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Abstract: Let L, be a linear hexagonal chain with n hexagons. Let L2 be the graph obtained by the strong
prism of a linear hexagonal chain with n hexagons, i.e. the strong product of L, and K>. In this paper,
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Furthermore, it is interesting to find that the degree-Kirchhoff index of L? is almost one eighth of its Gutman
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1. Introduction

In this paper, we only consider simple and undirected graphs. Let G = (V(G), E(G)) be a graph with
the vertex set V(G) = {v1,v2,...,v,} and the edge set E(G). The adjacency matriz of G is a square matrix
A(G) = (aij)nxn with entries a;; = 1 or 0 according as the corresponding vertices v; and v; are adjacent or not.
Let D(G) = diag(dy, , du,, - - - , dy, ) be the diagonal matrix of vertex degrees, where d,, is the degree of v; in G for
1 <@ < n. The (combinatorial) Laplacian matriz of G is defined as L(G) = D(G) — A(G).

The classical distance between vertices v; and v; in a graph G, denoted by d(v;,v;), is the length of a shortest
path in G connecting them. A well-known topological descriptor called Wiener index, W (G), was given by W(G) =
> iy A(vis vj) in [37]. Later, Gutman [10] introduced the weighted version of Wiener index, namely Gutman index
of G, which was defined as Gut(G) = >, _; dv,dy;d(vi, v;). In [10], it was shown that when G is a tree on n vertices,
then the Wiener index and Gutman index are closely related by Gut(G) = 4W(G) — (2n — 1)(n — 1).

On the basis of electrical network theory, Klein and Randi¢ [19] proposed a novel distance function, namely
the resistance distance, on a graph. The term resistance distance was used because of the physical interpretation:
place unit resistors on each edge of a graph G and take the resistance distance, r(v;,v;), between vertices v;
and v; of G' to be the effective resistance between them. This novel parameter is in fact intrinsic to the graph
and has some nice interpretations and applications in chemistry (see [16, 17] for details). It is well known that
the resistance distance between two arbitrary vertices in an electronic network can be obtained in terms of the
eigenvalues and eigenvectors of the Laplacian matrix associated with the network. One famous resistance distance-
based parameter called the Kirchhoff index, K f(G), was given by K f(G) = > (vi,v5); see [19]. Later it is
shown [17, 23] that

i<j T

KFG) =3 r(wiv) =nY —,

i<j im i
where 0 = g < pa < -+ < iy (n = 2) are the eigenvalues of L(G).
In recent years, the normalized Laplacian, L(G), which is consistent with the matrix in spectral geometry

and random walks [7], has attracted more and more researchers’ attention. One of the original motivations for

*Corresponding author.
Email addresses: hexc2018Qqq.com (X.C. He)



defining the normalized Laplacian was to deal more naturally with nonregular graphs. The normalized Laplacian
is defined to be
L=1-D*(D'A)D =D 3LD?

(with the convention that if the degree of vertex v; in G is 0, then (d,,)~2 = 0; see [7]). Thus it is easy to obtain

that
1, ifi=7;
(L(@)ij =< — dulidvj , if i # j and v; is adjacent to vj; (1.1)
0, otherwise,

where (L(G))i; denotes the (4, j)-entry of £(G). In 2007, Chen and Zhang [6] showed that the resistance distance
can be expressed naturally in terms of the eigenvalues and eigenvectors of the normalized Laplacian and proposed
another graph invariant, defined by Kf*(G) = >_,_; dv,dv;7(vi,v;), which is called the degree-Kirchhoff index
(see [9, 12]). Tt is closely related to the corresponding spectrum of the normalized Laplacian (see Lemma 2.3 in
the next section). The spectrum of £(G) is denoted by S(G) = { A1, A2, ..., A with 0 =X < Ao < ... <\ It
is well known that G is connected if and only if Ay > 0.

It is well-known [19] that r(v;,v;) < d(vi,v;) with equality if and only if there is a unique path connecting
vertices v; and v; in G. As an immediate consequence, for a tree G, K f(G) = W(G) and K f*(G) = Gut(G).
Thus in the research on the Kirchhoff index and the degree Kirchhoff index of graphs, it is primarily of interest
in the case of cycle-containing graphs. Up to now, closed-form formula for Kirchhoff index and degree Kirchhoff
index have been given for some classes of graphs, such as cycles [18], circulant graphs [44], composite graphs [45],
linear polynomial chains [13, 14, 41], linear crossed chains [30, 48] and some other topics on Kirchhoff index and
degree-Kirchhoff index of graphs may be referred to [1, 2, 5, 14, 21, 22, 24, 30, 31, 34, 42, 47, 20, 26, 27, 28, 36, 49]
and references therein.

