6 References
1. Caspeta, L.,Castillo T., Nielsen J., Modifying Yeast Tolerance to
Inhibitory Conditions of Ethanol Production Processes. Front
Bioeng Biotechnol 2015, 3, 184.
2. Kuroda, K.,Hammer S.K.,Watanabe Y.,Montano Lopez J.et al., Critical
Roles of the Pentose Phosphate Pathway and GLN3 in Isobutanol-Specific
Tolerance in Yeast. Cell Syst 2019, 9, 534-547 e535.
3. Zhu, Z.,Hu Y.,Teixeira P.G.,Pereira R.et al., Multidimensional
engineering of Saccharomyces cerevisiae for efficient synthesis
of medium-chain fatty acids. 2020, 3, 64-74.
4. Pereira, R.,Wei Y.,Mohamed E.,Radi M.et al., Adaptive laboratory
evolution of tolerance to dicarboxylic acids in Saccharomyces
cerevisiae . Metab Eng 2019, 56, 130-141.
5. Otto, M.,Teixeira P.G.,Vizcaino M.I.,David F.et al., Integration of a
multi-step heterologous pathway in Saccharomyces cerevisiae for
the production of abscisic acid. Microb Cell Fact 2019, 18, 205.
6. Snoek, T.,Verstrepen K.J., Voordeckers K., How do yeast cells become
tolerant to high ethanol concentrations? Curr Genet 2016, 62,
475-480.
7. Auesukaree, C., Molecular mechanisms of the yeast adaptive response
and tolerance to stresses encountered during ethanol fermentation.J Biosci Bioeng 2017, 124, 133-142.
8. Gibson, B.R.,Lawrence S.J.,Leclaire J.P.,Powell C.D.et al., Yeast
responses to stresses associated with industrial brewery handling.FEMS Microbiol Rev 2007, 31, 535-569.
9. Alper, H.,Moxley J.,Nevoigt E.,Fink G.R.et al., Engineering Yeast
Transcription Machinery for Improved Ethanol Tolerance and Production.Science 2006, 314, 1565-1568.
10. Chen, Z.,Zheng Z.,Yi C.,Wang F.et al., Intracellular metabolic
changes in Saccharomyces cerevisiae and promotion of ethanol
tolerance during the bioethanol fermentation process. RSC
Advances 2016, 6, 105046-105055.
11. Gao, L.,Liu Y.,Sun H.,Li C.et al., Advances in mechanisms and
modifications for rendering yeast thermotolerance. J Biosci
Bioeng 2016, 121, 599-606.
12. Xu, K.,Gao L.,Hassan J.U.,Zhao Z.et al., Improving the
thermo-tolerance of yeast base on the antioxidant defense system.Chemical Engineering Science 2018, 175, 335-342.
13. Xu, K.,Lee Y.S.,Li J., Li C., Resistance mechanisms and
reprogramming of microorganisms for efficient biorefinery under multiple
environmental stresses. Synth Syst Biotechnol 2019, 4, 92-98.
14. Kovacs, D.,Sigmond T.,Hotzi B.,Bohar B.et al., HSF1 Base: A
Comprehensive Database of HSF1 (Heat Shock Factor 1) Target
Genes. Int J Mol Sci 2019, 20, 5815.
15. Kuang, Z.,Ji H., Boeke J.D., Stress response factors drive regrowth
of quiescent cells. Curr Genet 2018, 64, 807-810.
16. Jethmalani, S.M., Henle K.J., Interaction of heat stress
glycoprotein GP50 with classical heat-shock proteins. Exp Cell
Res 1998, 239, 23-30.
17. Li, S.,Giardina D.M., Siegal M.L., Control of nongenetic
heterogeneity in growth rate and stress tolerance of Saccharomyces
cerevisiae by cyclic AMP-regulated transcription factors. PLoS
Genet 2018, 14, e1007744.
18. Richter, K.,Haslbeck M., Buchner J., The heat shock response: life
on the verge of death. Mol Cell 2010, 40, 253-266.
