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Abstract
Smallholder agriculture is a major source of income and food for developing nations.

With more frequent drought and increasing scarcity of arable land, land use planning can be used
to  better  allocate  land  resources  to  support  regional  agricultural  activity.  To  support  this
objective, we used the Land Capability Classification (LCC) system to map the basic limitations
to agricultural use of land. The LCC is a stepwise hierarchical land assessment system that can
be used to understand factors that limit land use potential. We carried out our assessment in the
Dosso  region of  Niger.  Using two public  soil  data  sets,  Food and Agriculture  Organization
Harmonized  World  Soil  Database  and  International  Soil  Reference  and  Information  Center
(ISRIC) SoilGrids, and a modified version of the LCC, we developed 250 m gridded maps of
LCC values across the region. To validate the LCC maps, we interpolated soil physical data from
1308 field sites in the Dosso region and created LCC maps based on these interpolated data. We
find that across the region, land is very severely limited for agricultural use by available water-
holding  capacity  (AWC)  which  limits  dry  season  agricultural  potential,  especially  without
irrigation,  and requires more frequent irrigation where supplemental water is available. If the
AWC limitation is removed in the LCC algorithm (i.e. simulating the use of sufficient irrigation
or a much higher and more evenly distributed rainfall than is received by the Dosso region), the
dominant regional limitations become less severe and more spatially varied. 
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1. INTRODUCTION
Worldwide, there are over 800 million people who are chronically undernourished (FAO, 2017).
Africa has the highest prevalence of people who are chronically hungry with undernourishment
rates in sub-Saharan Africa (SSA) at 23% (FAO, 2017). Food insecurity is driven by complex
interactions of socioeconomic and environmental factors and is exacerbated in places with low
adaptive capacity; conditions that are common in smallholder agricultural settings  (Connoly-
Boutin & Smit, 2016).  In SSA, there are a variety of threats to food security occurring at varying
scales  and  magnitudes  of  severity  which  enhances  the  need  for  multi-faceted  interventions
(IPCC, 2014). 

The projected  increases  in  global  temperatures  signal that  climate-related  drivers  will
persist and likely increase in severity across SSA if greenhouse gas emissions remain uncurbed
(Serdeczny et al.,  2017). Average temperatures in Africa are projected to rise faster than the
global average with some of the highest increases in temperature to be experienced by the Sahel
region (Welborn, 2018). Changing precipitation can include increases in the prevalence of events
such as prolonged droughts or intense rainfall and floods which can irreparably damage crops
(Ogwang et  al.,  2018).  Small-scale  agricultural  operations  face  increasing  challenges  as  the
industry is highly sensitive to climate change and extreme weather events (Williams et al., 2018).
In Africa, only 6% of cultivated land is irrigated (NEPAD, 2013). While 8% of natural disasters
globally can be attributed to drought, drought accounts for 25% of natural disasters in Africa
(Gautam, 2006). Heat stress and drought conditions threaten the productivity of crops globally
through negative impacts on plant growth, physiology and reproduction (Yordanov et al., 2000;
Barnabas  et  al.,  2008;  Prasad et  al.,  2017).  Extreme climate  shocks also have an impact  on
nutrition and food security which can, in turn, have an effect on conflict (Brown et al., 2020).
Furthermore, the severity of damage caused by drought is often unpredictable as it is a function
of  rainfall,  water-holding  capacity  of  the  soil,  and  water  losses  through  evapotranspiration
(Fahad et al., 2017; Wildemeersch et al., 2015).

Land degradation further increases the sensitivity of agroecological systems to extreme
climate events (Gisladottir & Stocking, 2005). Improving soil fertility in SSA requires farming
systems  approaches  that  prioritize addressing  barriers  across  socioeconomic  and  biophysical
aspects  (Stewart  et  al.,  2020).  About  52%  of  global  agriculture  area  is  affected  by  land
degradation  including  “soil  salinization,  acidification,  soil  crusting  and  sealing,  compaction,
organic  matter  decline,  nutrient  imbalance,  loss  of  biodiversity  and  pollution”  (Pereira  &
Bugonovic, 2019). It is estimated that 3.2 billion people worldwide are negatively impacted by
the degradation of the land surface with a disproportionate effect falling on those who already
face poverty (IPBES, 2018; Barbier & Hochard, 2018). Roughly 40% of land degradation has
occurred in developing countries and these countries are projected to experience 78% of the
global dryland expansion and 50% of the population growth by 2100 (Huang et al. 2015). In
addition, efforts to feed a rapidly growing human population have typically involved agricultural
intensification which often speeds up land degradation (Kopittke et al., 2017). Since prevention
of land degradation is preferable to restoration of degraded land, land management strategies
should attempt to prevent further damage (IPBES, 2018).

In parts of SSA, there is limited adaptive capacity which inhibits the ability to quickly
respond to changing climate and land use conditions and prevent adverse effects from hitting
vulnerable  populations  (IPCC,  2014).  Adaptation  strategies  are  pertinent  to  the  long-term
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improvement of livelihoods in Africa due to the high prevalence of climate-related risks. There
are  a  number  of  methods  aimed  at  improving  adaptive  capacity  of  farming  systems  which
address  a  variety  of  the  drivers  of  food  insecurity.  Irrigation  infrastructure  can  potentially
alleviate  some of  the  stress  brought  on  by  water  scarcity  through removing  the  reliance  on
increasingly variable rainfall (Stringer et al., 2009). Climate resilient tolerant crops and varieties
can be used in lieu of crops which are prone to drought and heat stresses (Hadebe et al., 2017)
and stone lines and grass bands can be used to reduce erosion and store water thus improving
resilience to drought (Traore et al., 2020). To avoid or reverse land degradation, there are land
management strategies such as agroforestry systems and integrated crop and livestock systems
which can be utilized (IPBES, 2018; Cowie et al., 2018). Efforts to increase adaptive capacity is
a top priority in responding to climate-related variability (Welborn, 2018).

