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Abstract: Endophytic fungi have played a very important role in influencing the

quality  and quantity  of  bioactive  compounds  of  medicinal  plants  through specific

fungus-host interactions.  In medicinal  licorices  root,  a total  of  2,118,633 effective

sequences and 1,063 effective operational taxonomic units (OTUs) with 97% identity

were obtained by high-throughput sequencing. A total of 8 phyla and 140 genera were

annotated, among them, the phylum Ascomycota and Basidiomycota, and the genera

Fusarium,  Paraphoma and  Helminthosporium were  significantly  dominant.

Moreover, Wilcoxon rank sum test showed that the Shannon index was significantly

different  distribution  between  Glycyrrhiza  uralensis and  Glycyrrhiza  inflata,

especially  0-20cm at  the  root  depth,  the  Chao1 index  in  Glycyrrhiza  inflata was
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significantly affected by root  depth,  and there were significant  differences in  beta

diversity  between  Glycyrrhiza  uralensis  and  Glycyrrhiza  inflata.  Moreover,  we

explored the content of bioactive compounds (glycyrrhizic acid, liquiritin and total

flavonoids)  in  roots  of  medicinal  licorices  based  on  high-performance  liquid

chromatography. Our results showed that the liquiritin content was not affected by the

root depth (0-20cm, 20-40cm and 40-60cm), but was significantly affected by the

main effect species (Glycyrrhiza uralensis,  Glycyrrhiza inflata,  Glycyrrhiza glabra)

(P < 0.05), and the content of liquiritin was accountable for the differences in the

diversity of endophytic fungal community. Furthermore, distance-based redundancy

analysis (db-RDA) showed that soil physicochemical properties (available potassium

and ammonium nitrogen), and the root factor (liquiritin and water content) were the

main  contributing  factors  to  the  variations  in  the  overall  structure  of  endophytic

fungal community in this study. 

Keywords:  bioactive compounds; endophytic fungal community;  Glycyrrhiza; Soil

physicochemical

1. Introduction

Glycyrrhiza species are perennial herbs with widely grows in arid and semi-arid

regions  [1].  There  are  three  different  original  plants  of  Glycyrrhiza stipulated  in

Chinese  Pharmacopeia,  namely  dried  root  and  rhizome  of  Glycyrrhiza  uralensis,

Glycyrrhiza inflata and Glycyrrhiza glabra its dried roots and rhizomes is one of the

most commonly used herbs medicines in both Eastern and Western countries [2]. A
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wide variety of bioactive compounds can be extracted from root [3], mainly include

triterpene saponins, polysaccharides and flavonoids [4]. Glycyrrhizic acid, the richest

content  of  triterpene  saponins  [5],  is  the  important  pharmacological  bioactive

compounds with anti-inflammatory [6], antiviral and immune regulation [7, 8] and

other biological effects. Liquiritin is a major component of flavonoids that mainly

exerts  anti-inflammatory [9],  antioxidant and antibacterial  [10,  11].  Because of its

medicinal  and economic  value,  medicinal  licorices plant  has  become the  research

direction of medicinal licorices to improve the content of licorice herbal medicine and

understand its ecological characteristics. 

The traditional view widely believes that the quality and quantity of the bioactive

compounds  extracted  from  medicinal  plants  are  largely  affected  by  the  genetic

background of the related plant, the ecological environment in which the plant lives,

and soil  nutrients  [12,  13].  However,  in  recent  years,  some studies  [14,  15]  have

shown that endophytic fungi have played a very important role in influencing the

quality  and quantity  of  bioactive  compounds  of  medicinal  plants  through specific

fungus-host interactions. 

Endophytes,  especially  endophytic  fungi,  are  one  of  the  most  important

components in plant micro-ecosystems [16]. Endophytic fungi can form symbiotic

relationships  with  host  plants,  on  the  one  hand,  which  can  present  and  grow  in

different healthy tissues of living plants, including stems [17], leaves [18] and roots

[19].  Endophytic  fungi,  on  the  other  hand,  can  extract  carbohydrates  and  other

nutrients from the host plant for their own growth [20]. In return, host plants may
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receive  benefits  from  endophytic  fungi  associations.  First,  endophytic  fungi  can

promote the growth of host  plants  by increasing hormones,  including Gibberellin,

Indoleacetic acid, Abscisic acid, Zeatin [21]. Second, endophytic fungi can enhance

the  resistance  of  host  plants  to  environmental  stress  by  producing  biologically

bioactive compounds [22, 23], such as, endophytic fungi of wheat can promote plant

growth and abiotic stress resistance [24].  Last but  not least,  endophytic  fungi can

promote the accumulation of secondary metabolites of the host plant [25], such as

paclitaxel and deoxypodophyllotoxin,  thereby affecting the quantity and quality of

bioactive compounds of medicinal plants. 

Endophytic fungi have great biodiversity and are widely distributed in various

terrestrial  and aquatic  plants  species  [26],  and numerous studies  have  shown that

endophytic fungi can be isolated from various plants species, ranging from important

cash crop species [27] such as soybean, to medicinal plant species [28, 29], such as

Dendrobium Officinzle and  Sceletium Tortuosum. However, it should be noted that,

with  the  rapid  development  of  high-throughput  sequencing  technology  and

bioinformatics,  a  large  number  of  undiscovered  fungi  have  been  discovered  [30].