19. Zheng, X.,Krakowiak J.,Patel N.,Beyzavi A.et al., Dynamic control ofHsf1 during heat shock by a chaperone switch and phosphorylation.Elife 2016, 5, e18638.
20. Albert, B.,Kos-Braun I.C.,Henras A.K.,Dez C.et al., A ribosome
assembly stress response regulates transcription to maintain proteome
homeostasis. Elife 2019, 8, e45002.
21. Tye, B.W.,Commins N.,Springer M.,Pincus D.et al., A risk-reward
tradeoff of high ribosome production in proliferating cells.bioRxiv 2018, 458810.
22. Chowdhary, S.,Kainth A.S.,Pincus D., Gross D.S., Heat Shock Factor 1
Drives Intergenic Association of Its Target Gene Loci upon Heat Shock.Cell Rep 2019, 26, 18-+.
23. Elfving, N.,Chereji R.V.,Bharatula V.,Bjorklund S.et al., A dynamic
interplay of nucleosome and Msn2 binding regulates kinetics of
gene activation and repression following stress. Nucleic Acids
Res 2014, 42, 5468-5482.
24. Kobayashi, N., McEntee K., Identification of cis and trans
components of a novel heat shock stress regulatory pathway inSaccharomyces cerevisiae . Mol Cell Biol 1993, 13, 248-256.
25. Vamvakas, S.S.,Kapolos J.,Farmakis L.,Koskorellou G.et al., Ser625
of msn2 transcription factor is indispensable for ethanol tolerance and
alcoholic fermentation process. Biotechnol Prog 2019, 35, e2837.
26. Satomura, A.,Katsuyama Y.,Miura N.,Kuroda K.et al., Acquisition of
thermotolerant yeast Saccharomyces cerevisiae by breeding via
stepwise adaptation. Biotechnol Prog 2013, 29, 1116-1123.
27. Xiao, W.,Duan X.,Lin Y.,Cao Q.et al., Distinct Proteome Remodeling
of Industrial Saccharomyces cerevisiae in Response to Prolonged
Thermal Stress or Transient Heat Shock. J Proteome Res 2018, 17,
1812-1825.
28. Martins, L.H.,Rabelo S.C., da Costa A.C., Effects of the
pretreatment method on high solids enzymatic hydrolysis and ethanol
fermentation of the cellulosic fraction of sugarcane bagasse.Bioresour Technol 2015, 191, 312-321.
29. Johnson, E., Integrated enzyme production lowers the cost of
cellulosic ethanol. Biofuel Bioprod Bior 2016, 10, 164-174.
30. Zhang, M.M.,Xiong L.,Tang Y.J.,Mehmood M.A.et al., Enhanced acetic
acid stress tolerance and ethanol production in Saccharomyces
cerevisiae by modulating expression of the de novo purine biosynthesis
genes. Biotechnol Biofuels 2019, 12, 116.
31. Thompson, O.A.,Hawkins G.M.,Gorsich S.W., Doran-Peterson J.,
Phenotypic characterization and comparative transcriptomics of evolvedSaccharomyces cerevisiae strains with improved tolerance to
lignocellulosic derived inhibitors. Biotechnol Biofuels 2016, 9,
200.
32. Palma, M.,Guerreiro J.F., Sa-Correia I., Adaptive Response and
Tolerance to Acetic Acid in Saccharomyces cerevisiae andZygosaccharomyces bailii : A Physiological Genomics Perspective.Front Microbiol 2018, 9, 274.
33. Lee, J.,Reiter W.,Dohnal I.,Gregori C.et al., MAPK Hog1closes the S. cerevisiae glycerol channel Fps1 by
phosphorylating and displacing its positive regulators. Genes Dev2013, 27, 2590-2601.
34. Lee, J., Levin D.E., Rgc2 Regulator of Glycerol ChannelFps1 Functions as a Homo- and Heterodimer with Rgc1 .Eukaryot Cell 2015, 14, 719-725.
35. Zhang, J.G.,Liu X.Y.,He X.P.,Guo X.N.et al., Improvement of acetic
acid tolerance and fermentation performance of Saccharomyces
cerevisiae by disruption of the FPS1 aquaglyceroporin gene.Biotechnol Lett 2011, 33, 277-284.
