6 References
1. Caspeta, L.,Castillo T., Nielsen J., Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes. Front Bioeng Biotechnol 2015, 3, 184.
2. Kuroda, K.,Hammer S.K.,Watanabe Y.,Montano Lopez J.et al., Critical Roles of the Pentose Phosphate Pathway and GLN3 in Isobutanol-Specific Tolerance in Yeast. Cell Syst 2019, 9, 534-547 e535.
3. Zhu, Z.,Hu Y.,Teixeira P.G.,Pereira R.et al., Multidimensional engineering of Saccharomyces cerevisiae for efficient synthesis of medium-chain fatty acids. 2020, 3, 64-74.
4. Pereira, R.,Wei Y.,Mohamed E.,Radi M.et al., Adaptive laboratory evolution of tolerance to dicarboxylic acids in Saccharomyces cerevisiae . Metab Eng 2019, 56, 130-141.
5. Otto, M.,Teixeira P.G.,Vizcaino M.I.,David F.et al., Integration of a multi-step heterologous pathway in Saccharomyces cerevisiae for the production of abscisic acid. Microb Cell Fact 2019, 18, 205.
6. Snoek, T.,Verstrepen K.J., Voordeckers K., How do yeast cells become tolerant to high ethanol concentrations? Curr Genet 2016, 62, 475-480.
7. Auesukaree, C., Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation.J Biosci Bioeng 2017, 124, 133-142.
8. Gibson, B.R.,Lawrence S.J.,Leclaire J.P.,Powell C.D.et al., Yeast responses to stresses associated with industrial brewery handling.FEMS Microbiol Rev 2007, 31, 535-569.
9. Alper, H.,Moxley J.,Nevoigt E.,Fink G.R.et al., Engineering Yeast Transcription Machinery for Improved Ethanol Tolerance and Production.Science 2006, 314, 1565-1568.
10. Chen, Z.,Zheng Z.,Yi C.,Wang F.et al., Intracellular metabolic changes in Saccharomyces cerevisiae and promotion of ethanol tolerance during the bioethanol fermentation process. RSC Advances 2016, 6, 105046-105055.
11. Gao, L.,Liu Y.,Sun H.,Li C.et al., Advances in mechanisms and modifications for rendering yeast thermotolerance. J Biosci Bioeng 2016, 121, 599-606.
12. Xu, K.,Gao L.,Hassan J.U.,Zhao Z.et al., Improving the thermo-tolerance of yeast base on the antioxidant defense system.Chemical Engineering Science 2018, 175, 335-342.
13. Xu, K.,Lee Y.S.,Li J., Li C., Resistance mechanisms and reprogramming of microorganisms for efficient biorefinery under multiple environmental stresses. Synth Syst Biotechnol 2019, 4, 92-98.
14. Kovacs, D.,Sigmond T.,Hotzi B.,Bohar B.et al., HSF1 Base: A Comprehensive Database of HSF1 (Heat Shock Factor 1) Target Genes. Int J Mol Sci 2019, 20, 5815.
15. Kuang, Z.,Ji H., Boeke J.D., Stress response factors drive regrowth of quiescent cells. Curr Genet 2018, 64, 807-810.
16. Jethmalani, S.M., Henle K.J., Interaction of heat stress glycoprotein GP50 with classical heat-shock proteins. Exp Cell Res 1998, 239, 23-30.
17. Li, S.,Giardina D.M., Siegal M.L., Control of nongenetic heterogeneity in growth rate and stress tolerance of Saccharomyces cerevisiae by cyclic AMP-regulated transcription factors. PLoS Genet 2018, 14, e1007744.
18. Richter, K.,Haslbeck M., Buchner J., The heat shock response: life on the verge of death. Mol Cell 2010, 40, 253-266.
19. Zheng, X.,Krakowiak J.,Patel N.,Beyzavi A.et al., Dynamic control ofHsf1 during heat shock by a chaperone switch and phosphorylation.Elife 2016, 5, e18638.
20. Albert, B.,Kos-Braun I.C.,Henras A.K.,Dez C.et al., A ribosome assembly stress response regulates transcription to maintain proteome homeostasis. Elife 2019, 8, e45002.
21. Tye, B.W.,Commins N.,Springer M.,Pincus D.et al., A risk-reward tradeoff of high ribosome production in proliferating cells.bioRxiv 2018, 458810.
