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1 Introduction

Differential variational inequality (DVI) was proposed in 2008 by Pang and Stewart [1]. The DVI
is a comprehensive modeling paradigm that unifies differential inclusions, dynamic Nash equilib-
rium problems, evolutionary or time-dependent variational inequalities (see, for example, [2–5] and
the cited references therein). Since then, many scholars did some extended research on differential
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variational inequalities. In particular, Some researchers have dedicated to the study of existence
and stability for all kinds of differential variational inequalities. For example, Gwinner [6] used the
monotonicity method and technique of the Mosco convergence to show the stability of the solution
set to a class of DVI. Wang et al [7] studied the existence and convergence results of a class of
differential quasivariational inequalities (DQVI) by using Filippov’s implicit function lemma and
discrete Euler approximation algorithm. We observe that the models of DVI in [6] and DQVI [7]
are formulated in finite dimensional spaces. Recently, the study of stability for DVIs in infinite
dimensional spaces have attracted considerable attention of several researchers. More precisely,
Guo [12] et al. applied theory of semigroups and monotone operators, and variational inequality
techniques to obtain a general stability result for the partial differential variational inequality when
both the nonlinear mapping and the set of constraints are perturbed by two different parameters.
Liu and Sofonea [8] proved the existence and uniqueness of solutions for a class of differential
quasi variational inequalities in infinite dimensional spaces by using a generalized fixed point the-
orem, and applied the results to an elastic contact mechanics model. Loi and Vu [9] studied the
Ulam-Hyers stability and uniqueness of a class of differential variational inequalities with nonlocal
conditions. It is worth pointing out that Jiang [10] established an existence theorem of the mild
solution of a global attractor for the semiflow governed by a fractional differential hemivariational
inequality, and Jiang - Wei [11] obtained the global solvability and weakly asymptotic stability of
fractional delay mixed variational inequalities by applying a new noncompact measure and a fixed
point theorem for a condensing set-valued maps, respectively. Migórski [13] studies the existence
theorem of solutions of fractional differential variational inequalities using discrete approximation
method in Banach space.

Motivated by the work mentioned above, the main purpose of this paper is to investigate the unique-
ness and stability results (Mittag-leffle-Ulam-Hyers stability, Mittag-Leffler-Ulam-Hyers-Rassias
stability, generalized Mittag-Leffler-Ulam-Hyers and generalized Mittag-Leffler-Ulam-Hyers-Rassias
stability) of solutions of the generalized fractional quasi variational inequalities (GFDQVIs) with
Cauchy boundary conditions, which can be considered as further continuous study of the work
in [9–11, 13]. The innovation of this paper is twofold. On the one hand, The first novelty arises
in the special structure of the problem we consider the generalized fractional derivatives in sense
of Caputo-Katugampola including the Caputo and Katugampola fractional derivatives. Moreover,
we consider completely nonlinear fractional quasi variational inequality. This is the first novelty of
the present work. On the other hand, [9] mainly applied the Filippov implicit function lemma and
the Gronwall lemma to obtain Uniqueness and Hyers-Ulam stability results for a class of differ-
ential variational inequalities with nonlocal conditions, while we use contraction pinciple and the
generalized singular Gronwall lemma to Uniqueness and stability for GFDQVIs. So the methods
used in this paper the ones employed in [9]. This is the second novelty of the present work.



Title Suppressed Due to Excessive Length 3

This paper is organized as follows. In Section 2, we introduce four definitions of stability and some
lemmas. In Section 3, the stability and uniqueness of (2.1) are proved by using projection operator,
contraction principle and generalized singular Gronwall lemma. In Section 4, the main results are
applied to an example.

2 Preliminaries

Let I := [0,T ], H1, H2 be a Hilbert space and D ⊂ H2 be a closed convex subset. We will use ∥ · ∥
and ⟨·, ·⟩ to denote the norm and inner product of a Hilbert space, respectively. In this paper, the
space of all continuous and integrable functions x(·) from I to H1 will respectively represent by the
symbol C (I,H1)

[
LP (I,H1) ,(P ≥ 1)

]
with the norm

∥x∥c = max
t∈I

∥x∥c,∥x∥p =

(∫ T

0
∥x(s)∥pds

) 1
p

.

In this paper, we investigate the uniqueness and stability of solutions for the following fractional
differential quasi variational inequalities with Cauchy boundary conditions

cDα,ρ
0+ x(t) = f (t,x(t),u(t)), a.e. t ∈ I,

⟨v−u(t),g(x(t),u(t))⟩ ≥ 0,∀t ∈ I,∀v ∈ K(u),

x(0) = x0

(2.1)

where f : I ×H1 ×K → H1 , g : H1 ×K → H2 .
we review some definitions and lemmas which will be used later.