36. Ullah, A.,Orij R.,Brul S., Smits G.J., Quantitative analysis of the
modes of growth inhibition by weak organic acids in Saccharomyces
cerevisiae . Appl Environ Microbiol 2012, 78, 8377-8387.
37. Piper, P.W., Resistance of yeasts to weak organic acid food
preservatives. Adv Appl Microbiol 2011, 77, 97-113.
38. Teixeira, M.C.,Godinho C.P.,Cabrito T.R.,Mira N.P.et al., Increased
expression of the yeast multidrug resistance ABC transporterPdr18 leads to increased ethanol tolerance and ethanol production
in high gravity alcoholic fermentation. Microb Cell Fact 2012,
11, 98.
39. Srinivasan, V.,Kriete A.,Sacan A., Jazwinski S.M., Comparing the
yeast retrograde response and NF-kappaB stress responses: implications
for aging. Aging Cell 2010, 9, 933-941.
40. Torelli, N.Q.,Ferreira-Junior J.R.,Kowaltowski A.J., da Cunha F.M.,RTG1 - and RTG2 -dependent retrograde signaling controls
mitochondrial activity and stress resistance in Saccharomyces
cerevisiae . Free Radic Biol Med 2015, 81, 30-37.
41. Komeili, A.,Wedaman K.P.,O’Shea E.K., Powers T., Mechanism of
metabolic control. Target of rapamycin signaling links nitrogen quality
to the activity of the Rtg1 and Rtg3 transcription
factors. J Cell Biol 2000, 151, 863-878.
42. Liu, Z.C.,Sekito T.,Spirek M.,Thornton J.et al., Retrograde
signaling is regulated by the dynamic interaction between Rtg2p and
Mks1p. Molecular Cell 2003, 12, 401-411.
43. Liu, Z.,Spirek M.,Thornton J., Butow R.A., A novel degron-mediated
degradation of the RTG pathway regulator, Mks1p, by SCFGrr1. Mol
Biol Cell 2005, 16, 4893-4904.
44. Liu, Z., Butow R.A., Mitochondrial retrograde signaling. Annu
Rev Genet 2006, 40, 159-185.
45. Ruiz-Roig, C.,Noriega N.,Duch A.,Posas F.et al., The Hog1SAPK controls the Rtg1 /Rtg3 transcriptional complex
activity by multiple regulatory mechanisms. Mol Biol Cell 2012,
23, 4286-4296.
46. Laera, L.,Guaragnella N.,Zdralevic M.,Marzulli D.et al., The
transcription factors ADR1 or CAT8 are required for RTG
pathway activation and evasion from yeast acetic acid-induced programmed
cell death in raffinose. Microb Cell 2016, 3, 621-631.
47. Nasution, O.,Lee Y.M.,Kim E.,Lee Y.et al., Overexpression ofOLE1 enhances stress tolerance and constitutively activates the
MAPK HOG pathway in Saccharomyces cerevisiae . Biotechnol
Bioeng 2017, 114, 620-631.
48. Dong, S.J.,Yi C.F., Li H., Changes of Saccharomyces
cerevisiae cell membrane components and promotion to ethanol tolerance
during the bioethanol fermentation. Int J Biochem Cell Biol 2015,
69, 196-203.
49. Stukey, J.E.,Mcdonough V.M., Martin C.E., Isolation and
Characterization of Ole1 , a Gene Affecting Fatty-Acid
Desaturation from Saccharomyces-Cerevisiae. Journal of Biological
Chemistry 1989, 264, 16537-16544.
50. Pascual-Ahuir, A.,Manzanares-Estreder S., Proft M., Pro- and
Antioxidant Functions of the Peroxisome-Mitochondria Connection and Its
Impact on Aging and Disease. Oxid Med Cell Longev 2017, 2017,
9860841.
51. Zeeshan, H.M.,Lee G.H.,Kim H.R., Chae H.J., Endoplasmic Reticulum
Stress and Associated ROS. Int J Mol Sci 2016, 17, 327.