22. Chowdhary, S.,Kainth A.S.,Pincus D., Gross D.S., Heat Shock Factor 1 Drives Intergenic Association of Its Target Gene Loci upon Heat Shock.Cell Rep 2019, 26, 18-+.
23. Elfving, N.,Chereji R.V.,Bharatula V.,Bjorklund S.et al., A dynamic interplay of nucleosome and Msn2 binding regulates kinetics of gene activation and repression following stress. Nucleic Acids Res 2014, 42, 5468-5482.
24. Kobayashi, N., McEntee K., Identification of cis and trans components of a novel heat shock stress regulatory pathway inSaccharomyces cerevisiae . Mol Cell Biol 1993, 13, 248-256.
25. Vamvakas, S.S.,Kapolos J.,Farmakis L.,Koskorellou G.et al., Ser625 of msn2 transcription factor is indispensable for ethanol tolerance and alcoholic fermentation process. Biotechnol Prog 2019, 35, e2837.
26. Satomura, A.,Katsuyama Y.,Miura N.,Kuroda K.et al., Acquisition of thermotolerant yeast Saccharomyces cerevisiae by breeding via stepwise adaptation. Biotechnol Prog 2013, 29, 1116-1123.
27. Xiao, W.,Duan X.,Lin Y.,Cao Q.et al., Distinct Proteome Remodeling of Industrial Saccharomyces cerevisiae in Response to Prolonged Thermal Stress or Transient Heat Shock. J Proteome Res 2018, 17, 1812-1825.
28. Martins, L.H.,Rabelo S.C., da Costa A.C., Effects of the pretreatment method on high solids enzymatic hydrolysis and ethanol fermentation of the cellulosic fraction of sugarcane bagasse.Bioresour Technol 2015, 191, 312-321.
29. Johnson, E., Integrated enzyme production lowers the cost of cellulosic ethanol. Biofuel Bioprod Bior 2016, 10, 164-174.
30. Zhang, M.M.,Xiong L.,Tang Y.J.,Mehmood M.A.et al., Enhanced acetic acid stress tolerance and ethanol production in Saccharomyces cerevisiae by modulating expression of the de novo purine biosynthesis genes. Biotechnol Biofuels 2019, 12, 116.
31. Thompson, O.A.,Hawkins G.M.,Gorsich S.W., Doran-Peterson J., Phenotypic characterization and comparative transcriptomics of evolvedSaccharomyces cerevisiae strains with improved tolerance to lignocellulosic derived inhibitors. Biotechnol Biofuels 2016, 9, 200.
32. Palma, M.,Guerreiro J.F., Sa-Correia I., Adaptive Response and Tolerance to Acetic Acid in Saccharomyces cerevisiae andZygosaccharomyces bailii : A Physiological Genomics Perspective.Front Microbiol 2018, 9, 274.
33. Lee, J.,Reiter W.,Dohnal I.,Gregori C.et al., MAPK Hog1closes the S. cerevisiae glycerol channel Fps1 by phosphorylating and displacing its positive regulators. Genes Dev2013, 27, 2590-2601.
34. Lee, J., Levin D.E., Rgc2 Regulator of Glycerol ChannelFps1 Functions as a Homo- and Heterodimer with Rgc1 .Eukaryot Cell 2015, 14, 719-725.
35. Zhang, J.G.,Liu X.Y.,He X.P.,Guo X.N.et al., Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene.Biotechnol Lett 2011, 33, 277-284.
36. Ullah, A.,Orij R.,Brul S., Smits G.J., Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae . Appl Environ Microbiol 2012, 78, 8377-8387.
37. Piper, P.W., Resistance of yeasts to weak organic acid food preservatives. Adv Appl Microbiol 2011, 77, 97-113.
38. Teixeira, M.C.,Godinho C.P.,Cabrito T.R.,Mira N.P.et al., Increased expression of the yeast multidrug resistance ABC transporterPdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation. Microb Cell Fact 2012, 11, 98.
39. Srinivasan, V.,Kriete A.,Sacan A., Jazwinski S.M., Comparing the yeast retrograde response and NF-kappaB stress responses: implications for aging. Aging Cell 2010, 9, 933-941.
40. Torelli, N.Q.,Ferreira-Junior J.R.,Kowaltowski A.J., da Cunha F.M.,RTG1 - and RTG2 -dependent retrograde signaling controls mitochondrial activity and stress resistance in Saccharomyces cerevisiae . Free Radic Biol Med 2015, 81, 30-37.