Definition 1 ( [14], Definition 1) (Katugampola fractional integral). Given 0 < α ≤ 1 , 0 < ρ. The
Katugampola fractional integral of a function x ∈ L1 [0,T ] is defined by

CIα,ρ
0+ x(t) =

ρ1−α

Γ (α)

∫ t

0
sρ−1 (tρ − sρ)α−1 x(s)ds,

where Γ (·) is a gamma function dened by

Γ (α) =
∫ ∞

0
tα−1e−tdt.

Definition 2 ( [14], Definition 2) (Katugampola fractional derivative). Given 0 < α ≤ 1 , 0 < ρ. The
Katugampola fractional derivative is defined by

Dα,ρ
0+ x(t) =

ρα

Γ (1−α)
t1−ρ d

dt

∫ t

0

sρ−1x(s)
(tρ − sρ)α ds.

The Caputo derivative of a constant is equal to zero.
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Definition 3 ( [14], Definition 3) (Caputo-Katugampola fractional derivative). Given 0 < α ≤ 1 ,
0 < ρ. The Caputo-Katugampola fractional derivative is defined by

CDα,ρ
0+ x(t) = Dα,ρ

0+ x(t) =
ρα

Γ (1−α)
t1−ρ d

dt

∫ t

0

sρ−1x(s)
(tρ − sρ)α ds.

Remark 1 If x is an abstract function with values in L1 [0,T ], then integrals which appear in Defi-
nitions 1-3 are taken in Bochner’s sense.

Lemma 1 ( [15], Theorem 8) Let v : I → R be a continuous nonnegative function and a,b ≥ 0

constants such that
v(t)≤ a+b

∫ t

0
sρ−1

(
tρ − sρ

ρ

)α−1

v(s)ds, ∀t ∈ I,

then
v(t)≤ aEα

(
bΓ (α)

(
tρ − sρ

ρ

)α)
,

where Eα is the Mittag-Leffler function [16] defined by

Eα(t) =
∞

∑
n=0

tn

Γ (αn+1)
, t ∈ I,Re(α)> 0.

Remark 2 ( [17], Remark 2.12) There exists a constant M∗ > 0 independent of a such that

z(t)≤ M∗a for all t ∈ I.

Lemma 2 ( [18], Projection methods) Let K : H2 ⇒ H2 be a multifunction with nonempty closed
convex values and F : H2 → H2 be a given mapping. The point ω∗ ∈ H2 is the solution of variational
inequality

⟨u−ω,F(ω)⟩ ≥ 0, ∀u ∈ K(u),

if and only if
ω∗ = Pk(u) (ω∗− kF (ω∗)) ,

for every k > 0 ,where PK(u) if the projection from H2 to K(u).

Definition 4 We express the solution of (2.1) by a pair of function which is composed of continuous
function x : I → H1 and continuous function u ∈ K(u). For a given subset O ⊆ H1 , if (x(·),u(·)) is
the solution of (2.1) and x(t) ∈ O for all t ∈ I, then it is called the solution of (2.1) on O×K(u) .

For ε > 0 and φ ∈C(I,R+), we consider GFDQVIs (2.1) and the following inequalities∥∥cDα,ρ
0+ y(t)− f (t,y(t),u(t))

∥∥≤ ε, t ∈ I, (2.2)∥∥cDα,ρ
0+ y(t)− f (t,y(t),u(t))

∥∥≤ φ(t), t ∈ I, (2.3)∥∥cDα,ρ
0+ y(t)− f (t,y(t),u(t))

∥∥≤ εφ(t), t ∈ I. (2.4)
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Definition 5 ( [19], Definition 3.1.) FDQVIs (2.1) is Mittag-Leffler-Ulam-Hyers stable, with respect
to Mittag-Leffler function Eα , if there exists a real number c > 0 such that for each ε > 0 and for
each solution y ∈C1(I,B) of inequality (2.2) there exists a solution x ∈C(I,B) of FDQVIs (2.1) with

∥y(t)− x(t)∥ ≤ cεEα(t), ∀t ∈ I.

Definition 6 ( [19], Definition 3.2.). FDQVIs (2.1) is genreralized Mittag-Leffler-Ulam-Hyers stable,
with respect to Eα , if there exists θ ∈C (R+,R+), θ(0) = 0, such that for each solution y ∈C1(I,B)

of inequality (2.2) there exists a solution x ∈C(I,B) of FDQVIs (2.1) with

∥y(t)− x(t)∥ ≤ θ(ε)Eα(t), ∀t ∈ I.

Definition 7 ( [19], Definition 3.3.). FDQVIs (2.1) is Mittag-Leffler-Ulam-Hyers-Rassias stable,with
respect to φEα ,if there exists cφ > 0 such that for each ε > 0 and for each solution y ∈C1(I,B) of
inequatity (2.4) there exists a solution x ∈C(I,B) of FDQVIs (2.1) with

∥y(t)− x(t)∥ ≤ cφ φ(t)εEα(t), ∀t ∈ I.