Previous studies based on high-throughput  sequencing technology have speculated

that there are as many as 5.1 million fungal species, most of which are involved in

plant-endophytic interactions [31]. At present, only a small part of endophytic fungi

are isolated and identified, and most of the endophytic fungi in medicinal plant cannot

be purely cultured on the existing medium [32]. Therefore, it is necessary to detect the

endophytic fungi community in medicinal plants by adopting non-culture methods.
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Modern  molecular  technology,  especially  Illumina  high-throughput  sequencing

technology, is an emerging technology in recent years, which can comprehensively

and accurately detect the diversity of endophyte communities in medicinal plants [33,

34].  The high-throughput sequencing technique of next-generation sequencing is a

more robust and accurate microbial community characterization technique compared

to 18S rDNA-based non-culture methods and conventional culturing methods. 

Numerous studies [35] have shown that the host genetic background (genotype

or species) determine the composition of endophytic fungi. Meanwhile, soil fertility

and ecological  environment  directly  affect  the  content  of  bioactive  compounds  of

medicinal  plants,  which  will  indirectly  affect  the  composition  and  community

structure of endophytic fungi [16]. However, for now, there is little information about

the composition of endophytic fungi in the root of medicinal licorices at  different

genetic  backgrounds  (species),  and  soil  environmental  factors  affecting  the

community structure of endophytic fungi in the root of medicinal licorice are still

unclear. Therefore, in this study, we investigated the distribution and composition of

endophytes fungal species of three medicinal licorices at three root depths through

high-throughput sequencing and explored their relationship with host plants’ bioactive

compounds and soil physicochemical properties. The results will enhance researchers'

understanding about  the  environmental  and  host  factors  that  influence  endophytic

fungi and the friendly relationship between endophytic fungi and medicinal plants,

thus providing reference information for licorice growing for commercial medicinal

purposes.
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2. Materials and Methods

2.1 Sample collection

The roots and rhizosphere soils samples (soil depths were 0-20cm, 20-40cm and

40-60cm,  respectively)  of  three  medicinal  licorices  (Glycyrrhiza  uralensis,

Glycyrrhiza inflata and Glycyrrhiza glabra) were collected from August to September

in  2019  from specimens  growing  at  3  distinct  sites  in  3  eco-regions  in  Xinjiang

province, China; the geographical location of sampling points and soil physical and

chemical properties are shown in Table 1. In addition, to ensure that the experiment

was representative,  we randomly selected three medicinal  licorices  plants  in  good

growth  condition  from  each  geographical  location  according  to  the  five-point

sampling method, and all samples were cut with sterile scissors. The roots of each

plant were divided into three sections: upper (0-20cm), middle (20-40cm), and lower

(40-60cm), and the roots of each section are equally divided into two parts: one part

was placed into a ziplocked bag for the determination of the bioactive compounds in

the root, while the other part was placed into a sterile bag and quickly transported on a

piece of ice to the laboratory in preparation for the microbe determination. All the

samples were labeled by combination with letters and numbers, with the first letter

representing the species (W, G and D: Glycyrrhiza uralensis, Glycyrrhiza glabra and

Glycyrrhiza inflata, respectively), the second letter representing the root depth (1, 2

and 3: 0-20cm, 20-40cm, 40-60cm), and the third number representing the replicate

number. For example, W.1.3 represents the third repetition of Glycyrrhiza uralensis at
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0-20cm.

2.2 Surface sterilization

At the same time,  to  eliminate  the  interference of  other  microorganisms,  the

surface of roots was sterilized in the laboratory by first rinsing soil from the roots

under running water followed by washing with sterile distilled water. The roots were

then soaked in 75% alcohol for 30 s for surface disinfection, and then washed five

times with sterile distilled water before soaking in 5% sodium hypochlorite for 5 min.

Finally  the roots were washed five times with sterile  distilled water  and air-dried

under sterile conditions [36].  To confirm that the surface sterilization process was

successful, the last rinse solution was inoculated onto a potato dextrose agar (PDA)

plate  and cultured  at  28°C for  72 h.  No fungi  growth confirmed that  the  surface

sterilization  was  successful  [37].  All  root  samples  were  labeled  and  immediately

placed on ice and then stored at liquid nitrogen prior to total DNA extraction. 

2.3 Soil physicochemical

Soil  samples from the rhizosphere were air-dried and sieved through a 2-mm

mesh  for  soil  physicochemical  properties  analysis.  The  following  soil

physicochemical characteristics were analyzed according to the methods described by

the Bao et al [38]: The content of organic matter (SOM) was determined by external

heating  with  potassium  dichromate.  Soil  pH  (1:2.5=  soil:  distilled  water)  was

determined using a pH meter. Soil Water content (SWC) was determined by weighing.

The total nitrogen (STN) content was determined using the perchloric acid-sulfuric
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acid digestion method. The total phosphorus (STP) content was determined by acid

digestion (molybdenum-antimony colorimetry).  The total  potassium (STK) content

was determined by acid digestion (atomic absorption spectrometry).  The total  salt

(TS)  content  was  determined  by atomic  absorption  spectrometry.  Nitrate  nitrogen

(SNN) and ammonium nitrogen (SAN) contents were analyzed using 0.01 M calcium

chloride  extraction.  The  available  phosphorus  (SAP)  content  was  determined  by

sodium bicarbonate  extraction  (molybdenum-antimony  colorimetry).  The  available

potassium  (SAK)  content  was  determined  by  ammonium  acetate  extract  method

(atomic absorption spectrometry).