41. Komeili, A.,Wedaman K.P.,O’Shea E.K., Powers T., Mechanism of metabolic control. Target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors. J Cell Biol 2000, 151, 863-878.
42. Liu, Z.C.,Sekito T.,Spirek M.,Thornton J.et al., Retrograde signaling is regulated by the dynamic interaction between Rtg2p and Mks1p. Molecular Cell 2003, 12, 401-411.
43. Liu, Z.,Spirek M.,Thornton J., Butow R.A., A novel degron-mediated degradation of the RTG pathway regulator, Mks1p, by SCFGrr1. Mol Biol Cell 2005, 16, 4893-4904.
44. Liu, Z., Butow R.A., Mitochondrial retrograde signaling. Annu Rev Genet 2006, 40, 159-185.
45. Ruiz-Roig, C.,Noriega N.,Duch A.,Posas F.et al., The Hog1SAPK controls the Rtg1 /Rtg3 transcriptional complex activity by multiple regulatory mechanisms. Mol Biol Cell 2012, 23, 4286-4296.
46. Laera, L.,Guaragnella N.,Zdralevic M.,Marzulli D.et al., The transcription factors ADR1 or CAT8 are required for RTG pathway activation and evasion from yeast acetic acid-induced programmed cell death in raffinose. Microb Cell 2016, 3, 621-631.
47. Nasution, O.,Lee Y.M.,Kim E.,Lee Y.et al., Overexpression ofOLE1 enhances stress tolerance and constitutively activates the MAPK HOG pathway in Saccharomyces cerevisiae . Biotechnol Bioeng 2017, 114, 620-631.
48. Dong, S.J.,Yi C.F., Li H., Changes of Saccharomyces cerevisiae cell membrane components and promotion to ethanol tolerance during the bioethanol fermentation. Int J Biochem Cell Biol 2015, 69, 196-203.
49. Stukey, J.E.,Mcdonough V.M., Martin C.E., Isolation and Characterization of Ole1 , a Gene Affecting Fatty-Acid Desaturation from Saccharomyces-Cerevisiae. Journal of Biological Chemistry 1989, 264, 16537-16544.
50. Pascual-Ahuir, A.,Manzanares-Estreder S., Proft M., Pro- and Antioxidant Functions of the Peroxisome-Mitochondria Connection and Its Impact on Aging and Disease. Oxid Med Cell Longev 2017, 2017, 9860841.
51. Zeeshan, H.M.,Lee G.H.,Kim H.R., Chae H.J., Endoplasmic Reticulum Stress and Associated ROS. Int J Mol Sci 2016, 17, 327.
52. Zhao, Y.Y.,Cao C.L.,Liu Y.L.,Wang J.et al., Genetic analysis of oxidative and endoplasmic reticulum stress responses induced by cobalt toxicity in budding yeast. Biochim Biophys Acta Gen Subj 2020, 1864, 129516.
53. Ramos, A.,Dos Santos M.M.,de Macedo G.T.,Wildner G.et al., Methyl and Ethylmercury elicit oxidative stress and unbalance the antioxidant system in Saccharomyces cerevisiae . Chem Biol Interact2020, 315, 108867.
54. Liu, Z.L., Ma M., Pathway-based signature transcriptional profiles as tolerance phenotypes for the adapted industrial yeastSaccharomyces cerevisiae resistant to furfural and HMF.Appl Microbiol Biotechnol 2020, 104, 3473-3492.
55. Simaan, H.,Lev S., Horwitz B.A., Oxidant-Sensing Pathways in the Responses of Fungal Pathogens to Chemical Stress Signals. Front Microbiol 2019, 10, 567.
56. Malina, C.,Larsson C., Nielsen J., Yeast mitochondria: an overview of mitochondrial biology and the potential of mitochondrial systems biology. FEMS Yeast Res 2018, 18.
57. Gruhlke, M.C.H.,Schlembach I.,Leontiev R.,Uebachs A.et al., Yap1p, the central regulator of the S. cerevisiae oxidative stress response, is activated by allicin, a natural oxidant and defence substance of garlic. Free Radic Biol Med 2017, 108, 793-802.
58. Wu, G.,Xu Z., Jonsson L.J., Profiling of Saccharomyces cerevisiae transcription factors for engineering the resistance of yeast to lignocellulose-derived inhibitors in biomass conversion.Microb Cell Fact 2017, 16, 199.