Definition 8 ( [19], Definition 3.4.). FDQVIs (2.1) is generalized Mittag-Leffler-Ulam-Hyers-Rassias
stable, with respect to φEα , if there exists cφ > 0 such that for each solution y∈C1(I,B) of inequality
(2.3) there exists a solution x ∈C(I,B) of FDQVIs (2.1) with

∥y(t)− x(t)∥ ≤ cφ φ(t)Eα(t), ∀t ∈ I.

Remark 3 It is clear that: (i) Definition 5 =⇒ Definiton 6 ; (ii) Definiton 7 =⇒ Definiton 8

Remark 4 A function y : I → O and a continuous function u ∈ K(u) is a solution of the inequality
(2.1) if and only if there exists a function h : I → O such that
(i)∥h(t)∥ ≤ ε, t ∈ I;

(ii)cDα,ρ
0+ y(t) = f (t,y(t),u(t))+h(t).

Lemma 3 Let 0 < α ≤ 1 , if y : I → O is a solution of the inequality (2.2). Then y is a solution of
the following integral inequality∥∥∥∥y(t)− x0 −

ρ1−α

Γ (a)

∫ t

0
sρ−1 (tρ − sρ)α−1 f (s,y(s),u(s))ds

∥∥∥∥≤ T αρ

ραΓ (α +1)
ε.

proof By Remark 4, we have

cDα,ρ
0+ y(t) = f (t,y(t),u(t))+h(t),∀t ∈ I.

Then

y(t)− x0 =
ρ1−α

Γ (a)

∫ t

0
sρ−1 (tρ − sρ)α−1 f (x,y(s),u(s))ds+

ρ1−α

Γ (a)

∫ t

0
sρ−1 (tρ − sρ)α−1 h(s)ds.
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This implies that

y(t) = x0 +
ρ1−α

Γ (a)

∫ t

0
sρ−1 (tρ − sρ)α−1 f (s,y(s),u(s))ds+

ρ1−α

Γ (a)

∫ t

0
sρ−1 (tρ − sρ)α−1 h(s)ds.

Thus, we can get

∥y(t)− x0−
ρ1−α

Γ (a)

∫ t

0
sρ−1 (tρ − sρ)α−1 f (s,y(s),u(s))ds∥

=
ρ1−α

Γ (a)

∫ t

0
sρ−1 (tρ − sρ)α−1 ∥h(s)∥ds

≤ ρ1−α

Γ (a)
ε
∫ t

0
sρ−1 (tρ − sρ)α−1 ds

≤ tαρ

ραΓ (α +1)
ε

≤ T αρ

ραΓ (α +1)
ε.

□

Lemma 4 ( [16], Theorem 1.9) Define the mapping N : BH1(0,R)→ BH1(0,R). For all x,y ∈ BH1(0,R)

∥Nx−Ny∥C ≤ a∥x− y∥C.

If 0 < a < 1, then T has a unique fixed point.

3 Main Results

Suppose there are the following conditions:

(A1) There exist R,a,L1g,L2g > 0 and positive functions α f (·),β f (·) ∈ L1[0,T ] such that

∥ f (t,z1,w1)− f (t,z2,w2)∥ ≤ α f (t)∥z1 − z2∥+β f (t)∥w1 −w2∥ ,

∥g(z1,w1)−g(z2,w2)∥ ≤ L1g ∥z1 − z2∥+L2g ∥w1 −w2∥ ,

a∥w1 −w2∥2 ≤ ⟨w1 −w2,g(z,w1)−g(z,w2)⟩ ,

for a.e.t ∈ I , all z,z1,z2 ∈ BH1(0,R) and w1,w2 ∈ H2 ,where

BH1(0,R) = {z ∈ H1 : ∥z∥ ≤ R} ;

(A2) For every (z,w) ∈ BH1(0,R)×H1 the mapping f (·,z,w) : I → H1 is measurable and ∥ f (·,0,0)∥ ∈
L1[0,T ];

(A3) There exists a constant τ ≥ 0 satisfying∥∥PK(u)(z)−PK(v)(z)
∥∥≤ τ∥u− v∥,∀u,v,z ∈ H2;

(τ +

√
1− α2

L2
2g
)≤ 1.
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(A4) If φ ∈ BH1(0,R) is be an increasing function, then there exists λφ > 0 such that

ρ1−α

Γ (a)

∫ t

0
sρ−1 (tρ − sρ)α−1 φ(s)ds ≤ λφ φ(t). for each t ∈ I.

Note that in case (A2), the constants R is the same one as in (A1).

Lemma 5 Let (A1) and (A3) hold.Then for every z ∈ BH1(0,R), the set

SOL(K(u),g(z, ·)) = {ω ∈ K(u) : ⟨v−ω,g(z,ω)⟩ ≥ 0,∀v ∈ K(u)}

consists of only one element.
proof For every z ∈ BH1(0,R), from Lemma 2, it follows that

⟨v−ω,g(z,ω)⟩ ≥ 0,∀v ∈ K(u),

if and only if
ω = PK(u)(ω − kg(z,ω))

)
, for k > 0. (3.1)

Consider the mapping Q : K(u)→ K(u) ,

Q(ω) = PK(u)(ω − kg(z,ω)).