52. Zhao, Y.Y.,Cao C.L.,Liu Y.L.,Wang J.et al., Genetic analysis of
oxidative and endoplasmic reticulum stress responses induced by cobalt
toxicity in budding yeast. Biochim Biophys Acta Gen Subj 2020,
1864, 129516.
53. Ramos, A.,Dos Santos M.M.,de Macedo G.T.,Wildner G.et al., Methyl
and Ethylmercury elicit oxidative stress and unbalance the antioxidant
system in Saccharomyces cerevisiae . Chem Biol Interact2020, 315, 108867.
54. Liu, Z.L., Ma M., Pathway-based signature transcriptional profiles
as tolerance phenotypes for the adapted industrial yeastSaccharomyces cerevisiae resistant to furfural and HMF.Appl Microbiol Biotechnol 2020, 104, 3473-3492.
55. Simaan, H.,Lev S., Horwitz B.A., Oxidant-Sensing Pathways in the
Responses of Fungal Pathogens to Chemical Stress Signals. Front
Microbiol 2019, 10, 567.
56. Malina, C.,Larsson C., Nielsen J., Yeast mitochondria: an overview
of mitochondrial biology and the potential of mitochondrial systems
biology. FEMS Yeast Res 2018, 18.
57. Gruhlke, M.C.H.,Schlembach I.,Leontiev R.,Uebachs A.et al., Yap1p,
the central regulator of the S. cerevisiae oxidative stress
response, is activated by allicin, a natural oxidant and defence
substance of garlic. Free Radic Biol Med 2017, 108, 793-802.
58. Wu, G.,Xu Z., Jonsson L.J., Profiling of Saccharomyces
cerevisiae transcription factors for engineering the resistance of
yeast to lignocellulose-derived inhibitors in biomass conversion.Microb Cell Fact 2017, 16, 199.
59. Qu, Z.,Zhang L.,Zhu S.,Yuan W.et al., Overexpression of the
transcription factor HAC1 improves nerolidol production in engineered
yeast. Enzyme Microb Technol 2020, 134, 109485.
60. Tran, D.M.,Ishiwata-Kimata Y.,Mai T.C.,Kubo M.et al., The unfolded
protein response alongside the diauxic shift of yeast cells and its
involvement in mitochondria enlargement. Sci Rep 2019, 9, 12780.
61. Mat Nanyan, N.S.B., Takagi H., Proline Homeostasis inSaccharomyces cerevisiae : How Does the Stress-Responsive
Transcription Factor Msn2 Play a Role? Front Genet 2020, 11, 438.
62. Li, L.,Kaplan J., Ward D.M., The glucose sensor Snf1 and the
transcription factors Msn2 and Msn4 regulate transcription of the
vacuolar iron importer gene CCC1 and iron resistance in yeast. J
Biol Chem 2017, 292, 15577-15586.
63. Mira, N.P.,Becker J.D., Sa-Correia I., Genomic expression program
involving the Haa1p-regulon in Saccharomyces cerevisiae response to
acetic acid. OMICS 2010, 14, 587-601.
64. Sakihama, Y.,Hasunuma T., Kondo A., Improved ethanol production from
xylose in the presence of acetic acid by the overexpression of the HAA1
gene in Saccharomyces cerevisiae . J Biosci Bioeng 2015,
119, 297-302.
65. Cunha, J.T.,Costa C.E.,Ferraz L.,Romani A.et al., HAA1 andPRS3 overexpression boosts yeast tolerance towards acetic acid
improving xylose or glucose consumption: unravelling the underlying
mechanisms. Appl Microbiol Biotechnol 2018, 102, 4589-4600.
66. Chen, Y.,Stabryla L., Wei N., Improved Acetic Acid Resistance inSaccharomyces cerevisiae by Overexpression of the WHI2Gene Identified through Inverse Metabolic Engineering. Appl
Environ Microbiol 2016, 82, 2156-2166.
67. Kim, J.E.,Jang I.S.,Son S.H.,Ko Y.J.et al., Tailoring theSaccharomyces cerevisiae endoplasmic reticulum for functional
assembly of terpene synthesis pathway. Metab Eng 2019, 56, 50-59.