2.4 Determination of bioactive compounds in the root of medicinal licorices

The root samples were dried at 60°C for 72 h to constant weight (it has been

confirmed that glycyrrhizic acid (GIA) and liquiritin (LI) do not decompose at this

temperature [39]). The dried root samples were ground to a powder with a pestle and

mortar and passed through a 60 mesh sieve.  An aliquot  (0.2 g) of powdered root

sample was extracted with 71% chromatographic methanol in an ultrasonic bath (250

W, 40 kHz) at room temperature. The extract was then centrifuged at 12,000 rpm for

10 minutes and the supernatant was filtered (0.22-μm pore size) (Agilent, USA). The

GIA and LI contents in the dried root samples (0.2 g) of the medicinal licorices were

determined  by  high-performance  liquid  chromatography  (HPLC,  Agilent-1260

Infinity, USA) using an Agilent ZORBAX SB-C18 column (150 mm × 4.6 mm, 5 μm)

with mobile phase (chromatographic methanol: ultra-pure water: 36% glacial acetic
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acid  =  71:28:1)  and  mobile  phase  (acetonitrile:0.5%  glacial  acetic  acid  =  1:4)

respectively,  and a  gradient  elution flow rate  of  1.0 mL•min-1.  GIA and LI were

detected at 254 nm and 276 nm, respectively. The injection volume was 5 μL and the

column temperature was 30°C. The GIA and LI reference materials (CAS#1405-86-3

and  CAS#551-15-5,  respectively)  were  purchased  from  Solarbio  and  used  for

calibration purposes. The total flavonoid content (GTF) in medicinal licorices was

determined by ultraviolet spectrophotometry at 334 nm with the liquiritin standard

(CAS#551-15-5) as the control.

2.5 DNA extraction and library construction

After  immersion  in  liquid  nitrogen,  genomic  DNA was  extracted  from  the

samples using the DNA Quick Plant System kit (Tiangen, China) according to the

manufacturer’s  instructions.  The  purity  and  concentration  of  DNA were  detected

evaluated using a NanoDrop2000 (Thermo Fisher Scientific, USA). According to the

concentration, each DNA sample was diluted a final concentration to 1 ng/µL with

sterile distilled water for use as a DNA template. 

The ITS (Internal  Transcribed Spacer)  rDNA genes  of  the  ITS1 region were

amplified  using  specific  primers  (ITS5-1737F  5’-

GGAAGTAAAAGTCGTAACAAGG-3’and  ITS2-2043R  5’-

GCTGCGTTCTTCATCGATGC-3’) with barcodes [40]. PCR analyses were carried

out with Phusion ® High-Fidelity PCR Master Mix and GC Buffer (New England

Biolabs) to ensure amplification efficiency and accuracy. PCR runs started at 95 °C
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for 3 min, followed by 30 cycles of 95 °C for 30 s, 55 °C for 30 s, 72 °C for 30 s and a

final extension step at 72 °C for 5 min. 

The PCR product was mixed with the same volume of 1× TAE and then was

detected by 2% agarose gel electrophoresis. The PCR product was purified from the

target strip using a GeneJET Gel Extraction Kit (Thermo Scientific).  The libraries

were constructed using a TruSeq ® DNA PCR-Free Sample Preparation Kit (Illumina,

USA) according to the manufacturer’s instructions, and index codes were added. The

library quality was assessed on the Qubit ® 2.0 Fluorometer (Thermo Scientific) and

Agilent Bioanalyzer 2100 system. Finally, amplicon sequencing was performed using

the Illumina HiSeq2500 platforms at the Beijing Compass Biotechnology Co., Ltd.

(Beijing, China).  

2.6 Bioinformatics analysis and statistical analysis

Single-end reads was assigned to samples using Cutadapt [41] software based on

their unique barcode and truncated by cutting off the barcode and primer sequence. To

avoid  the  influence  of  non-microbiota  sequences  (such  as,  chloroplast  and

mitochondrial  sequences),  the  raw  sequences  were  further  filtered  by  Cutadapt

software to remove non-microbiota taxa before subsequent analysis. Then raw tags

were subjected to a strict quality controlled process using Cutadapt software to obtain

high-quality clean reads. Clean reads were obtained by comparison with the reference

database  (Unite  database)  [42]  using  UCHIME  algorithm  to  detect  and  remove

chimeric sequences. 
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UPARSE software [43] (UPARSE v7.0.1001) was used to cluster the effective

tags of all  samples into the same operational taxonomic units (OTUs) with ≥97%

identity,  and taking the sequence with the highest  frequency as  the representative

sequence of each OTU. The taxonomic information for each representative sequence

was  annotated  using  the  Unite  database,  and  multiple  sequence  alignment  was

performed  using  MUSCLE  (Version  3.8.31)  software  to  study  the  phylogenetic

relationship of the representative sequences  of OTUs among the 27 root  samples.

OTU  abundance  information  was  normalized  using  a  standard  sequence  number

corresponding to the sample with the least sequences (54,262 reads for sample D.2.1).

Subsequent analysis of alpha diversity and beta diversity were performed based on

this output normalized data. The raw sequence reads have been deposited in the NCBI

Sequence Read Archive (SRA) with BioProject accession number PRJNA664554.

Using the FunGuild database based on the species information obtained from

amplicon analysis, the ecological functions of existing species in the environment can

be inquired.