According to (A1), let α
L2g

≤ 1 , we obtain

∥w1 −w2 − k (g(z,w1)−g(z,w2))∥2

= ⟨w1 −w2 − k (g(z,w1)−g(z,w2)) ,w1 −w2 − k (g(z,w1)−g(z,w2))⟩
= ∥w1 −w2∥2 + k2 ∥g(z,w1)−g(z,w2)∥2 −2k ⟨w1 −w2,g(z,w1)−g(z,w2)⟩
≤
(

1+ k2L2
2g −2ka

)
∥w1 −w2∥2 .

(3.2)

We now consider the mapping Q : K(u)→ K(u) ,

Q(ω) = PK(u)(ω − kg(z,ω)).

In the sequel, according to (A3), nonexpansive property of projection mapping and (3.2), for every
ω1,ω2 ∈ K , we have

∥Q(ω1)−Q(ω2)∥=
∥∥PK(ω1) (ω1 − kg(z,ω1))−PK(ω2) (ω2 − kg(z,ω2))

∥∥
= ∥PK(ω1) (ω1 − kg(z,ω1))−PK(ω2) (ω1 − kg(z,ω1))

+PK(ω2) (ω1 − kg(z,ω1))−PK(ω2) (ω2 − kg(z,ω2))∥

≤ τ ∥ω1 −ω2∥+∥ω1 −ω2 − k (g(z,ω1)−g(z,ω2))∥

≤ (τ +
√

1+ k2L2
2g −2ka)∥ω1 −ω2∥ .

(3.3)

In particular, we choose k = α
L2

2g
, then we get

∥Q(ω1)−Q(ω2)∥ ≤ (τ +

√
1− α2

L2
2g
)∥ω1 −ω2∥ .
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Thus, the above formula and condition (A3) indicate that the mapping Q is contractive. As a
consequence, the set SOL(K(u),g(z, ·)) contains only one element for each z ∈ BH1(0,R).

□

Define the mappings π : H1 → BH1(0,R), U : H1 → K(u) and Φ : I ×H1 → H1,

π(z) =

{
z, if z ∈ BH1(0,R),

R
∥z∥ z, if z /∈ BH1(0,R),

U(z) = SOL(K(u),g(π(z), ·)),

and
Φ(t,z) = f (t,π(z),U(z)).

Lemma 6 Let condition (A1) hold. Then there exists λ > 0 such that

∥U (z1)−U (z2)∥ ≤ λ ∥z1 − z2∥ , (3.4)

for all z1,z2 ∈ H1.
proof In fact, for every z1,z2 ∈ H1, from Lemma 5 it follows that the sets U (z1) and U (z2) consist
of only one element, respectively. Put w1 = U (z1) and w2 = U (z2). Similar the proof of (3.2) and
(3.3), applying (A1) and (A3), we have

∥ω1 −ω1∥=
∥∥PK(ω1) (ω1 − kg(z,ω1))−PK(ω2) (ω2 − kg(z,ω2))

∥∥
= ∥PK(ω1) (ω1 − kg(z,ω1))−PK(ω2) (ω1 − kg(z,ω1))

+PK(ω2) (ω1 − kg(z,ω1))−PK(ω2) (ω2 − kg(z,ω2))∥

≤ τ ∥ω1 −ω2∥+∥ω1 −ω2 − k (g(z,ω1)−g(z,ω2))∥ .

(3.5)

Choosing arbitrarily k ∈

0,
a+

√
a2−4τ

(
L2

1g+L2
2g

)
2
(

L2
1g+L2

2g

)
 we obtain

(
2ak− k2

(
L2

1g +L2
1g

)
− τ

)
∥ω1 −ω2∥2 −2kL1g ∥ω1 −ω2∥∥z1 − z2∥

−k2
(

L2
1g +L2

1g

)
∥z1 − z2∥ ≤ 0.

So, put

λ :=
kL1g +

√
k2L2

1g +4k
(

L2
1g +L2

2g

)(
2ak− k2

(
L2

1g +L2
2g

)
− τ

)
2
[
2ak− k2

(
L2

1g +L2
2g

)
− τ

] , (3.6)

we have
∥w1 −w2∥ ≤ λ ∥z1 − z2∥ .

□
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Lemma 7 Let conditions (A1)-(A3) hold. Then Φ(·, ·) is a Carathéodory mapping and there exist
positive functions LΦ(·),γΦ(·) ∈ L1

+[0,T ] such that

∥Φ (t,z1)−Φ (t,z2)∥ ≤ LΦ(t)∥z1 − z2∥ ,

for all z1,z2 ∈ H1 a.e.t ∈ I .
proof It is easy to see that Φ(·, ·) is a Carathéodory mapping sine U(·),π(·) are continuous and
f (·, ·, ·) is a Carathéodory mapping on I×BH1(0,R)×K(u). From the definiion of Φ(·, ·) , Lemma 7
and (A1) it follows that for every z1,z2 ∈ H1 and a.e.t ∈ I the following estimations hold.