59. Qu, Z.,Zhang L.,Zhu S.,Yuan W.et al., Overexpression of the transcription factor HAC1 improves nerolidol production in engineered yeast. Enzyme Microb Technol 2020, 134, 109485.
60. Tran, D.M.,Ishiwata-Kimata Y.,Mai T.C.,Kubo M.et al., The unfolded protein response alongside the diauxic shift of yeast cells and its involvement in mitochondria enlargement. Sci Rep 2019, 9, 12780.
61. Mat Nanyan, N.S.B., Takagi H., Proline Homeostasis inSaccharomyces cerevisiae : How Does the Stress-Responsive Transcription Factor Msn2 Play a Role? Front Genet 2020, 11, 438.
62. Li, L.,Kaplan J., Ward D.M., The glucose sensor Snf1 and the transcription factors Msn2 and Msn4 regulate transcription of the vacuolar iron importer gene CCC1 and iron resistance in yeast. J Biol Chem 2017, 292, 15577-15586.
63. Mira, N.P.,Becker J.D., Sa-Correia I., Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid. OMICS 2010, 14, 587-601.
64. Sakihama, Y.,Hasunuma T., Kondo A., Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae . J Biosci Bioeng 2015, 119, 297-302.
65. Cunha, J.T.,Costa C.E.,Ferraz L.,Romani A.et al., HAA1 andPRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms. Appl Microbiol Biotechnol 2018, 102, 4589-4600.
66. Chen, Y.,Stabryla L., Wei N., Improved Acetic Acid Resistance inSaccharomyces cerevisiae by Overexpression of the WHI2Gene Identified through Inverse Metabolic Engineering. Appl Environ Microbiol 2016, 82, 2156-2166.
67. Kim, J.E.,Jang I.S.,Son S.H.,Ko Y.J.et al., Tailoring theSaccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway. Metab Eng 2019, 56, 50-59.
68. Qin, L.,Dong S.,Yu J.,Ning X.et al., Stress-driven dynamic regulation of multiple tolerance genes improves robustness and productive capacity of Saccharomyces cerevisiae in industrial lignocellulose fermentation. Metab Eng 2020.
69. Wei, S.,Liu Y.,Wu M.,Ma T.et al., Disruption of the transcription factors Thi2p and Nrm1p alleviates the post-glucose effect on xylose utilization in Saccharomyces cerevisiae. Biotechnol Biofuels2018, 11, 112.
70. Wei, S.,Bai P.,Liu Y.,Yang M.et al., A Thi2p Regulatory Network Controls the Post-glucose Effect of Xylose Utilization inSaccharomyces cerevisiae . Front Microbiol 2019, 10, 1649.
71. Fang, T.,Yan H.,Li G.,Chen W.et al., Chromatin remodeling complexes are involvesd in the regulation of ethanol production during static fermentation in budding yeast. Genomics 2020, 112, 1674-1679.
72. Peterson, C.L.,Zhao Y., Chait B.T., Subunits of the yeast SWI/SNF complex are members of the actin-related protein (ARP) family. J Biol Chem 1998, 273, 23641-23644.
73. Peterson, C. L, Herskowitz, I., Characterization of the yeast SWI1 , SWI2 , and SWI3 genes, which encode a global activator of transcription. Cell 1992, 68.
74. Antonets, K.S.,Kliver S.F.,Polev D.E.,Shuvalova A.R.et al., Distinct Mechanisms of Phenotypic Effects of Inactivation and Prionization of Swi1 Protein in Saccharomyces cerevisiae . Biochemistry (Mosc) 2017, 82, 1147-1157.
75. Zhang, Y.,Anderson S.J.,French S.L.,Sikes M.L.et al., The SWI/SNF chromatin remodeling complex influences transcription by RNA polymerase I in Saccharomyces cerevisiae . PLoS One 2013, 8, e56793.
76. Dastidar, R.G.,Hooda J.,Shah A.,Cao T.M.et al., The nuclear localization of SWI/SNF proteins is subjected to oxygen regulation.Cell Biosci 2012, 2, 30.
77. Li, P.,Fu X.,Zhang L.,Zhang Z.et al., The transcription factorsHsf1 and Msn2 of thermotolerant Kluyveromyces marxianus promote cell growth and ethanol fermentation of Saccharomyces cerevisiae at high temperatures. Biotechnol Biofuels 2017, 10, 289.
78. Veri, A.O.,Robbins N., Cowen L.E., Regulation of the heat shock transcription factor Hsf1 in fungi: implications for temperature-dependent virulence traits. FEMS Yeast Res 2018, 18.
