References
1. Ayelign B, Negash M, Genetu M, Wondmagegn T, Shibabaw T. Immunological Impacts of Diabetes on the Susceptibility of Mycobacterium tuberculosis. J Immunol Res (2019) 2019 : doi:10.1155/2019/6196532
2. Ehlers S, Schaible UE. The granuloma in tuberculosis: Dynamics of a host-pathogen collusion. Front Immunol (2012) 3 :1–9. doi:10.3389/fimmu.2012.00411
3. Meenakshi P, Ramya S, Lavanya J, Vijayalakshmi V, Sumanlatha G. Effect of IFN-γ, IL-12 and IL-10 cytokine production and mRNA expression in tuberculosis patients with diabetes mellitus and their household contacts. Cytokine (2016) 81 :127–136. doi:10.1016/j.cyto.2016.03.009
4. Cooper AM, Mayer-Barber KD, Sher A. Role of innate cytokines in mycobacterial infection. Mucosal Immunol (2011)4 :252–260. doi:10.1038/mi.2011.13
5. Boillat-Blanco N, Tumbo AMN, Perreau M, Amelio P, Ramaiya KL, Mganga M, Schindler C, Gagneux S, Reither K, Probst-Hensch N, et al. Hyperglycaemia is inversely correlated with live M. bovis BCG-specific CD4+ T cell responses in Tanzanian adults with latent or active tuberculosis. Immun Inflamm Dis (2018) 6 :345–353. doi:10.1002/iid3.222
6. Hodgson K, Morris J, Bridson T, Govan B, Rush C, Ketheesan N. Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunology (2015)144 :171–185. doi:10.1111/imm.12394
7. Rey A del, Mahuad C V., Bozza V V., Bogue C, Farroni MA, Bay ML, Bottasso OA, Besedovsky HO. Endocrine and cytokine responses in humans with pulmonary tuberculosis. Brain Behav Immun (2007)21 :171–179. doi:10.1016/j.bbi.2006.06.005
8. Fernández R, Díaz A, D’Attilio L, Bongiovanni B, Santucci N, Bertola D, Besedovsky H, del Rey A, Bay ML, Bottasso O. An adverse immune-endocrine profile in patients with tuberculosis and type 2 diabetes. Tuberculosis (2016) 101 :95–101. doi:10.1016/j.tube.2016.09.001
9. Talabér G, Jondal M, Okret S. Extra-adrenal glucocorticoid synthesis: Immune regulation and aspects on local organ homeostasis. Mol Cell Endocrinol (2013) 380 :89–98. doi:10.1016/j.mce.2013.05.007
10. Loerz C, Maser E. The cortisol-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 in skeletal muscle in the pathogenesis of the metabolic syndrome. J Steroid Biochem Mol Biol (2017)174 :65–71. doi:10.1016/j.jsbmb.2017.07.030
11. Gomez-Sanchez EP, Ganjam V, Chen YJ, Liu Y, Clark SA, Gomez-Sanchez CE. The 11β hydroxysteroid dehydrogenase 2 exists as an inactive dimer.Steroids (2001) 66 :845–848. doi:10.1016/S0039-128X(01)00119-2
12. Chapman KE, Coutinho AE, Gray M, Gilmour JS, Savill JS, Seckl JR. The role and regulation of 11β-hydroxysteroid dehydrogenase type 1 in the inflammatory response. Mol Cell Endocrinol (2009)301 :123–131. doi:10.1016/j.mce.2008.09.031
13. Cidlowski DCJA. One Hormone , Two Actions : Anti- and Pro-Inflammatory Effects of Glucocorticoids. (2015)27709 :20–32. doi:10.1159/000362724
14. Pandolfi J, Baz P, Fernández P, Discianni Lupi A, Payaslián F, Billordo LA, Fainboim L, Arruvito L. Regulatory and effector T-cells are differentially modulated by Dexamethasone. Clin Immunol (2013)149 :400–410. doi:10.1016/j.clim.2013.09.008