Land use planning and management are considered foundational strategies for increasing
adaptive capacity (Webb et al., 2017). These strategies aid in the effort to protect or restore soil
health and soil fertility for food security, economic growth and national security (Herrick et al.,
2019). In the face of increasing drought prevalence, land use analysis can be used to spatially
assess agricultural suitability using a variety of physical and social factors. If coupled to strategic
planning processes, these efforts could potentially mitigate climate and degradation related risks
if combined carefully with appropriate economic and social interventions. A simple, and widely
used approach to land use planning is the Land Capability Classification system (LCC). LCC is a
land potential evaluation system that identifies land suitable to cropping or grazing land use and
the associated  physical  limitations  to productivity  risks of degradation and has been used to
identify  and  implement  management  interventions  to  improve  agricultural  productivity  and
sustainability (Abd-Alla Gad, 2015; Tiruneh, 2015). Using LCC provides the flexibility to assess
constraints to agriculture at any scale and in any location where sufficient data is available. In
addition, we can modify the limitations considered in LCC calculations to fit the landscape or
crop in/ question (Quandt et al., 2020). For example, flooding would not be a limiting factor if a
farmer was growing flood resistant rice varieties but would be a limitation if growing maize. 

In this study, we create gridded LCC assessments for agriculture in the Dosso region of
southwest Niger; an area that is important for regional food security. Further, there is significant
interest from the Government of Niger and several research and development organizations. We
built  assessments  using  two publicly-available  global  soil  map  datasets  and  compared  these
assessments  to LCC estimates  based  on field  data  thus  demonstrating  the  opportunities  and
limitations of using different types of soil maps where field data are unavailable.  The use of
these public datasets for spatial assessments of agricultural suitability provides support for land-
use planning and management in areas which are data scarce. It also allows increased scale of
assessment to investigate larger areas of land since this soil data is available globally. 

2. METHODS

2.1. Study Site Description 
The Dosso region of Niger (Figure 1) is the southwestern tip of the nation on the border of Benin
and Nigeria. Niger is in the  Sahel region of Africa, the  ecoclimatic and biogeographic zone of
transition  nestled  between  the  Sahara  Desert  and  the  Sudanian  Savanna.  Over  half  of  the
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Sahelian region relies directly or indirectly on agriculture for employment and more than 95% of
the agriculture in the Sahel is rain-fed (Potts et al., 2012).

2.2 Land Capability Classification
The LCC framework groups soils based on their limitations to their use for agricultural

production  (see  Table  1 for  breakdown of  classes).  The LCC system parses  land into  eight
classes  based  on  factors  that  may  limit  current  production,  as  well  as  the  sustainability  of
future production. It identifies limiting factors that must be managed (see Table 2 for limiting
factors) to reduce degradation risk, increase production, or both. These classes can be used to
support  land use planning decisions,  technology targeting,  and can serve as the first  step in
determining specific crop and crop production system suitability. Furthermore, determining the
limitations of soils provides information about potential interventions which could be used to
improve soil capability. 

To create LCC assessments, an LCC value was calculated for each spatial unit. The full
process is described in the supporting information but briefly, the overall LCC value was taken
by first calculating an LCC value for each of the subclasses (Table 2). The maximum of the
subclass LCC values (reflecting the most severe limitation) was taken to be the overall  LCC
value  and the subclasses with values  that  were equal  to  the maximum value are  denoted  as
primary  limitations.  We  examined  both  primary  and  secondary  limitations  in  the  results  to
examine the shift that occurs if a primary limitation is addressed through management.

In this study,  i) we use three separate data sets, including two publicly available soil map
products, to create gridded maps of LCC for the Dosso region; and  ii) we compare the results of
the  field  data-based  product  to  the  two  soil  map  products  for  both  LCC  designation  and
identification of the primary limitation. 

2.3 Data and Spatial Scale
LCC requires  a set  of soil  attributes  as input  variables.  The variables  needed for the

calculation of LCC are outlined in the supporting information.  The two publicly-available soil
datasets  we  use  are  Food  and  Agriculture  Organization  (FAO)  30  arc-second  (~1  km)
Harmonized World Soil Database (HWSD) and International  Soil  Reference and Information
Center  (ISRIC)  250m SoilGrids  data  (FAO/IIASA/ISRIC/ISS-CAS/JRC,  2009;  Hengl  et  al.,
2017). HWSD is a global traditional soil map product based on available local and national soil
maps.  One or  more  soils  is  associated  with each soil  mapping unit  and the average percent
contribution of each soil is estimated for each unit. SoilGrids predicts soil attributes using global
covariates  and  common  algorithms  fitted  with  local  data  to  develop  spatial  models  of  soil
properties. Instead of predicting what “soil” will occur at a location, it independently predicts
each soil property at each depth for each pixel (Sanderman et al., 2017; Zomer et al., 2017). 

Slope  was  calculated  by  using  the  “Spatial  Analyst  Tool  Surface  Slope”  in  ArcGIS
environment  with the most  recently  available  Sentinel-2 12.5 m resolution  Digital  Elevation
Model (DEM). We chose to start with 12.5 m resolution slope data in order to investigate the
effect of high resolution slope on LCC values. High resolution DEM data was aggregated out to
250 m at subsequent steps in analysis to improve processing speeds as initial analysis results
informed that  12.5 m resolution soil  data  did not provide much additional  variation  in LCC
assessments due to the lower resolution of soil data used. 
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Both of the publicly-available datasets lack some of the variables which are needed for
LCC analysis thus modifications were made to the LCC algorithms to incorporate whichever
attributes do exist. For more information on data attributes used, please refer to the supporting
information.

2.4 Field Data 

2.4.1 Study site

The soil  fertility  survey was conducted  in  the Dosso region located  13°02’46”N and
3°11’50”E in Niger. Mean annual rainfall in the region is 635 mm and varies from 350 mm in
the Northern part to 800 mm in the Southern part of the region with strong intra and inter annual
variation (ANADIA2, 2018). The soils derived from three major soil groups i.e. the ferruginous
soils,  the  hydromorphic  soils  and the  newly developed  soils  from alluvial  deposits  (Annou,
2000). 

2.4.2 Soil sampling location

The soil sampling covered the entire Dosso region, except a few locations in the upper
North, owing to security threats during the sampling period. A random stratified approach was
used for selection of soil sampling locations. Soil properties characteristics from clay content and
soil  organic  carbon  grids  (ISRIC,  250  m resolution)  and  climate  characteristics  from DEM
(SRTM, 90 m resolution) were used to determine soil fertility related influences between the
different areas, and based on these influences, random samples were generated between the grids
to determine the most ideal locations for sampling. Road networks (open street data) were used
to determine accessibility and a buffer of 3 km used to get locations to sample. A total of 1305
sampling points were selected (Figure 1B).

