTDs, the mTTs were 1.21 years for Method 1, and 376 

0.82 years for Method 2 (Table 2), and both mTTs were within the specified parameter range. 377 

The Gamma shape parameters (α) were 0.40 using Method 1 and 0.52 using Method 2.  378 

For periods below 0.04 years with Method 1 and below 0.1 years with Method 2, both 379 

methods suggested piston flow power spectra (horizontal solid red lines in Figures 5A1 and A2). 380 

Therefore, we combined piston flow power spectra at lower periods with Gamma power spectra 381 

at higher periods using Equation S2.18. The dashed red lines in Figures 5A1 and 5A2 correspond 382 

to 5% piston flow and 95% Gamma TTD for Method 1 and 10% piston flow and 90% Gamma 383 

TTD for Method 2; these combinations provided acceptable matches to the observations. KGE’ 384 

values were lower for the composite TTD than the Gamma TTD for the whole period range and 385 
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for both methods (Table 2). Both methods produced smooth response surfaces with the best-fit 386 

Gamma TTD type, which indicates robust model optimization (Figures 5B1 and 5B2). When the 387 

optimization models were run three times for each TTD type, starting from different initial 388 

model parameters, the results for each run were not significantly different (Figures 5B1 and B2; 389 

Tables S2-S4). Both δ18O and δ2H produced similar results for each TTD type (Table S5). 390 

A sensitivity analysis that considered the influence of spatio-temporal variability in 391 

precipitation and temporal variability in stream water on the estimated TTD type and TTD 392 

parameters for both methods confirmed that the Gamma TTD type most closely matched the 393 

observed power spectrum within the permissible parameter space (see Section S3). Method 2 394 

was less sensitive to spatial and temporal variabilities than Method 1 (Section S3; Tables S6-S8). 395 

This was corroborated by the coefficients of variation of the mean age and α parameters, which 396 

were 13% and 3%, respectively, for Method 1 (Table S7) versus 4% and 0.2% for Method 2 397 

(Table S8).  398 

3.2.2. Modeled tracer outflow  399 

Comparison of modeled tracer concentrations using the composite TTDs demonstrates that 400 

Method 1 did not accurately reproduce the observed concentrations. In contrast, tracer fluxes 401 

modeled with Method 2 were within their observed ranges (Figure 5C1 vs. C2). Recall that 402 

Method 1 uses tracer concentrations (shown as mean ±σ in the figure) whereas Method 2 uses 403 

tracer fluxes. We attribute the discrepancy between observed and modeled δ18O in stream water 404 

(Fig. 5C1) to the lack of resolution as a result of aggregation for δ18O in precipitation, in 405 

particular those precipitation δ18O values that are associated with quick-flow responses, which 406 

may have had a significant impact on Method 1 modeling (see Section S4). With Method 2 and 407 

using the composite TTDs, the modeled tracer fluxes remained within the range of observed 408 
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values, even beyond WY2012, except for large runoff events that were underestimated. The 409 

attenuation of large events may result from the averaging process inherent in the calculation of 410 

power spectra. The underestimated annual flux for WY 2014 may represent an artifact of low 411 

data density during that time. Nonetheless, in a general sense, the estimated composite TTDs 412 

produced outflow tracer fluxes that matched observations both within and beyond the TTD 413 

estimation period.   414 

3.3. ETTD estimation using a δ18O time series with data gaps using Method 2 415 

3.3.1. Catchment-scale ETTD 416 

Gamma and ADE-nx ETTD types performed equally well, although the slope estimation 417 

statistics were poorer for the limited ETTD dataset. Between the Gamma and ADE-nx ETTDs, 418 

the KGE’ values for the ADE-nx and Gamma ETTDs were approximately similar, but the 419 

second parameter, Pe, for the ADE-nx ETTD (Pe = 100) was at the edge of the permissible 420 

parameter space, i.e., between 0.1 and 100 (Figure 6A). A composite ETTD type was 421 

investigated because the power spectrum ratios appeared to be horizontal up to a period of 0.1 422 

years. However, a Gamma ETTD for all periods performed better (KGE’ = 0.45) than composite 423 