Alpha Diversity analysis was used to study the complexity of species diversity in

a sample through six indices (observed-species, Shannon, Simpson, Chao1, ACE, and

Good-coverage) [44]. All indices in the samples were calculated with QIIME (Version

1.7.0) and displayed with R software (Version 2.15.3).  

Beta  diversity  analysis  was  used  to  evaluate  differences  in  sample  species

complexity, which based on weighted Unifrac was calculated by QIIME software. The

Un-weighted Pair-group Method with Arithmetic Mean (UPGMA) clustering analysis
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was conducted by QIIME software (Version 1.7.0). In addition, R software (Version

2.15.3)  was  also  used  to  rarefaction  curve  generation,  Wilcoxon  rank  sum  test,

Metastat  statistical  test,  Spearman correlation analysis  of heat maps and Distance-

based Redundancy Analysis (db-RDA). Pearson correlation analysis was run among

the bioactive compounds and the soil physicochemical properties. Two-way ANOVA

was  performed  with  SPSS  19.0  (IBM  Inc.,  Armonk,  USA),  and  displayed  with

GraphPad Prism 5.

3. Results

3.1. Sequencing Results

In the root of the three medicinal licorices (Glycyrrhiza uralensis,  Glycyrrhiza

glabra,  and  Glycyrrhiza  inflata),  a  total  of  2,118,633  effective  sequences  were

obtained after  filtering  out  low-quality  and short  sequence  reads.  The sequencing

results for each sample are listed in Table S1. The effective sequences were clustered

into OTUs with 97% identity, and a total of 1,063 OTUs were obtained, among them,

91.53% of the effective sequences were assigned to the Kingdom level, 59.27% to the

phylum level, 54.37% to the class level, 53.72% to the order level, 46.19% to the

family  level,  38.01% to  the  genus  level,  and 23.52% to  the  species  level  by  the

Illumina HiSeq (Figure 1a). The rarefaction curves showed that the number of OTU in

each sample increased gradually with quantity of sequence, thus confirming that the

amount of sequencing data was adequate (Figure 1b).
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3.2 Alpha diversity 

The alpha diversity index of each group was shown in Table 2. Some indexes

(Shannon and Chao1) respectively reflected the diversity and richness of microbial

communities in samples, the greater the index, the higher the species diversity, the

richer the distribution. The Shannon index of the W1 (4.910) sample was the highest.

In contrast, that of the D1 (3.393) sample was the lowest. Moreover, we found that D1

had the lowest Chao1 (238.678) and ACE (253.105), while the D3 sample had the

highest  Chao1 (356.317)  and ACE (355.694),  respectively.  Meanwhile,  the results

based on Wilcoxon rank sum test showed that the Shannon index was significantly

different  distribution  between  Glycyrrhiza  uralensis and  Glycyrrhiza  inflata,

especially 0-20cm at the root depth (Figure 2a). Specifically, the Shannon index in

W1 sample was significantly higher than D1 sample (p < 0.05).  Furthermore,  the

Chao1 index in Glycyrrhiza inflata increased gradually with the downward movement

of root depths, and based on Wilcoxon rank sum test showed that the Chao1 index in

Glycyrrhiza inflata was significantly affected by root depth (Figure 2b). Specifically,

the Chao1 index in D3 sample was significantly higher than D1 sample (p < 0.01); D2

sample was significantly higher than D1 sample (p < 0.05).

3.3 Beta diversity 

Beta diversity analysis was used to evaluate differences in microbial community

composition  among  the  samples.  The  Unweighted  Pair-Group  Method  with

Arithmetic  (UPGMA)  cluster  analysis  was  performed  to  study  similarity  in  the

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274



composition  of  endophytic  fungal  community  among  different  samples,  and  the

clustering results were integrated with species relative abundance at phyla taxon level

in each group. As shown in Figure 3a, the results of UPGMA cluster tree based on

Weighted Unifrac distances  showed that  samples from G3, G2,  G1 and W1 were

clustered together, and samples from W3, D2, W2 and D1 were clustered together

(Figure  3a).  Meanwhile,  for  the  difference  analysis  between  the  beta  diversity,  a

Wilcoxon rank sum test based on Weighted Unifrac distances was constructed (Figure

3b), and the results showed that there were significant differences in beta diversity

between Glycyrrhiza uralensis and Glycyrrhiza inflata,  which was consistent  with

UPGMA cluster tree. Specifically, there were significant differences in beta diversity

between D1 and D2 samples (P < 0.05), D3 and W3 samples (P < 0.05), and D1 and

W1 samples (P < 0.01) (Figure 3b), which indicated there were significant differences

in endophytic fungal community composition in roots of medicinal licorices between

different species and different root depth.

3.4 Composition of fungal community in the root of medicinal liquorices

According to the OTUs sequence and Unite database, 8 phyla, 23 classes, 53

orders,  102 families,  140 genera and 141 species  were annotated.  The endophytic

fungal phyla with the greatest abundance from nine groups were enumerated in Figure

4a. Ascomycota dominated the observed sequences at the phylum level, representing

91.821%, 60.558%, 39.956%, 79.651%, 62.305%, 54.241%, 82.176%, 81.928% and

80.290% of the total number of species in D1, D2, D3, G1, G2, G3, W1, W2 and W3,
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respectively.  In  addition,  Basidiomycota  occupied  a  large  part  of  the  relative

abundance  in  D2  (21.348%),  D3  (28.440%),  G2  (10.631%),  G3  (12.523%),  W2

(6.749%) and W3 (5.110%),  respectively.  Meanwhile,  our  results  showed that  the

relative abundance of Ascomycota gradually decreased with the downward movement

of  root  depths.  For  the  difference  analysis  at  the  Phylum  classification  level,  a

MetaStat statistical test based on species abundance was constructed, and the results

showed that the relative abundance of Ascomycota in  Glycyrrhiza inflata significant

difference distribution at different root depth (Figure 4b). Specifically speaking, the

relative abundance of Ascomycota at D1 sample (91.821%) was significantly higher

than D3 sample (39.956%) (Figure 4b). 