A hexagonal system (benzenoid hydrocarbon) is a finite 2-connected plan graph such that each interior face (or
say a cell) is surrounded by a regular hexagon of length one. Hexagonal systems are very important in theoretical
chemistry because they are natural graph representations of benzenoid hydrocarbon. Hence, hexagonal systems
have been of great interest and extensively studied. In 1991, Kennedy and Quintas [15] considered the prefect
matchings in random hexagonal chain graphs. Later, the Wiener index and the Edge-Szeged index of a hexagonal
chain are, respectively, determined in [8] and [33]. Lou and Huang [25] provided a complete description of the
characteristic polynomial of a hexagonal system. Yang and Zhang [41] computed the Kirchhoff index of a linear
hexagonal chain. Recently, Huang and Li [11] obtained explicit formulae for the resistance distance between any
two vertices of a hexagonal chain. Xiao et al.[39] determined the first three maximal values of the Mostar index
among all hexagonal chains with given number of hexagons, and characterize the corresponding extremal graphs.
For more results on hexagonal system one may be referred to [40, 41, 46] and the references therein.

Let L, denote a linear hexagonal chain with n hexagons as depicted in Fig. 1. Then it is routine to check
that |V (L,)| =4n+ 2 and |E(L,)| = 5n + 1.

Given two graphs G and H, the strong product of G and H, denoted by G X H, is the graph with vertex
set V(G) x V(H), where two distinct vertices (u1,v1) and (ug,vs) are adjacent whenever u; and us are equal or
adjacent in G, and v, and ve are equal or adjacent in H. Specially, the strong product of G and K> is called
the strong prism of G. Very recently, Pan et al. [31] determined some resistance distance-based invariants and
number of spanning trees of graphs derived from the strong prism of some special graphs, such as the path P,
and the cycle C,. Li et al. [24] determined the expressions for Kirchhoff index, degree Kirchhoff index and

number of spanning trees of graphs derived from the strong prism of the star S,,. Along this line, we consider the



U1 V2 U3 Uy Us Van—1  U2n U2n+1

M) N _————
\ ) \ \
w1 U2 us Uy Us U2n—1 U2n U2n+1

Figure 1: Graph L,, and its labeled vertices.

Figure 2: Graph L? and its labeled vertices.

strong prism of a linear hexagonal chain L,,. Let L2 be the strong prism of L,, as depicted in Fig. 2. Obviously,
|[V(L2)| = 8n+ 4 and |E(L2)| = 24n + 6.

In this paper, motivated by [3, 6, 11, 12, 13, 14, 24, 30, 31, 35, 38, 41], explicit expressions for degree-Kirchhoff
index and number of spanning trees of L2 are determined, respectively. Furthermore, we are surprised to see that

the degree-Kirchhoff index of L2 is approximately one eighth of its Gutman index.

2. Preliminaries

Throughout this paper, we shall denote by ®(B) = det(xz] — B) the characteristic polynomial of the square
matrix B. In particular, if B = £(G), we write ®(L(G)) by ¥(G;z) and call ¥(G;x) the normalized Laplacian
characteristic polynomial of G.

Let Vi = {u1,ug, ..., U2n41,01,02, ..., Vont1}, Vo = {u],uh, ..., ub, 1, V], 05,...,05,, 1} Then by a suitable

arrangement of vertices in L2, £(L2) can be written as the following block matrix
Lvi, | Lv >
L sz — < 11 12 ,
( ) Ly,, | Ly,

where Ly, is the submatrix formed by rows corresponding to vertices in V; and columns corresponding to vertices
2

n’

1 1

—=1any2 —=Iyny2

T= i[ ‘ _i] (2.1)
V2 An+2 ‘ V2 An+2

in Vj for 4,7 = 1,2. Owing to the symmetry construction of the graph L
Evm = £V21' Let

it is obvious that Ly;, = Ly,, and

be the block matrix such that the blocks have the same dimension as the corresponding blocks in £(L2). By a

simple calculation, one can see that

TL(L@)T_< EAE)L%) I ES?L%) > (2.2)




where £4(L2) = Lv,, + Lv,, and Ls(L2) = Lv,, — Lv;,-
Thus similar to the decomposition theorem obtained in [13, 14, 24, 41], we can obtain the following decompo-

sition theorem of the normalized Laplacian polynomial.