ETTDs, e.g., piston flow plus Gamma for periods ≤ 0.1 years and Gamma for periods > 0.1 years 424 

(KGE’ = 1.17). 425 

The smooth response surface of the Gamma ETTD (Figure 6B; Figure S10) indicated that 426 

the model parameters were robust. Three model runs using different initial model parameters 427 

resulted in identical optimal model parameters (Tables S9-S11). When spatial and temporal 428 

variability in precipitation and temporal variability in xylem water were considered, a Gamma 429 

ETTD performed better than the ADE-nx ETTD types for some scenarios, whereas an ADE-nx 430 

ETTD performed better in others (section S5 and Table S13). Note that the stable water isotope 431 
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data for precipitation were much sparser during the ETTD estimation period than between WY 432 

2008 and WY 2012. To err on the conservative side, the current analysis used the largest 433 

standard deviation of all the temporal standard deviations for precipitation δ18O between WY 434 

2008 and WY 2012. For all scenarios, the estimated second parameter for the ADE-nx ETTD 435 

was at the edge of the permissible parameter space (Table S15). Therefore, a Gamma ETTD type 436 

was selected as a more appropriate model. The estimated mTT and α parameters for the Gamma 437 

ETTD were 0.65 years (σ = 0.05 years; coefficient of variation = 7%; Table S14) and 1.32 438 

(unitless) (σ = 0.03 (unitless); coefficient of variation = 2 %; Table S15), respectively.  439 

The estimated ETTD and ETTD parameters suggested minimal contribution of 440 

subsurface waters with residence time beyond the range of applicability of stable water isotope 441 

tracers. For example, the contribution of the subsurface waters with residence time beyond the 5 442 

years range of applicability of stable water isotope tracers, was 0.020 ± 0.007% (Figure 6D). 443 

3.3.2. Modeled tracer fluxes for the ETTD 444 

Comparison of the observed and modeled AET tracer fluxes shows that the modeled fluxes were 445 

within the range of observations (Figure 6C). The sparseness as well as a larger temporal 446 

aggregation of the precipitation isotope data for the estimation period had a significant impact on 447 

estimated tracer fluxes in the obtained AET. Beyond the estimation period (WY 2015), the data 448 

were even sparser, leading to artifacts in the modeled tracer fluxes. However, the Gamma ETTD 449 

generally modeled outflow tracer fluxes that matched observations both within and beyond the 450 

ETTD estimation period.   451 
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4. Discussion 452 

4.1. A practical approach for assessment of acceptable data gaps  453 

As shown in Section 3.1, gaps in irregular time series data interacted to affect spectral analysis of 454 

various synthetic self-similar noise types. Thus, the proposed Method 2 can be applied to 455 

estimate TTD and ETTD if the power-spectrum slopes of the regular and irregular time series 456 

compare satisfactorily. Following [Zhang et al., 2018], the comparison is considered satisfactory 457 

if the slopes can be distinguished statistically for a selected confidence interval, and if they differ 458 

by ≤ 0.5. When these criteria are satisfied, Method 2 can provide an adequate estimate of the 459 

spectral slope of real-world time series data with gaps. We compared slopes of irregular and 460 

regular time series (rather than with expected slopes) because the WWT method produces slopes 461 

that differ somewhat from the expected slopes, even for regular (ideal) time series (Table S1). 462 

4.2. The estimated TTD at MGC 463 

The composite TTD at MGC contributes to an improved understanding of the combined effects 464 

of diverse subsurface flow paths and storages that support streamflow. Previously, Heidbüchel et 465 

al. [2012] used stable water isotopes in precipitation and streamflow between 2007 and 2010, 466 

along with the Downhill Simplex method and the KGE’ criterion, to represent subsurface 467 

processes at MGC with an exponential TTD, and determined a mTT of ~1.4 years. However, the 468 

exponential TTD is limited to representing the subsurface as a well-mixed linear reservoir 469 