In terms of genus, we listed the top 10 dominant fungal genera in each group in

Figure 4c:  Fusarium  was found to be the predominant genus in D1 (27.907%), G1

(23.944%),  G2  (31.071%),  G3  (25.381%),  W1  (19.253%)  and  W3  (18.215%).

Meanwhile, the abundance of Paraphoma was high in the D1, D3 and W3 samples,

accounting  for  27.738%,  23.937%  and  13.980%,  respectively.  Helminthosporium

occupied a large part of the relative abundance in D1 (26.567%), G1 (25.124%), W1

(8.224%) and W2 (17.408%), respectively.  Sarocladium occupied a large part of the

relative abundance in D2 (3.326%), G1 (16.547%), G2 (17.243%), G3 (21.897%) and

W1 (4.218%), respectively, the abundance of Cladosporium was high in D2 (6.446%),

D3 (2.721%) and W3 (15.174%).  Cadophora (13.200%) and Psathyrella (10.917%)

were found to be the most dominant in D2 sample. Tomentella (14.472%) was found

to be the most dominant in D3 sample. Conocybe (12.068%) was found to be the most
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dominant in G3 sample (Figure 4c).

At the same time, details of the composition of the top 10 dominant fungi at

other classification levels (Class, Older, Family and Species) were listed in Table S2.

Specifically speaking, Sordariomycetes, Dothideomycetes and Agaricomycetes were

dominate at the class taxonomic level; the dominant species at the order taxonomic

level are Hypocreales, Pleosporales, Thelephorales; the dominant species at the family

taxonomic  level  are  Nectriaceae,  Phaeosphaeriaceae,  Massarinaceae;  the  dominant

species  at  the  species  taxonomic  level  are  Fusarium-solani,  Paraphoma-radicina,

Sarocladium-kiliense.

Based  on  the  ITS  amplicons  analysis,  we  obtained  the  classification  and

abundance  information  of  endophytic  fungal  community  in  root  of  medicinal

licorices; we also pay attention to what role these species play in the ecosystem. The

top 25 main ecological function of fungal species based on FunGuild analysis was

shown in figure 5. Plant_ Pathogen-Soil_ Saprotroph-Wood_ Saprotroph (32.072%)

was found to be the most dominant in G2 sample; Fungal_ Parasite-Plant_ Pathogen

(26.567%)  was  found  to  be  the  most  dominant  in  D1  sample;  the  abundance  of

Undefined_  Saprotroph  was  high  in  the  G1,  G2  and  G3  samples,  accounting  for

21.271%,  28.330%  and  35.555%,  respectively.  Ectomycorrhizal  (21.187%)  and

Endophyte (13.208%) were found to be the most dominant in D2 sample. However, a

much higher proportion of unassigned ecological function existed in all groups.
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3.5 The relationship between endophytic fungal communities and the bioactive

compounds and soil physicochemical properties

The  results  of  two-way  ANOVA showed  that  the  content  of  the  bioactive

compounds (glycyrrhizic acid (GIA), liquiritin (LI) and total flavonoid (GTF)) were

not significantly affected by the interaction effect between root depth (0-20cm, 20-

40cm, 40-60cm) and plant species (Glycyrrhiza uralensis,  Glycyrrhiza inflata,  and

Glycyrrhiza glabra) (P > 0.05) (Table3). However, the content of LI was significantly

affected by the main effect plant species (P < 0.05) (Table 3 and Figure 6). As shown

in the Figure 6, the contents of LI in root of Glycyrrhiza uralensis were significantly

higher than those in Glycyrrhiza inflata (P < 0.05), and the contents of LI in root of

Glycyrrhiza uralensis were significantly higher than those in Glycyrrhiza glabra (P <

0.05) (Figure 6a).

In addition,  Pearson correlation analysis showed that the content of bioactive

compounds was significantly correlated with soil physicochemical properties (Table

S3).  GIA content in root had a very significant positive correlation with available

potassium (SAK) and soil water content (SWC) (r > 0; P < 0.05), but LI content in

root had a very significant negative correlation with SAK and total salt (TS) content (r

< 0; P < 0.05).

Furthermore, spearman correlation analysis showed that the content of LI was

significantly positive correlated with alpha diversity index (r > 0, P < 0.05) (Figure 7).

As shown in Figure 7, the content of LI had a very significant positive correlation

with Shannon index, Simpson index and Chao1 index (P < 0.05), which indicated that
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the content of LI was accountable for the differences in the diversity of endophytic

fungal community in this study.

Meanwhile, spearman correlation analysis showed that there was a significant

relationship  between  dominant  fungi  phylum  and  bioactive  compounds  and  soil

physicochemical  properties  (Table  4).  Specifically,  Ascomycota  showed  a  very

significant negative correlation with RWC (r < 0, P < 0.01); Basidiomycota showed a

very  significant  positive  correlation  with  RWC (r  >  0;  P <  0.01);  Olpidiomycota

showed  a  significant  positive  correlation  with  GIA  (r  >  0;  P  <  0.05);

Mortierellomycota  showed  a  significant  positive  correlation  with  STK,  SWC and

SAK (r > 0; P < 0.05); Mucoromycota showed a very significant positive correlation

with SOM (r > 0; P < 0.01), but a significant negative correlation with STP (r < 0, P <

0.01); Rozellomycota showed a significant positive correlation with SOM, STK and

RWC (r > 0; P < 0.05). 

