Ali Omer

and 13 more

Alien species can have massive impacts on native biodiversity and ecosystem functioning. Assessing which species from currently cultivated alien floras may escape into the wild and naturalize is hence essential for ecosystem management and biodiversity conservation. Climate change has promoted the naturalization of many alien plants in temperate regions, but whether outcomes are similar in (sub)tropical areas is insufficiently known. In this study, we used species distribution models to evaluate the current naturalization risk of 1,527 cultivated alien plants in 10 countries of Southern Africa and how their invasion risk might change due to climate change. We assessed changes in climatic suitability across the different biomes of Southern Africa. Moreover, we assessed whether climatic suitability for cultivated alien plants varied with their naturalization status and native origin. The results of our study indicate that a significant proportion (53.9%) of the species are projected to lack suitable climatic conditions in Southern Africa, both currently and in the future. Based on the current climate conditions, 10.0% of Southern Africa is identified as an invasion hotspot (here defined as the top 10% of grid cells that provide suitable climatic conditions to the highest numbers of species). This percentage is expected to decrease slightly to 7.1% under moderate future climate change and shrink considerably to 2.0% under the worst-case scenario. This decline in climatic suitability is observed across most native origins, particularly under the worst-case climate change scenario. Our findings indicate that climate change is likely to have an opposing effect on the naturalization of currently cultivated average plants in (sub)tropical Southern Africa compared to colder regions. Specifically, the risk of these plants’ naturalizing is expected to decrease due to the region’s increasingly hot and dry climate, which will be challenging for the persistence of both native and alien plant species.

Soroor Rahmanian

and 5 more

Aridity and intensive grazing have been confirmed to affect the facilitative effects of dryland shrubs. However, their combined effects on plant-plant interactions have rarely been tested. To test how these two factors affect relations between plants, we analyzed 144 plots (under shrub canopy vs. open areas) at 12 sampling areas established in the conditions of two grazing regimes (high grazing vs. low grazing intensity) and two different climatic regions (arid vs. semi-arid) in northeastern Iran. A dominant shrub, Artemisia kopetdaghensis, was selected as the model species. Further, we studied changes in plant life strategies along the combined grazing and aridity stress gradients. We used relative interaction indices to test the outcomes of plant-plant interactions, calculated for species richness, Shannon diversity and species abundances. Then we compared them using linear mixed-effect models (LMM). The indicator species analysis was used to identify species typical for the under-canopy of shrub and for the adjacent open areas. The combination of stress factors affected the type and intensity of plant-plant interactions and plant life strategies (CSR) of the indicator species. Artemisia kopetdaghensis showed the highest facilitation effect under the most intensive stress conditions (high aridity/high grazing), which turned into competition under the low stress conditions (low aridity/low grazing). In the arid region, the canopy of shrub protected ruderal annual forbs and grasses with SR and R-strategy, respectively, in both high (high aridity/high grazing) and low grazing intensity (high aridity/low grazing). In the semi-arid region and high grazing intensity (low aridity/high grazing), the shrubs protected perennial forbs with C-strategy. Our FINDINGS highlight the importance of context-dependent shrub management in the restoration of vegetation damaged by intensive grazing.