[Godsey et al., 2010; McGuire et al., 2005; van der Velde et al., 2014]. Using the same tracers, 470 

the current study determined that a combination of piston flow and Gamma TTDs yielded a mTT 471 

of 0.82 years at MGC (Figure 7A and B). Whereas the Piston flow TTD represents quick 472 

responses from short-term storages such as overland and near surface flow, the Gamma TTD 473 

represents a combination of quick responses from short-term storages and long-term memory of 474 
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the subsurface reservoir [Kirchner et al., 2001]. This framework is supported by recent work at 475 

MGC that used multiple tracers and end-member mixing analysis to show that near-surface flows 476 

and soil water storages are the dominant contributors to streamflow [Dwivedi et al., 2019a], and 477 

thus that an incompletely mixed reservoir provides a more realistic model of the subsurface 478 

water storage than a well-mixed reservoir [Sprenger and Allen, 2020; Sprenger et al., 2016; 479 

Sprenger et al., 2018; Zhao et al., 2013].  480 

The estimated TTD at MGC suggests some contribution (about 3%) of subsurface waters 481 

with residence times greater than 5 years, beyond the applicability range of stable water isotope 482 

tracers (Figure 7B). Longer-term tracers would be required to model slower flow paths. In a 483 

study addressing a similar situation, Stewart et al. [2010] suggested including 3H along with 484 

stable water isotope tracers for revealing “hidden streamflow” [Stewart et al., 2012]. Using 3H as 485 

a tracer, Dwivedi et al. [2019a] reported that some streamflow at MGC is supported by deep 486 

groundwater with mean residence times up to 16 years. Hence, the current study confirms that 487 

frequency-domain rather than time-domain observations may work better for differentiating TTD 488 

types. We attribute differences between the current and previous results at MGC to differences in 489 

the period of record and/or to our use of weighted wavelet analysis instead of the time-domain 490 

approach.  491 

4.3. New insight into vegetation source waters 492 

The ETTD emerging from this study was less statistically robust than the TTD, as indicated by 493 

scattered results for the power-spectrum slopes (section 3.2.2 and 3.2.3). However, the calculated 494 

ETTD confirmed that the water source for vegetation includes both short-term flow and storage, 495 

as well as longer-term storage in deep soil and fractured bedrock, especially by vegetation with 496 

tap roots [Dwivedi et al., 2019b; Oliver and Ryker, 1990; Wright, 2001]. A more detailed 497 
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understanding of the relationships between vegetation, water and streamflow could potentially be 498 

obtained by using a more robust ETTD, for which a longer, more complete dataset of xylem 499 

isotopes would be required. 500 

Although the TTD and the ETTD derived here were both characterized by gamma 501 

distributions, the shape parameters differed (Figures 7B, 7C). The TTD shape parameter was less 502 

than one, indicating a long tail [Godsey et al., 2010], whereas the ETTD shape parameter was 503 

greater than one, indicating a shorter ETTD tail. This suggests that vegetation at MGC has less 504 

access than stream water to groundwater of long residence time, which exemplifies a “good 505 

common sense” [Klemes, 1986] understanding of plant-accessible subsurface water. 506 

Stable water isotopes are useful for identifying vegetation source water at MGC, 507 

consistent with studies elsewhere [Bowling et al., 2017; Dawson and Ehleringer, 1991; Dawson 508 

and Simonin, 2011; Dwivedi et al., 2019b; Hartsough et al., 2008; Jackson et al., 1999; Li et al., 509 

2007; Meinzer et al., 1999; Meißner et al., 2012; Moreira et al., 2000; Sprenger et al., 2016; 510 