Lemma 2.1. Let £(L2),L4(L2),Ls(L2) be defined as above. Then
U(Lyx) = B(La(Ly)) - D(Ls(L7)).

Lemma 2.2 ([7]). Let G be an n-vertex connected graph with m edges, then [[;—, dv, [Ti—o A = 2m7(G), where
7(G) is the number of spanning trees of G.

Lemma 2.3 ([6]). Let G be an n-vertex connected graph with m edges, then K f*(G) =2m Y ., Ai

3. Degree-Kirchhoff index and number of spanning trees of L?

In this section, we first determine the normalized Laplacian eigenvalues of L2 according to Lemma 2.1. Then we
provide a complete description of the sum of the normalized Laplacian eigenvalues’ reciprocals and the product of
the normalized Laplacian eigenvalues which will be used in computing the degree-Kirchhoff index and the number
of spanning trees of L2. Finally, we show that the degree-Kirchhoff index of L? is approximately one eighth of
its Gutman index.

For convenience, we abbreviate £4(L2) and Lg(L?) to L4 and Lg, respectively. We label the vertices of L2
as depicted in Fig. 2. Obviously,
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and

Ls =

Therefore, by Lemma 2.1, we have the normalized Laplacian eigenvalues of L2 consists of the eigenvalues of £
and Lg. Since Lg is a diagonal matrix, one can easily see that g with multiplicity 2n + 4 and % with multiplicity
2n — 2 are all the eigenvalues of Lg. Next, we provide a complete description of the sum of the reciprocals of the

eigenvalues of £ 4 and the product of the eigenvalues of £4 which will be used in computing the degree-Kirchhoff
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index and the number of spanning trees of L2.

Let
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Let

T ?12714-1 ‘ %112n+1
5 lent1 ‘ — 5 l2n 41
be the block matrix such that the blocks have the same dimension as the corresponding blocks in %E 4. Then
1 _( C+D | 0
T(iﬁA)T_( 0 | C-D )

Let M = C+ D and N = C — D. It is easy to check that the eigenvalues of %EA consists of the eigenval-
ues of M and N. Suppose that the eigenvalues of M and N are respectively, denoted by «; and 5, (1,7 =
1,2,....2n 4+ 1) with a1 < a2 < ... < aopg1,01 < P2 < ... < fPapt1. Then the eigenvalues of L4 are
201,209, . .., 2009041, 251, 282, . . ., 202,41. Since all the eigenvalues of L4 are the normalized Laplacian eigenval-
ues of L2, we get ay, 1 > 0.

In the following, we will prove oy =0, and o; > 0,3; >0for 2< ¢ <2n+1,1<j<2n+ 1. For 1 < < 2n,
let M; be the ith order principal submatrix formed by the first i rows and columns of M and b; := det M;. We

first derive the formula of b;, which will be used in calculating det M.

; o 7T+VB5 (1 ‘ 7—v35 (1 ‘
Lemma 3.1. For 1 <i<2n,b; = 5} (\/%) + % ( \/%) .
1

Proof. Tt is straightforward to calculate that b; = %, by = 55,b3 = 1—%5 and by = %. For 3 < i < 2n, expanding

det M; with regard to its last row, we have

2 1
—bi,1 - —bi,Q, if 4 is even,
b; = g 315
?bi—l — %bi—% if 7 is odd..
For 1 <i<mn,let ¢; =bg; and for 1 <i <mn —1,let d; = bg;+1. Then ¢; = %,dl = 1—%5 and, for i > 2, we have
2 1
¢ = zdi—1 — 55Ci-1,
L2 1
T — 7 7 35 i—1-

From the first equation in (3.1), one has d;—; = %ci + ﬁci_l. Hence, d; = gCiJ,_l + ﬁci. Substituting d;_

and d; into the second equation in (3.1) yields ¢;11 = %ci — Tl%ci,l, 1 > 2. In a similar way, we can obtain
d; = %di,l — %%di,g, i > 3. Therefore, b; satisfies the recurrence relation
2 1 1 1 1 1
bi= —bio— ——big, (i>5), bi==, by=-, by=-—s, b= —. 3.2
3502 T gptit (129) b= be=gg bi=gmm b= g (82)
Then the characteristic equation of {b;}i>1 is #* = Z2? — 5=, whose roots are 1 = 3 = \/%, T3 =14 = —\/%.