68. Qin, L.,Dong S.,Yu J.,Ning X.et al., Stress-driven dynamic
regulation of multiple tolerance genes improves robustness and
productive capacity of Saccharomyces cerevisiae in industrial
lignocellulose fermentation. Metab Eng 2020.
69. Wei, S.,Liu Y.,Wu M.,Ma T.et al., Disruption of the transcription
factors Thi2p and Nrm1p alleviates the post-glucose effect on xylose
utilization in Saccharomyces cerevisiae. Biotechnol Biofuels2018, 11, 112.
70. Wei, S.,Bai P.,Liu Y.,Yang M.et al., A Thi2p Regulatory Network
Controls the Post-glucose Effect of Xylose Utilization inSaccharomyces cerevisiae . Front Microbiol 2019, 10, 1649.
71. Fang, T.,Yan H.,Li G.,Chen W.et al., Chromatin remodeling complexes
are involvesd in the regulation of ethanol production during static
fermentation in budding yeast. Genomics 2020, 112, 1674-1679.
72. Peterson, C.L.,Zhao Y., Chait B.T., Subunits of the yeast SWI/SNF
complex are members of the actin-related protein (ARP) family. J
Biol Chem 1998, 273, 23641-23644.
73. Peterson, C. L, Herskowitz, I.,
Characterization
of the yeast SWI1 , SWI2 , and SWI3 genes, which
encode a global activator of transcription. Cell 1992, 68.
74. Antonets, K.S.,Kliver S.F.,Polev D.E.,Shuvalova A.R.et al., Distinct
Mechanisms of Phenotypic Effects of Inactivation and Prionization of
Swi1 Protein in Saccharomyces cerevisiae . Biochemistry
(Mosc) 2017, 82, 1147-1157.
75. Zhang, Y.,Anderson S.J.,French S.L.,Sikes M.L.et al., The SWI/SNF
chromatin remodeling complex influences transcription by RNA polymerase
I in Saccharomyces cerevisiae . PLoS One 2013, 8, e56793.
76. Dastidar, R.G.,Hooda J.,Shah A.,Cao T.M.et al., The nuclear
localization of SWI/SNF proteins is subjected to oxygen regulation.Cell Biosci 2012, 2, 30.
77. Li, P.,Fu X.,Zhang L.,Zhang Z.et al., The transcription factorsHsf1 and Msn2 of thermotolerant Kluyveromyces marxianus
promote cell growth and ethanol fermentation of Saccharomyces cerevisiae
at high temperatures. Biotechnol Biofuels 2017, 10, 289.
78. Veri, A.O.,Robbins N., Cowen L.E., Regulation of the heat shock
transcription factor Hsf1 in fungi: implications for
temperature-dependent virulence traits. FEMS Yeast Res 2018, 18.
79. Michael, D.G.,Maier E.J.,Brown H.,Gish S.R.et al., Model-based
transcriptome engineering promotes a fermentative transcriptional state
in yeast. Proc Natl Acad Sci U S A 2016, 113, E7428-E7437.
80. Liu, H.,Yan M.,Lai C.,Xu L.et al., gTME for improved xylose
fermentation of Saccharomyces cerevisiae . Appl Biochem
Biotechnol 2010, 160, 574-582.
81. Srivastava, R.,Rai K.,Pandey B.,Singh S.et al.,
Spt-Ada-Gcn5-Acetyltransferase (SAGA) Complex in Plants: Genome Wide
Identification, Evolutionary Conservation and Functional Determination.PLOS ONE 2015, 10, e0134709-.
82. Canzonetta, C.,Leo M.,Guarino S.R.,Montanari A.et al., SAGA complex
and Gcn5 are necessary for respiration in budding yeast.Biochim Biophys Acta 2016, 1863, 3160-3168.
83. Warfield, L.,Ramachandran S.,Baptista T.,Devys D.et al.,
Transcription of Nearly All Yeast RNA Polymerase II-Transcribed Genes Is
Dependent on Transcription Factor TFIID. Mol Cell 2017, 68,
118-129 e115.