79. Michael, D.G.,Maier E.J.,Brown H.,Gish S.R.et al., Model-based transcriptome engineering promotes a fermentative transcriptional state in yeast. Proc Natl Acad Sci U S A 2016, 113, E7428-E7437.
80. Liu, H.,Yan M.,Lai C.,Xu L.et al., gTME for improved xylose fermentation of Saccharomyces cerevisiae . Appl Biochem Biotechnol 2010, 160, 574-582.
81. Srivastava, R.,Rai K.,Pandey B.,Singh S.et al., Spt-Ada-Gcn5-Acetyltransferase (SAGA) Complex in Plants: Genome Wide Identification, Evolutionary Conservation and Functional Determination.PLOS ONE 2015, 10, e0134709-.
82. Canzonetta, C.,Leo M.,Guarino S.R.,Montanari A.et al., SAGA complex and Gcn5 are necessary for respiration in budding yeast.Biochim Biophys Acta 2016, 1863, 3160-3168.
83. Warfield, L.,Ramachandran S.,Baptista T.,Devys D.et al., Transcription of Nearly All Yeast RNA Polymerase II-Transcribed Genes Is Dependent on Transcription Factor TFIID. Mol Cell 2017, 68, 118-129 e115.
84. Ansari, S.A.,Ganapathi M.,Benschop J.J.,Holstege F.C.et al., Distinct role of Mediator tail module in regulation of SAGA-dependent, TATA-containing genes in yeast. EMBO J 2012, 31, 44-57.
85. Xue, T.,Chen D.,Su Q.Q.,Yuan X.et al., Improved ethanol tolerance and production of Saccharomyces cerevisiae by global transcription machinery engineering via directed evolution of the SPT8 gene. Food Biotechnol 2019, 33, 155-173.
86. Zhu, L.,Gao S.,Zhang H.,Huang H.et al., Improvement of Lead Tolerance of Saccharomyces cerevisiae by Random Mutagenesis of Transcription Regulator SPT3 . Appl Biochem Biotechnol2018, 184, 155-167.
87. Phithakrotchanakoon, C.,Puseenam A.,Wongwisansri S.,Eurwilaichitr L.et al., CRISPR-Cas9 enabled targeted mutagenesis in the thermotolerant methylotrophic yeast Ogataea thermomethanolica. FEMS Microbiol Lett 2018, 365.
88. Urnov, F.D., Rebar E.J., Designed transcription factors as tools for therapeutics and functional genomics. Biochemical Pharmacology2002, 64, 919-923.
89. Heiderscheit, E.A.,Eguchi A.,Spurgat M.C., Ansari A.Z., Reprogramming cell fate with artificial transcription factors.FEBS Lett 2018, 592, 888-900.
90. Chattopadhyay, A.,Purohit J.,Tiwari K.K., Deshmukh R., Targeting transcription factors for plant disease resistance: shifting paradigm.Current science 2019, 117, 1598-1607.
91. Liu, W., Stewart C.N., Jr., Plant synthetic promoters and transcription factors. Curr Opin Biotechnol 2016, 37, 36-44.
92. Purcell, O.,Peccoud J., Lu T.K., Rule-based design of synthetic transcription factors in eukaryotes. ACS Synth Biol 2014, 3, 737-744.
93. Klug, A., The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation.Q Rev Biophys 2010, 43, 1-21.
94. Lee, J.Y.,Sung B.H.,Yu B.J.,Lee J.H.et al., Phenotypic engineering by reprogramming gene transcription using novel artificial transcription factors in Escherichia coli. Nucleic Acids Res 2008, 36, e102.
95. Lee, J.Y.,Yang K.S.,Jang S.A.,Sung B.H.et al., Engineering butanol-tolerance in escherichia coli with artificial transcription factor libraries. Biotechnol Bioeng 2011, 108, 742-749.
96. Park, K.S.,Lee D.K.,Lee H.,Lee Y.et al., Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors. Nat Biotechnol 2003, 21, 1208-1214.
97. Ma, C.,Wei X.,Sun C.,Zhang F.et al., Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance. Appl Microbiol Biotechnol2015, 99, 2441-2449.
98. Rantasalo, A.,Kuivanen J.,Penttila M.,Jantti J.et al., Synthetic Toolkit for Complex Genetic Circuit Engineering in Saccharomyces cerevisiae . ACS Synth Biol 2018, 7, 1573-1587.