Surface soil was collected by means of a stainless steel auger at approximately 20 cm
deep. At each geo-referenced sampling location, a composite soil sample was obtained from 10
soil cores randomly collected in a 10 m-radius around the main sampling point. The samples
were air-dried at room temperature, sieved through a 2 mm mesh and stored in paper bags for
subsequent chemical analysis.

2.4.3 Laboratory analysis

Soil pH, total N and total organic carbon were determined by NIR spectroscopy, based on
a  calibration  from wet  chemistry  methods  using 100 samples,  and the associated  R2 values.
Phosphate and exchangeable bases (Ca, K, Na and Mg) and B were extracted with the Mehlich 3
method and determined by inductively coupled plasma optical emission spectroscopy (ICP-OES,
Mehlich,  1984).  Sulfate  was  determined  by  the  Ca-sulfate  procedure  (Bashour,  2007)  and
micronutrients (Cu, Mn, Zn and Fe) were analyzed by the EDTA method (Hughes et al., 1996). 

2.5 Spatial Analysis -
Three distinct data products were created with soil  input data from interpolated Field

Data, FAO HWSD, and ISRIC SoilGrids. We calculated LCC on a per-pixel basis in order to
generate spatial assessments of LCC values. All maps are 250 m in resolution. Where input data
was  not  250  m  in  resolution,  resampling  was  used  to  either  increase  resolution  (HWSD
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resampled from 1 km to 250 m) or aggregated from lower resolution (DEM slope resampled
from 12.5 m to 250 m resolution via averaging). The area of the Dosso Reserve was excluded
from LCC maps as it is not considered potential agriculture land.

In  order  to  create  a  gridded  field  dataset  from the  original  point  data  collected,  we
interpolated  each  soil  attribute  using  ordinary  kriging.  For  more  information  on the  kriging
process,  please  refer  to  the  supporting  information.  We  interpolated  field  data  at  250  m
resolution  in  order  to  match  the  resolution  of  the  other  two LCC assessments.  Because  the
average  distance  between  field  sites  is  2,742  m,  the  250  m  resolution  provided  sufficient
coverage without multiple points falling within the same pixel. 

LCC algorithms  were  based  on those used  in  the  Land-Potential  Knowledge System
mobile  application (LandPKS) which provides non-soil scientists with the ability to determine
LCC through a mobile interface. The algorithms used in this study were developed based on a
review of the LCC implementations throughout the world, and represent a consensus approach to
LCC (see supporting information for full outline of algorithms) (Quandt, 2020). Where direct
replication could not be achieved due to constraints  of the available  attributes,  modifications
were made with help from the LandPKS team. In addition to calculating LCC using all variables,
we also calculated LCC without the primary limitations. 

3. RESULTS 

Our investigation finds that across all three soil attribute data sets (i.e., HWSD, SoilGrids, and
interpolated field data) LCC values are high (meaning poor suitability for crops) in the Dosso
region (Table 3). For the interpolated field data assessment, the majority of the region (95.1%) is
ranked with a LCC value of 4 - Very severe limitations with fewer cropping options and/or
requiring extensive conservation practices. In addition, in the interpolated field data assessment a
small portion of the region (1.5%) falls into capability Class 5 - Not suitable to crop cultivation.
HWSD also assesses that a large majority of the region is classified as LCC of 4 (87.5%) and
that  a small  portion (3%) is  unsuitable  for agriculture.  We investigated the LCC values  and
limitations of subdominant soils (<50% of soil mapping unit) in the HWSD dataset and found
only minor differences in severity of LCC classes or limitations. Due to the limited number of
soil mapping units within the HWSD dataset, the LCC analysis is unable to detect the spatial
heterogeneity of LCC severity and limitations. SoilGrids assessments provide the most optimistic
evaluation with 53.9% of the region classified as LCC of 4 and 44.6% classified as LCC of 3.
None of the assessments generate LCC values with no (Class 1) or moderate (Class 2) limitations
to agriculture. 

The spatial distributions of LCC assessments also vary across the three soil data sources
(Figure 2). In all of the assessments, the southernmost tip of the Dosso region has lower LCC
classes indicating better potential for agriculture. Furthermore, all of the maps have LCC values
of 5 or above (i.e.,  unsuitable  for agriculture)  on the southeastern border of the region.  The
differences between spatial distributions of the underlying soil data attributes is mimicked in the
spatial  distribution  of  LCC  values  (Figure  2).  The  interpolated  field  data  does  not  have  a
substantial amount of spatial variation in LCC values. SoilGrids has a high amount of spatial
variability while HWSD has large polygons which underlie the assessments.  

When  we  remove  the  primary  limitation,  AWC,  from LCC calculation,  LCC values
decline across the region and across assessments (Table 3). In the assessments of interpolated
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field data, the removal of AWC shifts to a majority (92.3%) of the region classified as LCC of 3
instead of LCC of 4. While an LCC of 3 still denotes severe limitations to agriculture, this is a
movement in a positive direction for agricultural  development.  Furthermore,  a portion of the
region  (6.1%)  moves  into  an  LCC of  2  -  moderate  restrictions  to  agriculture.  HWSD  and
SoilGrids assessments also move to the majority of the region classified as LCC of 3. While
HWSD evaluates the region as 97.05% LCC value of 3, SoilGrids classifies 66.4% of the region
as an LCC of 3 with 32% of the region classified as LCC of 2. 

Across all three assessments, the primary limitation for the majority of Dosso is available
water-holding capacity. In the interpolated field data assessment, 98.5% of the region has AWC
as a primary limitation and 1.5% with a primary limitation of surface stoniness (recall that there
can  be  multiple  primary  limitations  if  multiple  subclasses  have  maximum  LCC  values).
SoilGrids has an identical breakdown of primary limitations which is the same as that of the field
data since both share the same surface stoniness data. HWSD has slightly higher rates of surface
stoniness as a primary limitation (7%) but still  assesses the majority  of the region (93%) as
limited by AWC.