Sprenger et al., 2018; Stratton and Meinzer, 2000]. However, we acknowledge potential 511 

limitations of the isotope approach including a lack of distinctive isotopic signatures for all 512 

source waters, incomplete understanding of fractionation processes during plant water uptake, 513 

the spatial and temporal heterogeneity of natural systems, inconsistent methodologies for 514 

collecting and analyzing sap water and subsurface water storages, and differing subsurface water 515 

use (ecohydrological niches) among various vegetation types, across broad climatic gradients, 516 

and within single catchments [Allen et al., 2018; Lin and Sternberg, 1993; Penna et al., 2018; 517 

Silvertown et al., 2015; Vargas et al., 2017]. Consequently, clear research objectives, 518 

consideration of the scale of analysis, and careful evaluation of local vegetation characteristics 519 

are advised when using Method 2. 520 



Estimation of catchment-scale response functions through wavelet analysis 

24 | P a g e  

 

5. Conclusions 521 

The modified weighted wavelet transform method presented by the current study was useful for 522 

estimating catchment-scale TTDs and ETTDs from realistic tracer and hydrologic flux time 523 

series datasets with gaps. Further, it is practical because it requires no intensive computation of 524 

flow and transport models, exploits commonly available data in hydrologic inflows and outflows, 525 

and can be tested for resistance to data gaps. We specifically recommend application of the 526 

proposed method in situations when the power-spectrum slopes of regular (no gaps) and irregular 527 

(gaps matching those of the dataset) synthetic time series can be statistically distinguished for a 528 

selected confidence interval, and when they differ by ≤ 0.5.  529 

The relationship between streamflow and soil water storage at the Marshall Gulch, 530 

Arizona, USA catchment (MGC) was best described by a combination of Piston flow and 531 

Gamma TTDs at short periods (below 0.1 years) and a Gamma TTD at longer periods. Overall, 532 

the mTT was 0.8 years and the scale parameter was 0.5 (unitless). The TTD indicated small 533 

contributions of subsurface water with a residence time greater than 5 years. Stable water 534 

isotopes in precipitation and xylem water supported a Gamma ETTD, which is useful for tracing 535 

principal vegetation source waters at MGC. The proposed method sheds light on how tracer 536 

input fluxes that vary in space and time are modulated by subsurface flow paths of different 537 

length and transit time, and how such fluxes support evapotranspiration and streamflow at 538 

multiple time scales.   539 
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List of Figures and Tables: 750 

 751 

Figure 1. Instrumentation at the Marshall Gulch Catchment (MGC; the catchment boundary is 752 

shown in green), Santa Catalina Mountains, Arizona, USA. The digital elevation model is from 753 

U.S. Geological Survey [2018]. Inset shows the regional location of the field site.   754 

 755 

 756 

Figure 2. (A) Time series of catchment-scale precipitation (left axis; blue bars) and streamflow 757 

(right axis; purple line), (B) Actual ET (AET; left axis; red line) and soil water column height 758 

(SWCH; right axis; green line), and (C) δ18O in catchment-scale precipitation (blue points), 759 

stream water (purple), and xylem water (green squares). Note the maximum values in (A) are 760 

152 mm/day (precipitation) and 63.5 mm/day (streamflow), but the plotting axes are limited to 761 

aid visualization. 762 

 763 

 764 

Figure 3. (A) Conceptual model of input and output hydrological fluxes (modified from Dwivedi 765 

et al. [2019a]) and (B) temporal patterns of runoff ratio obtained using Equation 9 (purple curve; 766 

left vertical axis), evaporative index obtained using Equation 10 (green curve; left vertical axis) 767 

and daily precipitation (vertical bars; right vertical axis). 768 

 769 

Figure 4.  Synthetically-generated normally distributed self-similar noises without gaps (daily 770 

resolution; curves) and with gaps (points) similar to: (left two panels) precipitation δ18O and 771 

stream water δ18O for the TTD estimation period (see Figure 2 above), and (right two panels) 772 

precipitation δ18O and xylem water δ18O for the ETTD estimation period (see Figure 2). 773 