99. Naseri, G.,Balazadeh S.,Machens F.,Kamranfar I.et al., Plant-Derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae . ACS Synth Biol 2017, 6, 1742-1756.
100. Naseri, G.,Behrend J.,Rieper L., Mueller-Roeber B., COMPASS for rapid combinatorial optimization of biochemical pathways based on artificial transcription factors. Nat Commun 2019, 10, 2615.
101. Machens, F.,Balazadeh S.,Mueller-Roeber B., Messerschmidt K., Synthetic Promoters and Transcription Factors for Heterologous Protein Expression in Saccharomyces cerevisiae . Front Bioeng Biotechnol 2017, 5, 63.
102. Rantasalo, A.,Landowski C.P.,Kuivanen J.,Korppoo A.et al., A universal gene expression system for fungi. Nucleic Acids Res2018, 46, e111.
103. Nguyen, N.H.,Kim J.-R., Park S., Development of Biosensor for 3-Hydroxypropionic Acid. Biotechnology and Bioprocess Engineering2019, 24, 109-118.
104. Durai, L.,Vijayalakshmi R., Karunagaran D., A novel reporter system for cyclic AMP mediated gene expression in mammalian cells based on synthetic transgene expression system. Eur J Pharmacol 2019, 855, 56-64.
105. Li, J.W.,Zhang X.Y.,Wu H., Bai Y.P., Transcription Factor Engineering for High-Throughput Strain Evolution and Organic Acid Bioproduction: A Review. Front Bioeng Biotechnol 2020, 8, 98.
106. Myers, K.S.,Riley N.M.,MacGilvray M.E.,Sato T.K.et al., Rewired cellular signaling coordinates sugar and hypoxic responses for anaerobic xylose fermentation in yeast. PLoS Genet 2019, 15, e1008037.
107. Yang, T.H., Transcription factor regulatory modules provide the molecular mechanisms for functional redundancy observed among transcription factors in yeast. BMC Bioinformatics 2019, 20, 630.
108. Thorwall, S.,Schwartz C.,Chartron J.W., Wheeldon I., Stress-tolerant non-conventional microbes enable next-generation chemical biosynthesis. Nat Chem Biol 2020, 16, 113-121.
109. Xu, K.,Qin L.,Bai W.X.,Wang X.Y.et al., Multilevel Defense System (MDS) Relieves Multiple Stresses for Economically Boosting Ethanol Production of Industrial Saccharomyces cerevisiae . Acs Energy Lett 2020, 5, 572-582.
110. Kuki, Y.,Ohno R.,Yoshida K., Takumi S., Heterologous expression of wheat WRKY transcription factor genes transcriptionally activated in hybrid necrosis strains alters abiotic and biotic stress tolerance in transgenic Arabidopsis. Plant Physiol Biochem 2020, 150, 71-79.
111. Nghia, D.H.T.,Chuong N.N.,Hoang X.L.T.,Nguyen N.C.et al., Heterologous Expression of a Soybean Gene RR34 Conferred Improved Drought Resistance of Transgenic Arabidopsis. Plants (Basel)2020, 9 (4), 494.
112. Wang, L.,Liu W., Wang Y., Heterologous expression of Chinese wild grapevine VqERFs in Arabidopsis thaliana enhance resistance to Pseudomonas syringae pv. tomato DC3000 and to Botrytis cinerea.Plant Sci 2020, 293, 110421.
113. Yao, L.,Hao X.,Cao H.,Ding C.et al., ABA-dependent bZIP transcription factor, CsbZIP18 , from Camellia sinensis negatively regulates freezing tolerance in Arabidopsis. Plant Cell Rep 2020, 39, 553-565.
114. Du, X.,He F.,Zhu B.,Ren M.et al., NAC transcription factors from Aegilops markgrafii reduce cadmium concentration in transgenic wheat.Plant and Soil 2020, 449, 39–50.
115. Wan, F.,Pan Y.,Li J.,Chen X.et al., Heterologous expression of Arabidopsis C-repeat binding factor 3 (AtCBF3 ) and cold-regulated 15A (AtCOR15A ) enhanced chilling tolerance in transgenic eggplant (Solanum melongena L.). Plant Cell Rep 2014, 33, 1951-1961.
116. Zhao, P.,Hou S.,Guo X.,Jia J.et al., A MYB-related transcription factor from sheepgrass, LcMYB2 , promotes seed germination and root growth under drought stress. BMC Plant Biol 2019, 19, 564.