Then the general solution of (3.2) is

b = (v +32) (%) T (ysi + ) (—%) . (33)

Combining with the initial conditions in (3.2) yields the system of equations

) — (s ) = £
\/%y12 Y2 \/%ZB Y4 2_57
1 1 1
— | Cn+y)+|—] Qus+wys)=—,
(). (). z
(\/—3—5) (By1 +y2) — (E) (Bys +ya) = 75
1 \* A 1 \* A 1
(\/—3—5) (4y1 + y2) + (E) ( y3+y4)—%.

EN|



The unique solution of this system of equations is y; = 0,y2 = %ﬁ, ys3 = 0,y4 = 7_1‘65. Thus the result follows

by substituting y1,y2, y3, and y4 back into (3.3), as desired. O

Corollary 3.2. a1 =0, o; >0 (1 =2,3,...,2n+1).

Proof. Expanding det M with respect to its last row yields

1 1
det M = —bayp, — —=bap—
e 2 o5 V21

5
17 1\ 1 VB 1\
_3'5'(\/?) _%T<\/ﬁ>

1 \2n! 7 V35

)
On the other hand, by algebraic theory, we have det M = HZ;H «;. Combining with 0 < 2a;7 < 2as < ... <
209,11 are the normalized Laplacian eigenvalues of L2, we obtain ay = 0, a; > 0 (i = 2,3,...,2n + 1), as
desired. O

° g~

Note that |E(L2)| = 24n + 6, the following lemma is an immediate consequence of Lemma 2.3 and Corollary
3.2.

Lemma 3.3. Let L2 be the strong prism of a linear hezagonal chain with n hexagons. Then
7 q 20t 2n+1

Kf*(L?) =2(24n +6) [ (2n +4) x %+(2n—2) X §+§ ZZ

1 n 1 1
— (673 2 =1 ﬂj ’
where 0 = a1 < ag < ... < agpt1,0 < B < P < ... < Bong1 are the eigenvalues of M and N, respectively.

2n+1 1
=2 a;

Based on the relationship between the roots and coefficients of ®(M) (resp. ®(N)), the formula of 3

(resp. ng’fl %) is derived in the next two lemmas.

Lemma 3.4. Let o; (i =1,2,...,2n+ 1) be defined as above. Then

an:li _ 4n(12n2 + 9n + 4)
oo 12n+3

Proof. Suppose that ®(M) = 22"t + a12?" + -+ - 4+ agp—12% + a2nzr = x(2®" + 12”7 + -+ agp_12 + azy).
Then «; (i = 2,3,...,2n + 1) satisfies the following equation

22"+ a1z 4 4 o1+ asy = 0.
and so ai (i1=2,3,...,2n+ 1) satisfies the following equation

o™ + agp 127" M4+ az+1=0.

By Vieta’s Theorem, we have

1 —a2p—1
_ _ 4
E o (3.4)

Then based on Lemma 3.1, we give the expressions of as, and —asa,_1 by the following two claims, respectively.
For the sake of convenience, we let the diagonal entries of M be k;; and bg be 1.

. n
Claim 1. ag,, = 3221 . (L))",



2

Proof of Claim 1. Since the number as, (= (—1)*"az,) is the sum of those principal minors of M which have

2n rows and columns, we have

ki1 —% 0
—% kax 0
%il 0 0 - kiitia 0 0
azn =
—~ | 0 0o - 0 kit1,i+1 —\/%
0 0 T k2n,2n _%
0 0 —% kont1,2n+1
kll —% oo 0 ki+1,i+1 _\/% e 0
2§1 —3 ko .- 0 : . : : (3.5)
_ : ’ : : . 3.5
i1 : R : 0 o kopon -1
0 0 N ki—l,i—l 0 tet _% k2n+1,2n+1

Note that a permutation similarity transformation of a square matrix preserves its determinant. Together with
the property of M, the right hand side of (3.5) is equal to ba,11—;. By Lemma 3.1, we have

2n+1 2n
agn = Z bi,1b2n+1fi = Zbi71b2n+lfi + 2b2n
i=1 =2
_i [7+\/% < 1 >i—1 LT3 (_ >i—1}
P 10 V35 10 V35

7_'_\/% 1 2n+1—1 7_\/% 1 2n+1—1 7 1 n
X [7 — + - } +2-— (=
10 V35 10 V35 5\ 35

_8n+21 (1 "
25 35)
This completes the proof of Claim 1.