∥Φ (t,z1)−Φ (t,z2)∥= ∥ f (t,π (z1) ,U (z1))− f (t,π (z2) ,U (z2))∥

≤ α f (t)∥π (z1)−π (z2)∥+β f (t)∥U (z1)−U (z2)∥

≤ LΦ(t)∥z1 − z2∥ ,

where LΦ(t) = α f (t)+λβ f (t), t ∈ I .

□

Consider the following problem{
CDα,ρ

0+ x(t) = Φ(t,x(t)), for a.e. t ∈ I,

x(0) = x0.
(3.7)

It is obvious that:

(i) If (x(·),u(·)) is a solution of (2.1) on BH1(0,R)×K(u) , then x(·) is a solution of (3.7) on BH1(0,R);
(ii) If x : I → BH1(0,R) is a solution of (3.7), then there exists a continuous function u : I → K(u)

such that (x(·),u(·)) is a solution of (2.1) on BH1(0,R)×K(u).

Lemma 8 Let conditions (A1)-(A3) hold. In addition, assume that there exists k∈

0,
a+

√
a2−4τ

(
L2

1g+L2
2g

)
2
(

L2
1g+L2

2g

)
,

such that
ρ−α T αρ

Γ (α +1)
(∥∥α f

∥∥
1 +λ

∥∥β f
∥∥

1

)
< 1 (3.8)

and

LEα

((∥∥α f
∥∥

1 +λ
∥∥β f

∥∥
1

)
Γ (α)

(
tρ − sρ

ρ

)α)
≤ R. (3.9)

where L =
(
∥x0∥+ ρ1−α T αρ

Γ (α+1)

(
∥ f (·,0,0)∥1 +∥U(0)∥

∥∥β f
∥∥

1

))
, λ is the constant from (3.6).

proof Let x∗(·) be the solution of (3.9), i.e.,

x∗(t) = x0 +
ρ1−α

Γ (α)

∫ t

0
sρ−1 (tρ − sρ)α−1 Φ (s,x∗(s))ds, t ∈ I.
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Thus, we get

∥x∗(t)∥ ≤ ∥x0∥+
ρ1−α

Γ (α)

∫ t

0

∥∥∥sρ−1 (tρ − sρ)α−1 Φ (s,x∗(s))
∥∥∥ds

≤ ∥x0∥+
ρ1−α

Γ (a)

∫ t

0
sρ−1 (tρ − sρ)α−1 ∥Φ (s,x∗(s))∥ds,

for all t ∈ I.
Now, for all (z,w) ∈ BH1(0,R)×K(u) and a.c. s ∈ I, since

∥ f (s,z,w)∥ ≤ ∥ f (s,0,0)∥+α f (s)∥z∥+β f (s)∥w∥.

we have
∥Φ(s,z)∥ ≤ ∥Φ(s,0)∥+LΦ(s)∥z∥= ∥ f (s,0,U(0))∥+LΦ(s)∥z∥

≤ ∥ f (s,0,0)∥+β f (s)∥U(0)∥+LΦ(s)∥z∥,

for all z ∈ BH1(0,R) and a.c. s ∈ I.
Thus we have

∥x∗(t)∥ ≤ ∥x0∥+ 1
Γ (α)

∫ t
0 ∥Φ (s,x∗(s))∥ds

≤ ∥x0∥+ ρ1−α

Γ (α)

∫ t
0 sρ−1 (tρ − sρ)α−1 (∥ f (s,0,0)∥+β f (t)∥U(0)∥+LΦ(s)∥x∗(s)∥

)
ds

≤ ∥x0∥+ ρ1−α

Γ (α)

(
∥ f (·,0,0)∥1 +∥U(0)∥

∥∥β f
∥∥

1

)∫ t
0 sρ−1 (tρ − sρ)α−1 ds

+ 1
Γ (α)

∫ t
0 sρ−1 (tρ − sρ)α−1 LΦ(s)∥x∗(s)∥ds

≤ ∥x0∥+ ρ1−α T αρ

Γ (α+1)

(
∥ f (·,0,0)∥1 +∥U(0)∥

∥∥β f
∥∥

1

)
+ 1

Γ (α)

∫ t
0 sρ−1 (tρ − sρ)α−1 ∥∥LΦ(s)∥1∥∥x∗(s)∥ds,

Hence, by applying Lemma 1 and (3.9), for all t ∈ I the following estimations hold true.