At  the same time,  as shown in Figure 8,  there was a  significant  relationship

between the dominant fungi genus and bioactive compounds and soil physicochemical

properties. Specifically,  Fusarium showed a significant positive correlation with LI

content (P < 0.05); Paraphoma showed a significant positive correlation with SAN (P

< 0.05), but a significant negative correlation with SAK, TS and SWC (P < 0.05);

Helminthosporium showed  a  significant  positive  correlation  with  PH  (P <  0.05);

Sarocladium showed a significant negative correlation with SOM, STN and SNN (P <

0.05); Conocybe showed a significant positive correlation with SWC, but a significant

negative correlation with SAN (P < 0.05).
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Distance-based  redundancy  analysis  (db-RDA)  based  on  the  Bray–Curtis

distance  showed  that  the  bioactive  compounds  and  soil  physicochemical  had

significant effects on the differences of endophytic fungal community (Figure 9). The

differential distribution of endophytic fungal community was mainly restricted in the

first and second ordination axes, and the first ordination axis, the second ordination

axis were explained 16.23%, 13.89% of the total variability, respectively (Figure 9).

Specifically, among the soil environment factors, SAK content was identified as the

factor that most significantly affects the differences of endophytic fungal community

(r2 = 0.329, P < 0.01), followed by SAN (P < 0.05). Among the root factors, the RWC

was explained the difference of endophytic fungal communities in roots to the greatest

extent (r2 = 0.247, P < 0.05), followed by LI content (P < 0.05) (Figure 9, Table 5).

According to results of the db-RDA analysis, the SAN, SAK, RWC, and LI content

were  the  major  factors  contributing  to  the  variations  in  the  overall  structure  of

endophytic fungal community in this study.

4. Discussion

In this study, we investigated the composition and diversity of endophytic fungal

communities  in  different  root  depth  (0-20cm,  20-40cm  and  40-60cm)  of  three

medicinal  licorices  (Glycyrrhiza  uralensis,  Glycyrrhiza  glabra,  and  Glycyrrhiza

inflata) using high-throughput sequencing technology, which provides a large amount

of data with more accuracy than that obtained in previous studies using traditional
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technology [45-47]. We obtained the composition of endophytic fungal communities

at  different  taxonomic levels  (phylum,  class,  older,  family,  genus and species)  by

high-throughput sequencing (Figure 4a, Figure 4c and Table S2). The results showed

that there was a specific microbiome in 27 samples of tree medicinal licorices, and the

relative abundance of endophytic fungi was correlated with the host plant species and

root  depth.  For  example,  Ascomycota  was  the  dominant  phylum  in  all  samples,

followed by Basidiomycota, which result consistent with previous studies [48, 49].

The phylum Ascomycota, as the largest phylum of fungi, has diverse populations and

plays an important role in genetics [50], ecology [51] and phylogeny [52]. Such as,

the Ascomycota produce large numbers of spores through both asexual and sexual

reproduction.  Asci  can  act  as  small  water  cannon,  spraying  spores  into  the  air.

Dispersal process of ascospores, spores is important for dissemination of many fungal

plant diseases and for the dispersal of many saprophytic fungi [53].

Moreover,  our  results  showed  that  the  relative  abundance  of  Ascomycota

gradually decreased with the downward movement of root depths (Figure 4b), which

was consistent with the results of Ko, Daegeun et al [54]. On this basis, we found that

the  relative  abundance  of  Ascomycota  in  Glycyrrhiza  inflata had  a  significant

difference at different root depth, but  Glycyrrhiza uralensis and  Glycyrrhiza glabra

were not significant difference, indicating that some endophytes may preferentially

proliferate in a certain ecological region and play different ecological roles from other

endophytes. Overall, in addition to soil depth, the relative abundance of endophytes

was also related to the genotype of the host plant species. This was consistent with the
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results of host genotype and soil conditions on ectomycorrhizal community of poplar

clones by Karliński, Leszek et al. [55].

Alpha Diversity and Beta Diversity analysis  of endophytic fungal community

showed  significant  differences  in  root  depths  (0-20cm,  20-40cm  and  40-60cm)

between Glycyrrhiza uralensis and Glycyrrhiza inflata (Figure 2 and Figure 3), which

indicated that both genotype and ecological region of host plants contributed to the

differences of endophytic fungal community. Meanwhile, numerous studies [56] have

shown that the adaptation of endophytic fungal community largely depends on the

adaptation of  host  plants  to the ecological  environment,  which indicated that  host

plants  largely  determine  the  colonization  and  distribution  of  endophytic  fungal

community.  The  relationship  between  fungus  and  host  plant  were  also  often

considered as a flexible interaction, with orientations determined by subtle differences

in the expression of fungal genes in response to the host, or conversely, by the host's

recognition and response to the fungus. Thus, slight genetic differences in the two

genomes control the symbiosis [57].