 774 

Figure 5. (A) Comparison of the fitted power spectra (dimensionless) of various TTD types with 775 

the observed power spectra ratio according to Method 1 (A1) and Method 2 (A2) for periods 776 

from 0.04 to 5 years (Method 1) and 0.1 to 5 years (Method 2). A combination of piston flow and 777 

Gamma TTD types was considered for periods up to 0.04 years (Method 1) and up to 0.1 years 778 

(Method 2). (B) Response surface plots for Method 1 (B1) and Method 2 (B2). (C) Time series 779 

plots comparing observed and modeled (mean ± 1σ) outputs: δ18O in stream water according to 780 

Method 1 (C1) and MQ=δ18OxQ in stream water according to Method 2 (C2). Best fit parameters 781 

for each distribution type are shown in Table 2. The standard deviation error bars in plots (C1) 782 

and (C2) are only visible if they are larger than the modeled value point size and they mostly plot 783 

within the point symbols. 784 

 785 

 786 
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Figure 6. (A) Observations (black points) and fitted power spectra (dimensionless) of various 787 

ETTD types: Exponential (Exp), Gamma (Gam), ADE-1x, ADE-nx, and a composite ETTD with 788 

10% Piston Flow and 90% Gamma up to a period ≤ 0.1 years and 100% Gamma for periods > 789 

0.1 years. (B) Response surface plots for the best fitting Gamma ETTD type. (C) Observed and 790 

modeled (mean ± 1σ) MAET=δ18OxAET in AET. (D) The best-fit Gamma ETTD type as a 791 

function of residence time of evapo-transpired water. The table in (A) shows 1σ (in parentheses) 792 

for the Gamma ETTD type based on the spatial and temporal variability in precipitation and 793 

temporal variability in xylem water isotopic composition (see section S4) where parameter 1 is 794 

the mean age (in years), and parameter 2 (not applicable for the piston flow TTD type) is the 795 

shape parameter (dimensionless) for the Exp and Gamma distributions and the Peclet number for 796 

the ADE-1x and ADE-nx ETTD types. The Gamma ETTD parameters in the composite ETTD in 797 

(A) are estimated using the observation data for periods >0.1 years. The 1σ error bars in (C) are 798 

visible only if they are larger than the point symbol.  799 

 800 

 801 

Figure 7. A conceptual model for MGC that illustrates the composite TTDs for short (0.1 years) 802 

(A) and long (B) periods, and (C) the applicable catchment-scale ETTD. (D) A conceptual model 803 

of MGC showing subsurface storages that support streamflow and AET (modified from Dwivedi 804 

et al. [2019a] and Dwivedi et al. [2019b]). 805 

 806 

 807 

Table 1. Correlation coefficients, p-values, spectral slopes, standard errors of calculated slopes, 808 

and t- and t-critical (tcrit) values of the estimated slopes between spectra and period in log-log 809 

space for various synthetic self-similar normally distributed noise types and considering regular 810 

and irregular time series data. The irregular time series data mimic gaps in the observed δ18O 811 

time series (Figure 2). 812 

 813 

Table 2. Estimated model parameters (columns 2 and 3) for various stream response function 814 

types (column 1) with their final estimated KGE’ value (column 4) for periods from 0.04 to 5 815 

years (Method 1) and 0.1 years to 5 years (Method 2). Parameter 1 represents mean age (years) 816 

for all tested TTD types (except piston flow TTD). Parameter 2 is the shape parameter (α, 817 

dimensionless) for the exponential type (set to 1) and gamma type TTDs, and the Peclet number 818 

for the ADE-1x or ADE-nx TTDs; parameter 2 is not applicable for the piston flow TTD. 819 

Numbers in brackets for the Gamma TTD type show 1σ based on spatial and temporal variability 820 

of δ18O in precipitation and temporal variability in streamflow (see section S2). A low value of 821 

KGE’ corresponds to a better model fit to the observations.     822 