The  spatial  patterning  of  limitations  is  similar  across  all  three  assessments  with  the
southeastern tip of the Dosso region showing primary limitation of surface stoniness (Figure 3).
HWSD has less spatially detailed limitations due to the polygon soil mapping unit structure of
the underlying soil data. Subdominant soil mapping units did not produce substantial differences
in limitation with the exception of one polygon in the southeastern tip where the primary soil unit
denotes an impermeable petroferric layer while subdominant units do not. Furthermore, when
considering subdominant soils we found little within-map heterogeneity with respect to AWC
and as a result subdominant soils provided little benefit to our analysis. 

When  we  remove  the  primary  limitation  (AWC)  from  the  LCC  calculation,  we
investigate the soil suitability if land-planners were to manage for this limitation with irrigation
technology. We find that in the interpolated field data assessment, the primary limitation shifts to
lime requirement (28.5%), surface stoniness (10.4%) or a combination of both (55%) with the
remaining 6.1% being a combination of many limitations. In the SoilGrids assessment, we find
that 58% of the region is limited by surface stoniness, 28.5% is limited by texture and surface
stoniness, and the remaining parts of the region are limited by a combination of subclasses. In
HWSD, 100% of the region is limited by surface stoniness.

4. DISCUSSION
Niger’s agricultural system has low adaptive capacity in the face of a changing climate due to
limited irrigation capacity and low economic development. It serves as a case study for other
parts  of  SSA  that  face  similar  constraints.  The  analysis  approach  presented  in  this  paper
highlights the broad challenges to agricultural development in Niger. However, the constraints
on agriculture  in  Niger  are  multifaceted  and spatially  varied and potential  interventions  and
responses may be more effective if these complexities are addressed. 

As Niger is projected to reach a population of 65.6 million by 2050 (medium-variant
estimate, United Nations 2019), there is a growing population of Nigeriens who will need food
and employment - both of which can be supported by a strong agricultural system. One of the
main solutions presented to stabilize the Sahel region of SSA is to improve agricultural systems
and natural resource management (Potts, 2013). Furthermore, improving agriculture may also
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help prevent civil unrest as conflict often stems from natural resource scarcity and lack of arable
land (Shettima and Usman, 2008). The combined challenges of social conditions and biophysical
conditions  which  limit  or  stress  agricultural  production  underpin  the  need  for  thoughtful
management practices.

When  land  management  plans  are  created,  there  are  considerations  external  to  the
biophysical properties which need to be considered. For example, while irrigation may greatly
reduce the limitation of AWC, this is an expensive and possibly impossible investment for many
farms (Nakawuka et al., 2018). There may not be groundwater available or infrastructure in place
to utilize this strategy. In many parts of SSA, land tenure may pose challenges to management
plans (Barrows and Roth, 1990; Schuck, E. C., Nganje, W., & Yantio, D., 2002). In addition, the
prevalence of pastoralism may impact decision-making as conflicts between grazing and crop
production can be significant in this region (Shettima & Usman, 2008; Muhammed et al., 2015).
The best management for given limitations must be feasible. What is pinpointed by LCC analysis
as the most impactful intervention may not be an option and this is important to recognize early
in the planning process. Sub-optimal farming conditions will also persist if individuals lack the
capacity or capital to change their practices or when social conditions prevent adaptations of new
techniques (Lal, 2007; Bryan et al., 2013). Despite the various constraints identified above, the
LCC  analysis  is  a  reasonable  first  step  toward  improved  management  of  the  physical
environment. The LCC framework allows for a highly customized approach to management that
can then be modified based on additional physical, financial, or social constraints. 

Our results show that in the Dosso region there are very severe limitations to agriculture.
All 3 LCC assessments show a majority of the region ranking as LCC Class 4. This indicates that
limitation-specific intervention strategies will be needed in order to improve the capability of
land for agricultural use. In addition, all three approaches indicate that over 90% of land in the
Dosso region is primarily limited by AWC and is thus vulnerable to drought. While there is
broad agreement that there are severe limitations to agriculture,  there is a notable amount of
spatial heterogeneity in both the severity and type of limitations when we remove AWC form
LCC calculation. This has implications for management as this heterogeneity will affect which
intervention strategies are suitable or chosen across the region. 

In the Dosso region of Niger,  the primary LCC analysis  identified AWC, which is a
function of soil texture (sand, silt, and clay content), volumetric gravel content, organic matter
content and soil depth,  as the most prevalent limitation. Since the textures in this region are high
in sand content, water infiltration rates are high and retention is relatively low which means that
water management is critical to long-term agricultural success. In rainfed agricultural systems,
the ability of soil to hold water is crucial in the face of drought events (Cornelis, 2019) and
variation in AWC can be a key factor in determining whether a site is more or less vulnerable to
drought conditions. Soils that hold more water may support plant growth for longer periods of
time when rainfall is sparse. Possible management responses to the widespread AWC limitation
are irrigation,  use of drought  tolerant  crop varieties,  and use of land for grazing rather  than
cropping systems. Improvements in soil structure and organic matter content can increase AWC,
though this  is  quite  challenging  in  dryland annual  cropping systems.  These  are  additionally
subject to the economic, social, and land tenure constraints identified previously.

There  is  disagreement  between  the  three  analyses  when  investigating  secondary
limitations  and  these  differences  could  be  important  especially  if  additional  irrigation  is
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developed in the region. Most notably, SoilGrids and HWSD fail to detect the widespread soil
pH issues identified from field sampling that would need to be mitigated through the addition of
lime.  The  other  key  issue  that  varies  between  the  input  datasets  is  soil  texture  which  has
important implications for soil water holding capacity, erosion potential, and other factors. In our
analysis of the Dosso region, we find that HWSD texture values are closer to that of the field
data than SoilGrids. SoilGrids under-predicts the high levels of sand content and thus presents
texture as more favorable to agriculture than the field data suggests. Upon removing AWC as a
limitation, SoilGrids continues to underestimate overall LCC constraints while HWSD tends to
overestimate the severity of limitations to agriculture. Both HWSD and SoilGrids fail to detect
the nuances of secondary limitations to agriculture and particularly the presence of low pH soils
in the region that was identified in field sampling. These differences are large enough to generate
more favorable LCC ratings for the Dosso region overall. 