∥x∗(t)∥ ≤ ∥x0∥+ ρ1−α T αρ

Γ (α+1)

(
∥ f (·,0,0)∥1 +∥U(0)∥

∥∥β f
∥∥

1

)
+ 1

Γ (α)

∫ t
0 sρ−1 (tρ − sρ)α−1 ∥∥LΦ(s)∥1∥∥x∗(s)∥ds

≤
(
∥x0∥+ ρ1−α T αρ

Γ (α+1)

(
∥ f (·,0,0)∥1 +∥U(0)∥

∥∥β f
∥∥

1

))
Eα

(
∥LΦ(s)∥1 Γ (α)

(
tρ−sρ

ρ

)α)
≤
(
∥x0∥+ ρ1−α T αρ

Γ (α+1)

(
∥ f (·,0,0)∥1 +∥U(0)∥

∥∥β f
∥∥

1

))
Eα

((∥∥α f
∥∥

1 +λ
∥∥β f

∥∥
1

)
Γ (α)

(
T ρ−sρ

ρ

)α)
≤ R.

The last inequality means that x∗(·) ∈ BC(0,R).

□

Lemma 9 We suppose that conditions (A1)-(A3) hold. Then the solution set of (3.7) on BH1(0,R)

contains only one element.
proof Suppose that (3.7) has two different solutions on BH1(0,R) :

x1(·) : I → BH1(0,R),

x2(·) : I → BH1(0,R).
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For a.e. t ∈ I . define the mapping N : BH1(0,R)→ BH1(0,R) . We have

∥Nx1(t)−Nx2(t)∥c =max
t∈I

∥∥∥∥ρ1−α

Γ (α)

∫ t

0
sρ−1 (tρ − sρ)α−1 Φ (s,x1(s))ds− ρ1−α

Γ (α)

∫ t

0
sρ−1 (tρ − sρ)α−1 Φ (s,x2(s))ds

∥∥∥∥
≤ max

t∈I

ρ1−α

Γ (a)

∫ t

0
sρ−1 (tρ − sρ)α−1 ∥Φ (s,x1(s))−Φ (s,x2(s))∥ds

≤ max
ρ1−α

Γ (a)

∫ t

0
sρ−1 (tρ − sρ)α−1 ∥LΦ(s)∥1 ∥x1(s)− x2(s)∥ds

≤ ρ−α T αρ

Γ (α +1)
(∥∥α f

∥∥
1 +λ

∥∥β f
∥∥

1

)
max∥x1(t)− x2(t)∥ ,

by applying (3.8), we have

∥Nx1(t)−Nx2(t)∥c ≤
ρ−α T αρ

Γ (α +1)
(∥∥α f

∥∥
1 +λ

∥∥β f
∥∥

1

)
max∥x1(t)− x2(t)∥< ∥x1(t)− x2(t)∥c .

Hence, By Lemma 4, there are Nx(t) = x(t) for all t ∈ I. As a consequence, the problem (2.1) has a
unique solution on BH1(0,R)×K(u) .

□

Theorem 1 Under the hypothesesof Lemma 9, let’s prove that problem (2.1) is Mittag-Leffler-
Hyers–Ulam stable on BH1(0,R)×K(u).
proof Let u∗ ∈ K(u) be such that the pair (x∗(·),u∗(·)) is the unique solution of (2.1) on BH1(0,R)×
K(u) . For every ε > 0 and for any pair (y(·),u(·)) consisting of a continuous function y : I →BH1(0,R)

and a continuous function u ∈ K(u) . That satisfifies (2.2), the following estimations hold true for
a.e. t ∈ I :

∥y(t)− x∗(t)∥=
∥∥∥∥y(t)− x0 −

ρ1−α

Γ (a)

∫ t

0
sρ−1 (tρ − sρ)α−1 f (s,x∗(s),u(s))ds

∥∥∥∥
≤ ∥y(t)− x0 −

ρ1−α

Γ (a)

∫ t

0
sρ−1 (tρ − sρ)α−1 f (s,y(s),u(s))ds

+
ρ1−α

Γ (a)

∫ t

0
sρ−1 (tρ − sρ)α−1 f (s,y(s),u(s))ds

− ρ1−α

Γ (a)

∫ t

0
sρ−1 (tρ − sρ)α−1 f (s,x∗(s),u(s))ds∥

≤
∥∥∥∥y(t)− x0 −

ρ1−α

Γ (a)

∫ t

0
sρ−1 (tρ − sρ)α−1 f (s,y(s),u(s))ds

∥∥∥∥
+

ρ1−α

Γ (α)

∫ t

0
sρ−1 (tρ − sρ)α−1 ∥Φ(s,y(s))−Φ (s,x∗(s))∥ds,

Remark 4 conclude that

∥y(t)− x∗(t)∥ ≤
T αρ

ραΓ (α +1)
ε +

ρ1−α

Γ (α)

∫ t

0
sρ−1 (tρ − sρ)α−1 ∥LΦ(s)∥1 ∥y(s)− x∗(s)∥ds

≤ T αρ

ραΓ (α +1)
Eα

(
∥LΦ(s)∥1 Γ (α)

(
T ρ − sρ

ρ

)α)
ε.