15. Sapolsky SFS and RM. An Inflammatory Review of Glucocorticoid Actions in the CNS. Bone (2012) 23 :1–7. doi:10.1016/j.bbi.2006.06.005
16. Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, Seckl JR, Flier JS. A transgenic model of visceral obesity and the metabolic syndrome. Science (80- ) (2001) 294 :2166–2170. doi:10.1126/science.1066285
17. Apostolova G, Schweizer RAS, Balazs Z, Kostadinova RM, Odermatt A. Dehydroepiandrosterone inhibits the amplification of glucocorticoid action in adipose tissue. Am J Physiol - Endocrinol Metab (2005)288 : doi:10.1152/ajpendo.00442.2004
18. Sävendahl L. The effect of acute and chronic stress on growth.Sci Signal (2012) 5 :9–11. doi:10.1126/scisignal.2003484
19. Shukla R, Basu AK, Mandal B, Mukhopadhyay P, Maity A, Chakraborty S, Devrabhai PK. 11β Hydroxysteroid dehydrogenase - 1 activity in type 2 diabetes mellitus: A comparative study. BMC Endocr Disord (2019)19 :1–9. doi:10.1186/s12902-019-0344-9
20. Chiodini I, Adda G, Scillitani A, Coletti F, Morelli V, Di Lembo S, Epaminonda P, Masserini B, Beck-Peccoz P, Orsi E, et al. Cortisol secretion in patients with type 2 diabetes: Relationship with chronic complications. Diabetes Care (2007) 30 :83–88. doi:10.2337/dc06-1267
21. Buford TW, Willoughby DS. Impact of DHEA(S) and cortisol on immune function in aging: A brief review. Appl Physiol Nutr Metab (2008)33 :429–433. doi:10.1139/H08-013
22. Nicoletti F, Conrad D, Wang A, Pieters R, Mangano K, Van Heeckeren A, White SK, Frincke J, Reading CL, Auci DL, et al. 16α-Bromoepiandrosterone (HE2000) limits non-productive inflammation and stimulates immunity in lungs. Clin Exp Immunol (2009)158 :308–316. doi:10.1111/j.1365-2249.2009.04032.x
23. Ramos-Espinosa O, Islas-Weinstein L, Peralta-Álvarez MP, López-Torres MO, Hernández-Pando R. The use of immunotherapy for the treatment of tuberculosis. Expert Rev Respir Med (2018)12 :427–440. doi:10.1080/17476348.2018.1457439
24. Hernández-Pando R, Orozcoe H, Sampieri A, Pavón L, Velasquillo C, Larriva-Sahd J, Alcocer JM, Madrid M V. Correlation between the kinetics of Th1, Th2 cells and pathology in a murine model of experimental pulmonary tuberculosis. Immunology (1996) 89 :26–33.
25. Segura-Cerda CA, Marquina-Castillo B, Lozano-Ordaz V, Mata-Espinosa D, Barrios-Payán JA, López-Torres MO, Aceves-Sánchez M de J, Bielefeldt-Ohmann H, Hernández-Pando R, Flores-Valdez MA. BCG and BCGΔBCG1419c protect type 2 diabetic mice against tuberculosis via different participation of T and B lymphocytes, dendritic cells and pro-inflammatory cytokines. npj Vaccines (2020) 5 :1–10. doi:10.1038/s41541-020-0169-6
26. Luo J, Quan J, Tsai J, Hobensack CK, Sullivan C, Hector R, Reaven GM. Nongenetic mouse models of non-insulin-dependent diabetes mellitus.Metabolism (1998) 47 :663–668. doi:DOI: 10.1016/S0026-0495(98)90027-0
27. Rangel-Santiago JF, Baay-Guzman GJ, Duran-Padilla MA, Lopez-Bochm KA, Garcia-Romero BL, Hernandez-Cueto DD, Pantoja-Escobar G, Vega MI, Hernandez-Pando R, Huerta-Yepez S. A novel role of Yin-Yang-1 in pulmonary tuberculosis through the regulation of the chemokine CCL4.Tuberculosis (2016) 96 :87–95. doi:10.1016/j.tube.2015.10.013