Both HWSD and SoilGrids lack the detail which is shown in the field data assessments
and this region of Niger may be a uniquely challenging location for the use of both of these
products. In the case of HWSD, the large spatial scale is a challenge for a regional analysis like
this. It is possible that improved consideration of subdominant soils within HWSD could provide
useful  information  which could  be incorporated  into LCC analysis  for  added robustness  but
spatial attribution of dominant and sub-dominant soil properties remains a challenge with this
product.  While  SoilGrids  provide  higher  spatial  resolution,  there  are  also  large  differences
between the SoilGrids attributes and field data. In Niger, this may be due to the small amount of
training points available in the region as inputs to the SoilGrids models. As was noted by Hengl
et al. (2017), semi-arid and arid areas are often undersampled . It is possible that in other areas of
the world, where there are more training samples, SoilGrids would result in estimates that are
closer to actual field conditions. In addition to textural limitations, the depth of soils also affects
available water holding capacity as deeper soils  can hold more water but at  present we lack
sufficient information to evaluate this factor at a regional scale. For our analyses, we did not
have  soil  depth  data  collected  at  the  field  sites  or  depth  attributes  in  the  publicly-available
datasets.  However,  root-limiting  layers  including hardpans  have  been widely  documented  in
Niger and some field evaluation should be considered to improve estimation of this potential
limitation. 

While it is ideal, field data is expensive and time consuming to collect. Despite the dense
field measurements available for this analysis, these data are still  incomplete in a number of
important ways. Many of the attributes which are needed for LCC analysis (volumetric gravel
content, soil depth, etc.) were not measured. Since soil was only sampled to a depth of 20 cm at
the field sites, we used the 0-20 cm soil depth measurements for the 20-100 cm depth attributes
that are necessary for calculating LCC for the full profile. This can be an issue as subsurface
texture can be an important constraint to agriculture and surface textures tend to be more coarse
than subsurface textures.  Clay content  typically  increases  with depth,  which in these coarse-
textured  soils  would  generally  improve  AWC,  potentially  reducing  this  limitation.  When
exposed at the soil surface by erosion, these clay-rich layers can limit infiltration. Furthermore,
volumetric gravel content was not measured at the field sites thus data from SoilGrids was used
to augment the field data. The limitations in the field data in this study are a common issue
across  many  or  most  field  measurement  campaigns  as  there  are  economic  and  logistical
constraints  to field sampling in all regions and especially in a field setting as challenging as
Niger.  In virtually  all  cases,  there is  rarely sufficient  detail  in  field sampling to create  high
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resolution management  strategies.  As a result  some combination of field data  collection  and
incorporation  of  existing  geospatial  resources  may  be  the  most  effective  near  term regional
analysis and mapping strategy. 

There  are  many  ways  to  improve  LCC  predictions.  Most  notably,  additional,  more
complete site level data with a wide variety of attributes and a variety of sampling depths would
yield higher confidence in the resulting LCC analysis. In the absence of such data, we suggest
that the combination of this type of analysis and targeted field assessment could yield a viable
hybrid approach. The broad scale analysis here has identified AWC (soil texture) and pH as two
key variables. Given this information, high resolution site level data in areas of interest could be
obtained to identify these limitations. This might include field determination of pH values, and
hand textures of soil  supported by the use of a mobile application such as LandPKS. If  the
texture analysis was extended to include both surface and subsurface soils, and combined with
the  spatial  data  developed  here,  a  reasonably  accurate  site-scale  analysis  could  be  rapidly
developed  and  deployed  in  conjunction  with  agricultural  interventions  such  as  micro-scale
irrigation. At a larger scale, information on water table depth could be used in conjunction with
this mapping exercise to localize and prioritize irrigation strategies.  

5. CONCLUSIONS
The  LCC provides  a  first-step  assessment  of  agricultural  potential  and  identifies  the

limitations which may impact the usage of land for agriculture at a regional scale. While this
provides a starting point for devising a management strategy, it is not sufficient for making farm-
level decisions. Even on small farms, there is often a substantial amount of heterogeneity in soil
attributes and management concerns. Furthermore,  when using public datasets,  the resolution
will not provide information at a scale which is compatible with smallholder systems. In order to
fully understand the management considerations, there must be some way of locally assessing
capability or input soil attributes. Field sampling at the farm level is one way to do this. Other
methods of local assessment include using mobile apps such as LandPKS.  Understanding the
key underlying limitations  to  land capability  is  critical  in attempting  to  improve agricultural
outcomes and to build resilience to climate change and extreme weather events. Furthermore,
understanding the spatial variation in limitations can lead to improved allocation of resources
and interventions. Land management plans must be as varied as the landscape itself in order to
be efficient and effective. When resources are scarce, targeting high risk areas with low cost
interventions can maximize outcomes. 

Data Availability Statement 
Source code is available for download at https://github.com/taraippolito/nigerLCC. These

data  were  derived  from  the  following  resources  available  in  the  public  domain:
https://soilgrids.org/  and
http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-
database-v12/en/. 
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Tables
TABLE 1  : Abbreviated Land Capability Classification Ranking System (USDA)  

Capability class 
codes†

Soil limitations for agricultural use

LCC class 1 Most suitable for cropping systems with few limitations to crop growth

LCC class 2 Suitable for agriculture with moderate limitations that may restrict crop selection or 
require specific management practices

LCC class 3 Severe limitations that will significantly reduce cropping options and/or require extensive 
conservation practices

LCC class 4 Very severe limitations with fewer cropping options relative to class 3 and/or more 
extensive conservation practices

LCC classes 5-8 Not suitable to crop cultivation

† Class codes are used to represent both irrigated and non-irrigated land capability classes.

TABLE     2  : Land Capability Classification Subclass Limitations and possible interventions. For more interventions   
see www.wocat.net.

Subclass Potential interventions

Erosion  Stone lines; halfmoon; grass bands; zai; reduced tillage; 
agroforestry; pasture; hay; conservation

Soil

Depth Zai; halfmoon; tied ridges; possibly deep tillage (only where 
depth to a non-bedrock root-limiting layer that can be broken 
and erosion risk is low); agroforestry; pasture; hay; 
conservation

Surface soil texture Increase organic amendments such as manure, compost and 
crop residues to support seedling establishment; leave crop 
residues or use cover crops to protect soil surface from wind 
and water erosion

Salinity  Plant salinity tolerant crops; modify irrigation schedule and 
amount to mitigate near-surface salt accumulation from both 
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soil parent material and salts in irrigation water.     