84. Ansari, S.A.,Ganapathi M.,Benschop J.J.,Holstege F.C.et al.,
Distinct role of Mediator tail module in regulation of SAGA-dependent,
TATA-containing genes in yeast. EMBO J 2012, 31, 44-57.
85. Xue, T.,Chen D.,Su Q.Q.,Yuan X.et al., Improved ethanol tolerance
and production of Saccharomyces cerevisiae by global
transcription machinery engineering via directed evolution of the SPT8
gene. Food Biotechnol 2019, 33, 155-173.
86. Zhu, L.,Gao S.,Zhang H.,Huang H.et al., Improvement of Lead
Tolerance of Saccharomyces cerevisiae by Random Mutagenesis of
Transcription Regulator SPT3 . Appl Biochem Biotechnol2018, 184, 155-167.
87. Phithakrotchanakoon, C.,Puseenam A.,Wongwisansri S.,Eurwilaichitr
L.et al., CRISPR-Cas9 enabled targeted mutagenesis in the thermotolerant
methylotrophic yeast Ogataea thermomethanolica. FEMS Microbiol
Lett 2018, 365.
88. Urnov, F.D., Rebar E.J., Designed transcription factors as tools for
therapeutics and functional genomics. Biochemical Pharmacology2002, 64, 919-923.
89. Heiderscheit, E.A.,Eguchi A.,Spurgat M.C., Ansari A.Z.,
Reprogramming cell fate with artificial transcription factors.FEBS Lett 2018, 592, 888-900.
90. Chattopadhyay, A.,Purohit J.,Tiwari K.K., Deshmukh R., Targeting
transcription factors for plant disease resistance: shifting paradigm.Current science 2019, 117, 1598-1607.
91. Liu, W., Stewart C.N., Jr., Plant synthetic promoters and
transcription factors. Curr Opin Biotechnol 2016, 37, 36-44.
92. Purcell, O.,Peccoud J., Lu T.K., Rule-based design of synthetic
transcription factors in eukaryotes. ACS Synth Biol 2014, 3,
737-744.
93. Klug, A., The discovery of zinc fingers and their development for
practical applications in gene regulation and genome manipulation.Q Rev Biophys 2010, 43, 1-21.
94. Lee, J.Y.,Sung B.H.,Yu B.J.,Lee J.H.et al., Phenotypic engineering
by reprogramming gene transcription using novel artificial transcription
factors in Escherichia coli. Nucleic Acids Res 2008, 36, e102.
95. Lee, J.Y.,Yang K.S.,Jang S.A.,Sung B.H.et al., Engineering
butanol-tolerance in escherichia coli with artificial transcription
factor libraries. Biotechnol Bioeng 2011, 108, 742-749.
96. Park, K.S.,Lee D.K.,Lee H.,Lee Y.et al., Phenotypic alteration of
eukaryotic cells using randomized libraries of artificial transcription
factors. Nat Biotechnol 2003, 21, 1208-1214.
97. Ma, C.,Wei X.,Sun C.,Zhang F.et al., Improvement of acetic acid
tolerance of Saccharomyces cerevisiae using a zinc-finger-based
artificial transcription factor and identification of novel genes
involved in acetic acid tolerance. Appl Microbiol Biotechnol2015, 99, 2441-2449.
98. Rantasalo, A.,Kuivanen J.,Penttila M.,Jantti J.et al., Synthetic
Toolkit for Complex Genetic Circuit Engineering in Saccharomyces
cerevisiae . ACS Synth Biol 2018, 7, 1573-1587.
99. Naseri, G.,Balazadeh S.,Machens F.,Kamranfar I.et al., Plant-Derived
Transcription Factors for Orthologous Regulation of Gene Expression in
the Yeast Saccharomyces cerevisiae . ACS Synth Biol 2017,
6, 1742-1756.
100. Naseri, G.,Behrend J.,Rieper L., Mueller-Roeber B., COMPASS for
rapid combinatorial optimization of biochemical pathways based on
artificial transcription factors. Nat Commun 2019, 10, 2615.