28. Baay-Guzman GJ, Duran-Padilla MA, Rangel-Santiago J, Tirado-Rodriguez B, Antonio-Andres G, Barrios-Payan J, Mata-Espinosa D, Klunder-Klunder M, Vega MI, Hernandez-Pando R, et al. Dual role of hypoxia-inducible factor 1 α in experimental pulmonary tuberculosis: Its implication as a new therapeutic target. Future Microbiol (2018)13 :785–798. doi:10.2217/fmb-2017-0168
29. Zapata-Tarres M, Juarez-Villegas LE, Maldonado-Valenzuela A, Baay-Guzman GJ, Lopez-Perez T V., Cabrera-Muñoz L, Sadowinski-Pine S, Huerta-Yepez S. Expression of YY1 in Wilms tumors with favorable histology is a risk factor for adverse outcomes. Futur Oncol(2019) 15 :1231–1241. doi:10.2217/fon-2018-0764
30. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc (2008) 3 :1101–1108. doi:10.1038/nprot.2008.73
31. Hernandez-Pando R, Orozco H, Aguilar D. Factors that deregulate the protective immune response in tuberculosis. Arch Immunol Ther Exp (Warsz) (2009) 57 :355–367. doi:10.1007/s00005-009-0042-9
32. Bongiovanni B, Díaz A, D’Attilio L, Santucci N, Dídoli G, Lioi S, Nannini LJ, Gardeñez W, Bogue C, Besedovsky H, et al. Changes in the immune and endocrine responses of patients with pulmonary tuberculosis undergoing specific treatment. Ann N Y Acad Sci (2012)1262 :10–15. doi:10.1111/j.1749-6632.2012.06643.x
33. Hernandez-Pando R, Orozco H, Honour J, Silva P, Leyva R, Rook GAW. Adrenal changes in murine pulmonary tuberculosis; a clue to pathogenesis? FEMS Immunol Med Microbiol (1995)12 :63–72. doi:10.1016/0928-8244(95)00051-8
34. Barrios-Payán J, Revuelta A, Mata-Espinosa D, Marquina-Castillo B, Villanueva EB, Gutiérrez MEH, Pérez-Sánchez G, Pavón L, Hernandez-Pando R. The contribution of the sympathetic nervous system to the immunopathology of experimental pulmonary tuberculosis. J Neuroimmunol (2016) 298 :98–105. doi:10.1016/j.jneuroim.2016.07.012
35. Irwin MR. Human psychoneuroimmunology: 20 Years of discovery.Brain Behav Immun (2008) 22 :129–139. doi:10.1016/j.bbi.2007.07.013
36. Hernandez-Pando GAWR and R. Pathogenic Role, in Human and Murine Tuberculosis, of Changes in the Pheripheral Metabolism of Glucocorticoids ans Antiglucocorticoids. (1997) 22 :1–5.
37. Streber, M de la Luz, Orozco H, Arriaga K, Pavon L. The effects of androstenediol and dehydroepiandrosterone on the course and cytokine profile of tuberculosis in BALB/c mice. Immunology(1998)234–241.
38. Leenstra T, ter Kuile FO, Kariuki SK, Nixon CP, Oloo AJ, Kager PA, Kurtis JD. Dehydroepiandrosterone Sulfate Levels Associated with Decreased Malaria Parasite Density and Increased Hemoglobin Concentration in Pubertal Girls from Western Kenya. J Infect Dis(2003) 188 :297–304. doi:10.1086/376508
39. Bozza V V., D’Attilio L, Mahuad C V., Giri AA, Del Rey A, Besedovsky H, Bottasso O, Bay ML. Altered cortisol/DHEA ratio in tuberculosis patients and its relationship with abnormalities in the mycobacterial-driven cytokine production by peripheral blood mononuclear cells. Scand J Immunol (2007) 66 :97–103. doi:10.1111/j.1365-3083.2007.01952.x