Surface stoniness Remove stones or use planting methods that are not limited by 
surface stones

Soil water storage capacity Increase organic amendments such as manure and crop 
residues; use drought tolerant crops including pasture and hay 
species; use zai, stone lines, grass bands, tied ridges, contour 
ridges and half moon for rainwater capture; install irrigation; 
keep soil surface covered; reduce planting density

Lime requirement Add lime; some biochars in some cases; use non-acidifying 
fertilizers

Wetness

Flooding Communal level dams, use flood tolerant crops

Water table depth Conservation; pasture; hay

Permeability Increase organic amendments such as manure and crop 
residues; use zai, stone lines, tied ridges, contour ridges, grass 
bands, and half moon for slowing surface runoff; some tillage

TABLE 3  : Land Capability Classification breakdown with all limitations considered  

LCC results with all limitations considered

Input soil dataset LCC  

class 1

LCC 

class 2

LCC 
class 3

LCC 
class 4

LCC 
class 5

Interpolated field data 0% 0% 3.4% 95.1% 1.5%

FAO Harmonized World Soil Database 0% 0% 9.5% 87.5% 3%

ISRIC SoilGrids 0% 0% 44.6% 53.9% 1.5%

LCC results with available water holding capacity removed as a limitation

Input soil dataset LCC  LCC LCC LCC LCC 
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class 1 class 2

class 3 class 4 class 5

Interpolated field data 0% 6.1% 92.3% .04% 1.5%

FAO Harmonized World Soil Database 0% 0% 97.05% .05% 2.9%

ISRIC SoilGrids .003% 32% 66.4% .04% 1.5%
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FIGURE 1 (A): Boundary of the Dosso region of Niger. Dosso reserve has been removed from Land Capability 
Classification assessment as it is not considered potential agricultural land; and (B): 1308 field Sites in the Dosso 
Region

FIGURE 2: Land Capability Classification (LCC) maps for SoilGrids, Field Data, and Harmonized World Soil
Database (HWSD). LCC ranges from 1 to 8 and is calculated on a per pixel basis

FIGURE 3: Limitation maps for SoilGrids, interpolated field data and Harmonized World Soil Database (HWSD). 
Note that the field data image uses surface stoniness inputs from SoilGrids resulting in the similar spatial patterning
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Supporting Information

Methods

The LCC approach typically  includes  the evaluation  of climatic  conditions  (primarily
mean rainfall) as one of the factors influencing agriculture.  We did not include this limitation in
our LCC analysis for two reasons. First, the majority of this region (with the exception of the
southern portion of Dosso) is very low rainfall and crop  growth is understood to be constrained
by rainfall  amounts. Second, rainfall  in this  region has high interannual variability  making a
characterization of average rainfall less valuable for the prediction of cropping potential than it
might  be  in  a  more  stable  climatic  region.  Lastly,  the  relatively  constraint  of  precipitation
depends on the crop and is best evaluated through a crop suitability analysis. Our approach to
LCC (excluding climate) provides a physical system/soil baseline for capability analysis.  It also
allows  identification  of  some  key  modifiers  of  site  capability  including  the  water  holding
capacity of soils.

To calculate LCC for each pixel, we modified the resolution to be uniform across datasets
and  layered  soil  attributes  with  slope  data  so  each pixel  had  all  attributes  needed  for  LCC
calculation. In order to layer soil attributes with slope data, all datasets had to be processed in
ArcGIS to ensure pixel alignment  and to modify resolution as needed. The ArcGIS “Spatial
Join”  tool  was  used  during  data  processing  in  order  to  layer  data.  All  input  datasets  were
projected  onto  the  same  coordinate  system  in  order  to  ensure  there  is  no  geographical
displacement between datasets (i.e. all pixel boundaries need to perfectly overlap). Each input
dataset was trimmed to the area of analysis - the Dosso region.

In kriging first order trends for sand, silt, and clay values, were removed as there is a
North/South trend in texture values. Trend removal is a key component of ordinary kriging so
that  the  kriging  model  is  built  on  the  autocorrelation  structure  of  the  data;  thus  the  spatial
relationship  between  sites  is  understood  and  used  in  prediction  of  texture  values.  The
North/South  trend  in  texture  values  is  still  preserved  in  resulting  predictions.  Kriging  was
implemented within ArcGIS using the Geostatistical Wizard tool.

Data 

FAO Harmonized World Soil Database (30 arc-second) - 

HWSD global  soil  data  attributes  are derived from analyzed profile  data  which were
obtained from a wide range of countries and sources (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009).
There are soil attributes for the 0-30cm horizon (topsoil) and the 30-100cm horizon (subsoil).
Since  these  profiles  are  unevenly  distributed  across  the  globe,  there  are  large  gaps  in  the
measured data. HWSD includes 15,773 soil mapping units globally where each soil mapping unit
is attributed with a number of soil properties for each soil in the unit, including topsoil texture,
pH, and volumetric gravel content.  Each soil mapping unit can include up to 9 unique soils,
where soil units each is assigned an average (across all occurrences of that unit) share (from 0 to
100%) of the overall soil mapping unit. In Niger, there were 62 soil mapping units and in the
Dosso region there were 16 polygons, associated with a total of 13 unique mapping units (figure
3). This scarcity of soil mapping units presents a limitation to accurately assessing and mapping
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the LCC of the region. We chose to use only the primary or dominant soils for each soil mapping
unit (i.e. the soil unit with over 50% of the share in the soil mapping unit). 

Each type of polygon may repeat in different parts of the landscape where soil forming
factors (climate, organisms, topography, parent material and time) are similar. Traditional soil
maps are based on a combination of remote sensing and field data, field observations, and the
mapper’s  understanding of  soil  processes,  and soil-landscape  relationships,  and is  often also
informed by local knowledge. Thus it often results in a relatively accurate product, but due to the
scale of mapping, can be quite imprecise at point locations, particularly when only the dominant
soil for the map unit is considered. It is also both less accurate and less precise than the local to
national maps from which it is derived for a number of reasons, particularly the presentation of
soil properties for just 2 standard depths: 0-30cm and 30-100cm. HWSD is used as an input in a
wide range of products such as NASA Soil Moisture Active Passive Product (SMAP, 2014). 