101. Machens, F.,Balazadeh S.,Mueller-Roeber B., Messerschmidt K.,
Synthetic Promoters and Transcription Factors for Heterologous Protein
Expression in Saccharomyces cerevisiae . Front Bioeng
Biotechnol 2017, 5, 63.
102. Rantasalo, A.,Landowski C.P.,Kuivanen J.,Korppoo A.et al., A
universal gene expression system for fungi. Nucleic Acids Res2018, 46, e111.
103. Nguyen, N.H.,Kim J.-R., Park S., Development of Biosensor for
3-Hydroxypropionic Acid. Biotechnology and Bioprocess Engineering2019, 24, 109-118.
104. Durai, L.,Vijayalakshmi R., Karunagaran D., A novel reporter system
for cyclic AMP mediated gene expression in mammalian cells based on
synthetic transgene expression system. Eur J Pharmacol 2019, 855,
56-64.
105. Li, J.W.,Zhang X.Y.,Wu H., Bai Y.P., Transcription Factor
Engineering for High-Throughput Strain Evolution and Organic Acid
Bioproduction: A Review. Front Bioeng Biotechnol 2020, 8, 98.
106. Myers, K.S.,Riley N.M.,MacGilvray M.E.,Sato T.K.et al., Rewired
cellular signaling coordinates sugar and hypoxic responses for anaerobic
xylose fermentation in yeast. PLoS Genet 2019, 15, e1008037.
107. Yang, T.H., Transcription factor regulatory modules provide the
molecular mechanisms for functional redundancy observed among
transcription factors in yeast. BMC Bioinformatics 2019, 20, 630.
108. Thorwall, S.,Schwartz C.,Chartron J.W., Wheeldon I.,
Stress-tolerant non-conventional microbes enable next-generation
chemical biosynthesis. Nat Chem Biol 2020, 16, 113-121.
109. Xu, K.,Qin L.,Bai W.X.,Wang X.Y.et al., Multilevel Defense System
(MDS) Relieves Multiple Stresses for Economically Boosting Ethanol
Production of Industrial Saccharomyces cerevisiae . Acs
Energy Lett 2020, 5, 572-582.
110. Kuki, Y.,Ohno R.,Yoshida K., Takumi S., Heterologous expression of
wheat WRKY transcription factor genes transcriptionally activated
in hybrid necrosis strains alters abiotic and biotic stress tolerance in
transgenic Arabidopsis. Plant Physiol Biochem 2020, 150, 71-79.
111. Nghia, D.H.T.,Chuong N.N.,Hoang X.L.T.,Nguyen N.C.et al.,
Heterologous Expression of a Soybean Gene RR34 Conferred Improved
Drought Resistance of Transgenic Arabidopsis. Plants (Basel)2020, 9 (4), 494.
112. Wang, L.,Liu W., Wang Y., Heterologous expression of Chinese wild
grapevine VqERFs in Arabidopsis thaliana enhance resistance to
Pseudomonas syringae pv. tomato DC3000 and to Botrytis cinerea.Plant Sci 2020, 293, 110421.
113. Yao, L.,Hao X.,Cao H.,Ding C.et al., ABA-dependent bZIP
transcription factor, CsbZIP18 , from Camellia sinensis negatively
regulates freezing tolerance in Arabidopsis. Plant Cell Rep 2020,
39, 553-565.
114. Du, X.,He F.,Zhu B.,Ren M.et al., NAC transcription factors from
Aegilops markgrafii reduce cadmium concentration in transgenic wheat.Plant and Soil 2020, 449, 39–50.
115. Wan, F.,Pan Y.,Li J.,Chen X.et al., Heterologous expression of
Arabidopsis C-repeat binding factor 3 (AtCBF3 ) and cold-regulated
15A (AtCOR15A ) enhanced chilling tolerance in transgenic eggplant
(Solanum melongena L.). Plant Cell Rep 2014, 33, 1951-1961.
116. Zhao, P.,Hou S.,Guo X.,Jia J.et al., A MYB-related transcription
factor from sheepgrass, LcMYB2 , promotes seed germination and
root growth under drought stress. BMC Plant Biol 2019, 19, 564.