Furthermore, our results showed that the root depth had a significant effect on

the richness and composition of endophytic fungal community (Figure 2b, Figure 3a

and Figure 3b), which indicated that different ecological types of endophytic fungi

may represent certain ecological regions (different root depth), these should become

an important consideration factor that endophytic fungi inoculation.  We speculated

that  this  is  related  to  root  respiration  and  soil  C  content.  On  the  one  hand,  root

respiration, accounts for 60% of total soil respiration, can regulates the metabolism of
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roots and related microorganisms, and is an important part of terrestrial carbon budget

[58];  on  the  other  hand,  the  content  of  C in  unstable  soil  varies  greatly  between

different soil  depths [59]. Moreover, Noah Fierer et al.  [60] demonstrated that the

vertical  distribution  of  the  specific  microbial  species  was  largely  related  to  the

decrease in carbon availability with soil depth.

However, one weakness in this study was that the samples of three glycyrrhiza

species were collected from areas which differed in geographical environment. Since

it is rare to find three glycyrrhiza species in the same habitat, to a certain extent, the

soil  physicochemical  properties  can  represent  the  environmental  factors  in  which

three  glycyrrhiza species were growing. Therefore, in this study, in addition to root

factor, also included the effects of the soil factors.

Numerous studies [61, 62] showed the accumulation of bioactive compounds in

medicinal licorice roots is affected by various factors. In this study, the content of LI

were more affected by main effect plant species than main effect root depth (Table 3),

among them, the content of LI in root of  Glycyrrhiza uralensis were significantly

higher than those in Glycyrrhiza inflata and Glycyrrhiza glabra (Figure 6a), which is

consistent with the results of Zhang et al. [63]. We speculate that this is related to the

expressions of some functional genes that are closely associated with the content of

bioactive  compounds  including  glycyrrhizic  acid  and  liquiritin  in  root  of  licorice

species. Some studies [64-66] have shown that key functional genes, such as chalcone

synthase  gene,  3-Hydroxy-3-methylglutary  CoA reductase  (HMGR)  and  squalene

synthase (SQS), are involved in transcriptional level regulation process in glycyrrhizic
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acid and liquiritin biosynthesis. Although further studies are required to characterize

the  expression  of  functional  genes  of  bioactive  compounds,  this  study provides  a

theoretical basis for the development of strategies to expand the Glycyrrhiza uralensis

cultivation. On the other hand, the content of bioactive compounds is the result of the

interaction  between  plants  and  their  growing  environment,  therefore,  the

accumulation  of  bioactive  compounds  in  root  is  influenced  by  the  ecological

environment of its. In this study, GIA, GTF and LI content had a positive correlation

with soil total nitrogen (STN) (r > 0), indicating that soil nutrients can promote the

accumulation of bioactive compounds,  but not all  soil  nutrients,  such as soil  total

potassium (STK), have such a function. Although potassium can be involved in many

enzyme activation  systems in  plants  and  improve plant  stress  resistance  [67],  the

content of GIA, GTF and LI were negatively correlated with STK (r < 0) in this study,

which  is  consistent  with  the  results  of  Liu  et  al  [68].  In  addition,  soil  available

potassium (SAK) had a significant positive correlation with GIA, but had a significant

negative correlation with LI (Table S3), indicating that the utilization mechanism of

soil  nutrients  by  bioactive  compounds  is  completely  different.  Although  the

mechanism  by  which  available  potassium  regulate  bioactive  compounds  is  still

unclear, this discovery may form the basis of further in-depth research. In general,

these soil factors exhibit habitat specific characteristics are related to the regulation of

bioactive compounds in root of licorice.

In recent years, a growing number of studies [69-71] have demonstrated that the

dynamics  of  the  microflora  is  driven  to  a  large  extent  by  environmental  factors

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489



including soil characteristics (pH, nitrogen, phosphorus and potassium) and climate

condition (rainfall and temperature). Consistent with these reports, our results showed

that  LI,  RWC, SAN and SAK content  were the  major  factors  contributing to  the

variations  in  the  overall  structure  of  endophytic  fungal  community  (Figure  9  and

Table 5). In addition, we found that the content of LI in root had a very significant

positive  correlation  with  diversity  of  endophytic  fungal  community  (Shannon and

Simpson index) (P < 0.05) (Figure 7). Liquiritin (LI), the main bioactive compounds

of flavonoids, is one of the material basis for clinical efficacy and an important index

of  the  quality  of  medicinal  licorices.  Flavonoids  can  be  specifically  induced  by

symbiotic fungus to respond to purified signaling molecules from these organisms

when the fungus colonizes.  Chen et al.  [72] demonstrated that with inoculation of

fungi Glomus mosseae, Glycyrrhiza uralensis plants significantly increased stem and

root biomass and liquiritin content in the main root.

Meanwhile,  our  results  showed  that  soil  physicochemical  and  bioactive

compounds had a significant effect on composition of endophytic fungal communities

(such as phylum and genus) (Figure 8 and Table 4), which showed that there is an

interaction among endophytic fungal community, root and soil factor. This suggests

that  we may be able  to  alter  the fungal  composition by altering soil  factors  [73],

thereby promoting the accumulation of bioactive compounds in plants [74]. In the

case of medicinal licorices, Wei Xie et al. [75] shown that P addition and arbuscular

mycorrhizal (AM) inoculation could improve plant growth and facilitated glycyrrhizic

acid and liquiritin accumulation in Glycyrrhiza uralensis. Meanwhile, Y. Orujei et al.
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[76]  also  shown  that  two  species  of  arbuscular  mycorrhizal  fungi  (AMF)  were

successful  inoculation,  the  increase  in  the  growth  rate  and  the  accumulation  of

bioactive compounds in licorice roots ( Glycyrrhiza glabra) were observed compared

to control. In general, this study provided useful an information for the development

of strategies to improve the production and quality of medicinal licorices, although

further studies are required to characterize the functions of these endophytic fungi.