ISRIC SoilGrids (250m) - 

ISRIC’s  SoilGrids  dataset  is  a  250m  resolution  gridded  dataset  with  predicted  soil
attributes from 0 to 200m. Each discrete horizon (0cm, 5cm, 15cm, 30cm, 60cm, 100cm, 200cm)
has independently predicted attributes Predictions for SoilGrids are generated by a tree-based
non-linear  machine  learning  model  with  soil  profiles  from 150,000  unique  sites  distributed
across  the globe (Hengl,  2017).  There is  significant  undersampling  in  some areas,  including
where there are extreme climatic conditions and/or restricted access and that semi-arid or arid
landscapes are common locations where this occurs (2017). The Dosso region of Niger is semi-
arid, in Figure 2 we see very few samples in the Dosso region which likely had an effect on the
accuracy of the SoilGrid predictions in this region.

Summary of Data Inputs - 

One of the main differences between the soil datasets is the topsoil texture (SI Table 1).
Texture is particularly important in this assessment because of its role in water holding capacity
and soil drainage conditions. HWSD has far less variability in topsoil texture than SoilGrids or
the field data. Across all three datasets, sand content is high with many topsoils classified as
sand, loamy sands, or sandy loams. This high prevalence of sand content is reflected in low
available water-holding capacity and high permeability of the soils. 

SI Table 1: breakdown of topsoil textures in each dataset

Input soil dataset sand loamy 
sand

sandy 
loam

sandy clay
loam

loam

Interpolated Field Data (0-20cm) 66.3% 30.7% 3% 0% 0%

FAO Harmonized World Soil Database (0-30cm) 87% 0% 5% .5% 7.5%

ISRIC SoilGrids (0-15cm) 16.5% 32.3% 49.3% 1% 1%
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Slopes in the region are mostly flat with mean slope across the region equal to 2.79%
(Maximum slope 29.88%, minimum slope 0%, standard deviation 1.70%). While there are some
areas  of  the region with steeper  slopes,  the majority  of  the  region has  slopes  which do not
negatively affect land capability classification. Slope of the landscape, when compounded with
texture, plays a role in erosion risk which can reduce the capability of land for agricultural usage.

SI Table 2: LCC calibration - Data Source Attributes 

 Input data source Variables 
needed for 
LCC

Attributes used from data set

FAO Harmonized 
World Soil Database 

Soil depth  Phases - binary indicators based on characteristics which are 
significant for land management

Roots - depth class of an obstacle to roots

Surface Soil 
Texture 

Sand, silt, and clay percentages for 0-30cm

Salinity  Electrical conductivity 0-30cm

Surface 
Stoniness

Volumetric gravel (particles >2mm) content of 0-30cm 

Soil Water 
Storage Capacity

Calculated for 0-30cm and 30-100cm horizons using texture, organic 
matter, and rock fragment, summed over horizons

Lime 
Requirement

pH value 0-30cm

Water Table 
Depth

Attribute unavailable

Flooding  Phases - binary indicators based on characteristics which are 
significant for land management

Permeability Calculated for 0-30cm and 30-100cm horizons using texture, organic 
matter, and rock fragment, minimum permeability value of all 
horizons used

Input data source Variables 
needed for 

Attributes used from data set
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LCC

ISRIC SoilGrids   Soil depth  Depth to Bedrock 

Surface Soil 
Texture†

Sand, silt, and clay percentages of 0-15cm horizon ‡ 

Salinity attribute unavailable

Surface 
Stoniness

Volumetric gravel (particles >2mm) content of 0-5cm horizon ‡

Soil Water 
Storage Capacity

Calculated for each horizon using texture, organic matter, and rock 
fragment, summed over horizons ‡

Lime 
Requirement

pH value 0-30cm horizon ‡

Water Table 
Depth

Attribute unavailable

Flooding Attribute unavailable

Permeability Calculated for each horizon using texture, organic matter, and rock 
fragment, minimum permeability value of all horizons ‡ used

 Input data source Variables 
needed for 
LCC

Attributes used from data set

Field Data 

Soil Depth Attribute unavailable

Surface Soil 
Texture

Sand, silt, and clay percentages from 0-20cm 

Salinity Attribute unavailable

Surface 
Stoniness §

Volumetric gravel content of 0-5cm horizon ‡ from SoilGrid dataset

Soil Water 
Storage Capacity

Calculated for 0-20cm using texture, organic matter, and rock 
fragment, multiplied by 5 to have 100cm of soil water storage 
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capacity

Lime 
Requirement

pH value  from 0-20cm

Water Table 
Depth

Attribute unavailable

Flooding Attribute unavailable

Permeability Calculated using texture, organic matter, and rock fragment §

Sentinel-2 Digital 
Elevation  Model

Slope Calculated using ArcGIS 

† Since SoilGrids attributes are predicted independently, textures were normalized to 100% as sand, silt and clay 
percentages often do not add to 100%
‡ SoilGrids has attributes for discrete layers (e.g. 60cm) rather than attributes for horizons. To calculate attributes 
for horizons, we took weighted averages of discrete layers as is recommended by Hengl 2017 Citation - Hengl, 
Tomislav, et al. "SoilGrids250m: Global gridded soil information based on machine learning." PLoS one 12.2 
(2017).
§ Surface Stoniness was added to field data through spatially joining Surface stoniness measurements from 
SoilGrids 

Data limitations and implications - 

It is important to note that of the modifications in the LandPKS LCC algorithms, the
difference in measurement of surface stoniness has notable implications for LCC analysis. In
LandPKS LCC analysis, surface stoniness is measured by visually inspecting the surface of the
land and reporting the percentage of land which is covered by stones or boulders which are
greater than 25cm. Since this measurement  was not available in the field data,  SoilGrids, or
HWSD, we used topsoil volumetric gravel content (percentage of materials in soil which are
greater than 2mm). For this reason, mapping of limitations due to surface stoniness should be
treated as having a high degree of uncertainty.