Consequently, problem (2.1) is Mittag-Leffler-Hyers-Ulam stable on BH1(0,R)×R.
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□

Theorem 2 If (A1)-(A4) holds, then (2.1) is generalized Mittag-Leffler-Hyers-Ulam-Rassias stable.
proof By inequality (2.3) and condition (A4), we have∥∥∥y(t)− x0 − ρ1−α

Γ (a)

∫ t
0 sρ−1 (tρ − sρ)α−1 f (s,y(s),u(s))ds

∥∥∥
≤ ρ1−α

Γ (a)

∫ t
0 sρ−1 (tρ − sρ)α−1 φ(s)ds ≤ λφ φ(t), t ∈ I.

From these relation it follows

∥y(t)− x∗(t)∥=
∥∥∥∥y(t)− x0 −

ρ1−α

Γ (a)

∫ t

0
sρ−1 (tρ − sρ)α−1 f (s,x∗(s),u(s))ds

∥∥∥∥
≤ ∥y(t)− x0 −

ρ1−α

Γ (a)

∫ t

0
sρ−1 (tρ − sρ)α−1 f (s,y(s),u(s))ds

+
ρ1−α

Γ (a)

∫ t

0
sρ−1 (tρ − sρ)α−1 f (s,y(s),u(s))ds

− ρ1−α

Γ (a)

∫ t

0
sρ−1 (tρ − sρ)α−1 f (s,x∗(s),u(s))ds∥

≤
∥∥∥∥y(t)− x0 −

ρ1−α

Γ (a)

∫ t

0
sρ−1 (tρ − sρ)α−1 f (s,y(s),u(s))ds

∥∥∥∥
+

ρ1−α

Γ (α)

∫ t

0
sρ−1 (tρ − sρ)α−1 ∥Φ(s,y(s))−Φ (s,x∗(s))∥ds

≤ λφ φ(t)+
ρ1−α

Γ (α)

∫ t

0
sρ−1 (tρ − sρ)α−1 ∥LΦ(s)∥1 ∥y(s)− x∗(s)∥ds.

By Lemma 1 and Remark 2, there exists a constant M∗
f > 0 independent of λφ φ(t) such that

∥y(t)− x∗(t)∥ ≤ M∗
f λφ φ(t) := c f ,φ φ(t), t ∈ I.

Thus, the equation (2.1) is generalized Mittag-Leffler-Hyers-Ulam-Rassias stable.

□

Theorem 3 Relation (3.9) satisfies if and only if:

ρ−α T αρ

Γ (α +1)
(∥∥α f

∥∥
1 +λ

∥∥β f
∥∥

1

)
< 1 (3.10)

and
LEα

(∥∥α f
∥∥

1 Γ (α)

(
tρ − sρ

ρ

)α)
< R. (3.11)

proof It is obvious condition (3.9) is equivalent to the next condition: there exists

k ∈

0,
a+

√
a2−4τ

(
L2

1g+L2
2g

)
2
(

L2
1g+L2

2g

)
 such that

0 >
ρ−α T αρ

Γ (α +1)
(∥∥α f

∥∥
1 +λ

∥∥β f
∥∥

1

)
−1
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and
0 ≥ LEα

((∥∥α f
∥∥

1 +λ
∥∥β f

∥∥
1

)
Γ (α)

(
tρ − sρ

ρ

)α)
−R.

For (3.7) we can express λ = λ (k) as: λ (k) = ω1(k)+
√

ω2(k)+ω3(k), where

ω1(k) =
kL1g

2
[
2ak− k2

(
L2

1g +L2
2g

)
− τ

] ,
ω2(k) =

kL1g

2
[
2ak− k2

(
L2

1g +L2
2g

)
− τ

] ,

ω3(k) =
k
(

L2
1g +L2

2g

)
2
[
2ak− k2

(
L2

1g +L2
2g

)
− τ

] .
It is easy to see that these functions are continuous and increasing on0,

a+
√

a2−4τ
(

L2
1g+L2

2g

)
2
(

L2
1g+L2

2g

)
. Thus, λ (k) is continuous and increasing on

0,
a+

√
a2−4τ

(
L2

1g+L2
2g

)
2
(

L2
1g+L2

2g

)
 and

limk→0 λ (k) = 0 and lim
k→

a+
√

a2−4τ
(

L2
1g+L2

2g

)
2
(

L2
1g+L2

2g

)
λ (k) = ∞. Hence, the functions

φ1(k) =
ρ−α T αρ

Γ (α +1)
(∥∥α f

∥∥
1 +λ (k)

∥∥β f
∥∥

1

)
and

φ2(k) = LEα

((∥∥α f
∥∥

1 +λ (k)
∥∥β f

∥∥
1

)
Γ (α)

(
tρ − sρ

ρ

)α)
−R,

are continuous and increasing on

0,
a+

√
a2−4τ

(
L2

1g+L2
2g

)
2
(

L2
1g+L2

2g

)
. Moreover,

lim
k→0

φ1(k) =
ρ−α T αρ

Γ (α +1)
(∥∥α f

∥∥
1

)
−1,

lim
k→0

φ2(k) = LEα

(∥∥α f
∥∥

1 Γ (α)

(
tρ − sρ

ρ

)α)
−R.