5. Conclusions

In this study, numerous endophytic fungal communities were detected in roots of

medicinal licorices based on high-throughput sequencing. Furthermore, we identified

significant differences in the relative abundance of Ascomycota among root depth.

Furthermore, the alpha diversity analysis and beta diversity analysis showed that the

endophytic fungal community structure and composition differed among the species

and root depth in medicinal licorices. Moreover, the SAN, SAK, RWC, and LI content

were  the  major  factors  contributing  to  the  variations  in  the  overall  structure  of

endophytic fungal community in this study. This study clarified the ecological role of

non-biological factor (soil and root) in the endophytic fungal community of medicinal

licorices,  which  may  provide  theoretical  basis  for  the  synthesis  of  bioactive

compounds and rational utilization of medicinal plants in production practice.
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Figure Legends

Figure 1．Distribution of the number of tags on each classification level (Kingdom,

Phylum, Class, Order, Family, Genus and Species) (a); Rarefaction curves of fungal

community composition (b)

Description: Sample Name: D, G and W: Glycyrrhiza inflata, Glycyrrhiza glabra and

Glycyrrhiza  uralensis;  1,  2  and  3:  root  depth  0-20cm,  20-40cm,  and  40-60cm,

respectively;  the  third  number  representing  the  replicate  number.  The  rarefaction

curves different colors represent different samples.

Figure 2．The significance test of the differences of Alpha Diversity 

Description:  Ordinates  are  Shannon  index  (a)  and  Chao1  index  (b),  respectively.

Abscissa is the group name: D, G and W: Glycyrrhiza inflata, Glycyrrhiza glabra and

Glycyrrhiza  uralensis;  1,  2  and  3:  root  depth  0-20cm,  20-40cm,  and  40-60cm,

respectively. The mark * is significance test p < 0.05.

Figure 3. Unweighted Pair-Group Method with Arithmetic (UPGMA) clustering tree

base on the weighted unifrac distance (a); and the significance test of the differences

of Beta Diversity (b).

Description:  a:  The left  is  the UPGMA cluster  tree structure,  and the right  is  the

distribution of relative abundance of each sample at the phylum level; b: Ordinate is

the Beta diversity;  Abscissa is  the group name: D, G and W:  Glycyrrhiza inflata,

Glycyrrhiza glabra and Glycyrrhiza uralensis;  1, 2 and 3: root depth 0-20cm, 20-
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40cm, and 40-60cm, respectively. The mark * is significance test p < 0.05.

Figure 4．Histograms of relative abundance of the top 10 endophytic fungi at the

phyla  (a)  and  genera (c)  level  of  taxonomy;  difference  analysis  at  the  Phylum

classification level (b).

Description: Ordinate is the relative abundance; others refers to are sequences with

less or not be annotated. Abscissa is the group name: D, G and W: Glycyrrhiza inflata,

Glycyrrhiza glabra and  Glycyrrhiza uralensis;  1, 2 and 3: root depth 0-20cm, 20-

40cm, and 40-60cm, respectively. ** means P<0.01.

Figure 5．Histograms of relative abundance of the top 25 main ecological function

Description: Ordinate is the relative abundance; others refers to are sequences with

less or not be annotated. Abscissa is the group name: D, G and W: Glycyrrhiza inflata,

Glycyrrhiza glabra and Glycyrrhiza uralensis;  1, 2 and 3: root depth 0-20cm, 20-

40cm, and 40-60cm, respectively.

Figure 6．Effect of main effect plant species on the bioactive compounds of licorice

roots

Description: Ordinate is the content of LI (a), GIA (b) and GTF (c);  abscissa is the

group name: D, G and W:  Glycyrrhiza inflata, Glycyrrhiza glabra and Glycyrrhiza

uralensis, and the mark * is significance test (p < 0.05).

Figure 7．Heatmaps of Spearman correlation analysis

Description: Ordinate is the information of environmental factors, and abscissa is the
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information of alpha diversity indexes. The correlation coefficient r of Spearman is

between -1 and 1, r < 0 is negative correlation, r > 0 is positive correlation, and the

mark * is significance test (p < 0.05).

Figure 8．Heatmaps of Spearman correlation analysis

Description: Ordinate is the information of environmental factors, and abscissa is the

information of species at the genera level of taxonomy. The correlation coefficient r of

Spearman  is  between  -1  and  1,  r  <  0  is  negative  correlation,  r  >  0  is  positive

correlation, and the mark * is significance test (p < 0.05).

Figure 9．Distance-based redundancy analysis (db-RDA) for all groups

Description: Environmental factors are generally represented by arrows. The length of

the arrow line represents the degree of correlation between a certain environmental

factor and community and species distribution, and the longer the arrow, the greater

the correlation. When the angle between the environmental factors is acute, it means

that there is a positive correlation between the two environmental factors, while when

the angle is obtuse, there is a negative correlation.

Supplementary Materials

Table S1 Sequencing results of each sample. Table S2 Composition of dominant

fungi  at  each  classification  level.  Table  S3  Pearson  correlation  coefficient  of  the

content of bioactive compounds with soil physicochemical properties.
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