A major issue in most soil analyses is the presence of varied conditions in the subsurface.
Soils often have textural changes from the surface to deeper layers and these changes can have
major impacts on agriculture, particularly when subsurface soils contain fine textures layers that
have low infiltration or are in some cases impermeable. The soil sampling done in this project
was just to 20 cm and so we assumed similar conditions at depth.  For the soil products, we use
the mapped properties of deeper layers but these are likely not highly accurate, especially at finer
spatial resolutions. These are limitations that are present in most soil analysis efforts but should
be noted as a source of uncertainty in these map products and an area where more detailed
analysis would be required prior to any land planning activity.  
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In the Dosso region there  are  large areas  covered by shallow soils  that  are  not  fully
captured in the field data or the global scale map products. These soils are naturally occupied by
shrubs. However, due to land pressure, farmers may clear these shrubs but then later abandon the
fields  due to  sudden decrease  in  soil  fertility.  Such practices  leave  hardpan and stony areas
behind especially  in  the  northern  and central  part  of  the region.  These degraded landscapes
cannot be fully captured in this initial mapping approach and should be considered in any field-
scale application of LCC. Similarly other areas that have been heavily degraded due to land use
will not be represented in the HWSD or Soil Grid based products.

Results

As with SoilGrids  sand content  values,  there is  a  North-South  trend in  AWC values
where there are lower AWC values in the northern part of the region and higher AWC values in
the southern tip of the region. SoilGrids has a mean AWC value of 6.0cm (maximum 11.3cm,
minimum 3.8cm). In HWSD, we see this same trend but with far less spatial variation due to the
small number of soil mapping units in the region. HWSD has a higher mean AWC value of
9.4cm (maximum 25.4cm,  minimum 8.2cm).  For  the interpolated  field data,  there  are  lower
AWC values in the North and lower AWC values in the South, but there are pockets in the center
of the region with both high and low AWC values. The interpolated field data shows a mean
AWC value of 4.6cm (maximum 7.2cm, minimum 3.3cm).

Our analysis highlights the distinct differences between publicly available soil datasets
and their limitations in usage for land-use management decisions. Both HWSD and SoilGrids
accurately  identified  available  water  capacity  as  the  primary  limitation  in  the Dosso region.
Neither  HWSD  nor  SoilGrids  identified  lime  requirement  as  a  limitation  when  AWC  was
removed from the LCC calculations. Since surface stoniness was not measured at field sites, we
cannot assess how accurate HWSD and SoilGrids were at detecting this limitation. Furthermore,
in terms of capability classes, both HWSD and SoilGrids assessments underestimate the severity
of limitations to agriculture when LCC is calculated with AWC as a limitation. When AWC is
removed  as  a  limitation,  SoilGrids  underestimates  severity  of  limitations  while  HWSD
overestimates severity of limitations. While SoilGrids does not perfectly assess the capability
classes, it picks up on the spatial variation in the region that HWSD does not identify. Since
HWSD is only made up of 13 unique soil mapping units, the region gets split into blocks which
preclude the development of management strategies at a finer resolution. Given that many farms
in this region are a few hectares in size, finer resolution capability assessment is highly useful. 

The most notable difference between these three assessments is in the values of soil water
storage capacity. Soil water storage capacity is expressed as AWC which is a function of sand,
silt  and clay content,  organic matter,  and volumetric  gravel content  (% of soil  with particles
>2mm). In general, higher sand content yields lower AWC values (depending on the relative
ratio of silt to clay) and higher organic matter content yields higher AWC. Due to the high sand
content values across the region in all three input soil data sets, all three assessments have low
AWC values. There are some notable differences between the AWC values of each of the data
sets (see supporting information for spatial analyses of AWC). High sand content in the region
leading to low water storage capacity is an relatively immutable characteristic of the soils in the
Dosso region over management time scales, except where soil loss exposes a layer with different
texture, or tillage, termites, ants or burrowing animals result in mixing of different layers. Given
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the low level of rainfall in this semi-arid area, low water storage capacity would be detrimental
to crop productivity during most if not all years. 

SI Table3: LCC limitation breakdown with AWC removed 
Input Soil Dataset LCC primary limitation

Interpolated Field Data 55% lime requirement and surface stoniness

28.5% lime requirement 

10.4% surface stoniness

6.1% erosion, texture, lime requirement, and/or surface
stoniness 

FAO Harmonized World Soil Database 100% surface stoniness

ISRIC SoilGrids 58% surface stoniness

28.5% texture and surface stoniness

7.9% lime requirement and surface stoniness

3.9% erosion, texture, lime requirement, and/or surface
stoniness 

1.7% lime requirement

SI  Figure 1:  Calculated AWC for  SoilGrids,  Field Data,  and HWSD.  AWC is  a  function of  soil  texture,  rock
fragment content, and organic matter. AWC is measured in centimeters and is calculated to 100cm depth. 
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SI Figure 2:  Difference  between Interpolated Field Data AWC values  and HWSD and SoilGrids AWC values.
Difference is measured in cm and is the absolute value of Field data AWC minus HWSD or SoilGrids AWC

SI Table 4: AWC Descriptive Statistics 
Input Soil Dataset AWC descriptive statistics (cm /m soil)

FAO Harmonized World Soil Database Minimum 8.2 cm

Maximum 25.4 cm

Mean 9.4 cm

Standard Deviation 3.7

ISRIC SoilGrids Minimum 3.8 cm

Maximum 11.3 cm

Mean 6.0 cm

Standard Deviation .9 

Interpolated Field Data Minimum 3.3 cm

Maximum 7.2 cm

Mean 4.6 cm

Standard Deviation .5 
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Discussion
Through the addition of irrigation infrastructure, water storage capacity could be removed

as a limitation to these soils.  Irrigated agriculture represents less than 1% of the total cultivated
area and all agriculture contributes to 38% of the GDP (FAO, 2016, World Bank, 2019). There is
tremendous potential to expand irrigation and improve agricultural outcomes across the region
which, in turn, improves the livelihoods of smallholder farmers. The USDA highlights a number
of practices which lead to poor water storage capacity such as conventional tillage operations,
low residue crop rotations,  heavy equipment  traffic on wet soils, and grazing systems which
allow loafing areas and livestock trails (USDA, 2008). There are methods which can be used to
improve low water storage capacity such as conservation crop rotation, growing cover crops, and
prescribed grazing (USDA, 2008) as well as stone lines, grass bands, half moon, and Zai (Traore
et al., 2020). Farmers can also plant drought-tolerant crops thereby reducing the need for stored
water. While the stoniness of soils has limited management options, the lime requirement can be
modified through targeted lime application. However, most applications of lime in the region are
cost prohibitive due to high lime prices, low crop yields, and low crop market prices. 
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