So, condition (3.11) satisfifies if and only if

lim
k→0

φ1(k)< 0,

lim
k→0

φ2(k)< 0,

or equivalently, condition (3.11) satisfifies if and only if condition (3.9) satisfifies.

□



14 Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle

Now, let’s consider problem (2.2) for the case when:

f (t,z,ω) = f̃ (t,z)+B(t,ω),

g(z,ω) = G(z)+F(ω),

where f̃ : I×H1 → H1 , B : I×K(u)→ H1 , G : H1 → H2, and F : K(u)→ H2 are continuous mapping
that satisfies the following conditions:

(H1) There exist positive functions α f̃ (·),βB(·) ∈ L1[0,T ] and constants LG,LF ,a > 0 such that

∥∥ f̃ (t,z1)− f̃ (t,z2)
∥∥≤ α f̃ (t)∥z1 − z2∥ ,

∥B(t,ω1)−B(t,ω2)∥ ≤ βB(t)∥ω1 −ω2∥ ,

∥G(z1)−G(z2)∥ ≤ LG ∥z1 − z2∥ ,

∥F (ω1)−F (ω2)∥ ≤ LF ∥ω1 −ω2∥ ,

a∥ω1 −ω2∥2 ≤ ⟨ω1 −ω2,F (ω1)−F (ω2)⟩ .

(H2) For every (z,ω) ∈ H1 ×K(u) the functions f̃ (·,z),B(·,z) : I → H1 are measurable and ∥ f̃ (·,0)+
B(·,0)∥ ∈ L1[0,T ] .

(H3) There exists a constant τ ≥ 0 satisfying

∥∥PK(u)(z)−PK(v)(z)
∥∥≤ τ∥u− v∥,∀u,v,z ∈ H2,

(τ +

√
1− α2

L2
2g
)≤ 1,

for all u(·),v(·) ∈C (I,H1) .
(H4) If φ ∈ BH1(0,R) is be an increasing function, then there exists λφ > 0 such that

ρ1−α

Γ (a)

∫ t

0
sρ−1 (tρ − sρ)α−1 φ(s)ds ≤ λφ φ(t). for each t ∈ I.

The following statement can be easily followed from Lemma 9 and Theorem 3.

Theorem 4 If the conditions (H1)-(H3) are satisfied, the problem (2.1) is Mittag-Leffler-Hyers-
Ulam stable on H1 ×K(u) and has a unique solution. In addition, if the condition (H4) is also
satisfied, the problem (2.1) is generalized Mittag-Leffler-Hyers-Ulam-Rassias stable on H1 ×K(u)

and has a unique solution.
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4 An Example

Consider fractional differential quasi variational inequalities with Cauchy boundary (see [9] Ap-
plications) 

cDα,ρ
0+ x(t) = Ax(t)+Bu(t), for a.e. t ∈ I

y(t) =Cx(t)+Du(t)

0 ≤ u(t)⊥ y(t)≥ 0,∀t ∈ I

x(0) = x0

(4.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n and D ∈ Rm×m; x0 ∈ Rn is a given vector; This problem can
be regarded as a control system, where x(·) is the state function; u(·), y(·) are input and output
functions, respectively. Here,

K(u) = {w = (w1, . . . ,wm) ∈ Rm : wi ≥ 0; i = 1, . . . ,m} .

Next, there is a concrete example.

Example 1 consider the following problem


CD0.8,0.97

0+ x(t) = 2x(t)
1+x(t)9.65 −u(t), for a.e.t ∈ [0,1],

y(t) =−x(t)+u(t),

0 ≤ u(t)⊥ y(t)≥ 0,∀t ∈ [0,1],

x(0) = 0.5,

(4.2)

where x(·) : [0,1]→ R, u(t) : [0,1]→ K(u), here

K(u) = {z : z ≥ 0}.

It is clear that, it is Mittag-Leffler-Ulam-Hyers stable and has a unique solution. In order to find
this solution, we use the trial and error method. First, let u(t) = 0,∀ ∈ [0,1], Then u(t) ∈ K(u) and
u(t)⊥ y(t),∀ ∈ [0,1]. Consider Cauchy problem:

{
cD0.8,0.97

0+ x(t) = 2x(t)
1+x(t)9.65 for a.e.t ∈ [0,1],

x(0) = 0.5.

All next figures were done with Matlab 2020a. The numerical solution is shown in Fig.1
Since, x(t)> 0,∀ ∈ [0,1], Hence y(t) =−x(t)+u(t)< 0,∀ ∈ [0,1]. That contradicts with y(t)≥ 0,∀ ∈
[0,1]. Now, let us take u(t) = x(t),∀t ∈ [0,1]. Then the function x(t) is the solution of Cauchy
problem, and its numerical solution is shown in Fig.2
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