. 2 n
Claim 2. —ay,, ; = 22n2n +9ntd) (L) )

25 35

Proof of Claim 2. Note that the number —as, _1(= (—1)*""lag, 1) is the sum of those principal minors of M



which have (2n — 1) rows and columns, hence —asg,—1 equals

k11 _% 0 0 0 0 0 0 0
_% kog - - 0 0 0 0 0 0 0
0 - kic1i 0 0
0 Kit1,i+1 —\/%—5
3 o 0 - 0 — 7= kisnice
I<icj<ontl| SREY : : : : : : : :
0 .. 0 0 0 SR T 0 0 0
0 .- 0 0 0 0 kip11 0 0
0 e k2n,2n _%
_% k2n+1,2n+1
kin -1 - 0 kit1,i+1 —\/% o 0
Z —3 kap o 0 —\/% kito,ite -+ 0
1<i<j<2n+1 ; : : : : : :
0 0 - kiciia 0 0 - Kj—15-1
Kjrij+1 - 0 0
y S ; S (3.6)
0 - k2n,2n _%
0o - _% k2n+1,2n+1

Note that a permutation similarity transformation of a square matrix preserves its determinant. Hence, together
with the property of M, the right hand side of (3.6) is equal to baj4+1—;. Thus,

—Aao2n—1 = Z bi_1b2n+1_j - det P, (37)
1<i<j<2n+1
where .

ki-i—l,i-li-l ~ 75 1 0 - 0 0
~ 75 ki+2,z;r2 7 0 0
0 ——  kii3; e 0 0

\/ﬁ 143,143

P= ) .
0 0 o kjaj2  —=

. _ L S
0 0 Vs Fi-ti (j—i—1)x (j—i—1)

By the expression of M, we know that det P will change according to the different choice of ¢ and j. Hence, we
proceed by distinguishing the following four cases.

Case 1. Both i and j are even. Without loss of generality, let i = 2k and j = 2l. Since 1 <i < j<2n+1, we

10



have 1 < k <l <n. In this case, P is a (2l — 2k — 1) x (21 — 2k — 1) matriz. Hence,

2 S 0 .. 0 0
_L % . - . 0 0
V35 5 y35
0 _% 2 .. 0 0 1\ \*
det P = : . . . =100l —k) | ==
: ’ : : 35
2 1
0 0 0 £ — T
0 0 0 —L %
V35 7

Case 2. Both i and j are odd. Without loss of generality, leti =2k +1 and j =21+1. As1<i<j<2n+1,
we have 0 < k <1 <n. In this case, P is a (2 — 2k — 1) x (2] — 2k — 1) matriz. So

det P =

Case 3. i is even and j is odd. Without loss of generality, let i =2k and j =21+ 1. As1<i<j<2n+1, we
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have 1 <k <1 <n. In this case, P is a (2] — 2k) x (2l — 2k) matriz. Thus,

det P =

Case 4. i is odd and j is even. Without loss of generality, let i =2k —1 and j =2]. As1<i<j<2n+1, we
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have 1 < k <1< n. In this case, P is a (21 — 2k) x (2l — 2k) matriz. Thus,

det P =

o (S]]
[X) -
&
I
W= )|
& &
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wll—
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o O O

\“Nﬁ‘ AN
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Combining with Lemma 3.1 and Cases 1-4 we have

Z bi71b2n+1fj -det P =10 Z

(I = k)bak—1bant1-2 14 Z (I — k)barban—o

35l—k 35l—k
1<i<j<2n+1 1<k<l<n 0<k<i<n
20 — 2k + 1)(bag—2b2,— ~+ bog—1b2p—
n Z ( )(2k2272l+1 2k—1b2n—21)
35—k
1<k<I<n
C28n(12n2 +9n+4) [ 1\"
a 25 35)
Thus, Claim 2 holds.
2
Substituting Claims 1-2 into (3.4) yields >4 - = M?TW, as desired. O
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Lemma 3.5. Let 5; (1 < j < 2n+1) denote the eigenvalues of N as above. Then

2"z+:1 1 [48455V2 +68(3 4+ 2v2)n] (V2 + 1)*" + [48 — 55v/2 + 68(3 — 2v/2)n] (V2 — 1)*"
2n+2 2n+2
sv2|(v2+1)" - (va- 1)
Proof. Suppose that ®(N) = 2" + hy2?" + .-+ + hopx + hopi1. Then B (5 = 1,2,...,2n + 1) satisfies the

following equation
z2ntl 4 h1x2n 4+ -+ hopx + hopy1 =0

and so 5~ (] =1,2,...,2n+ 1) satisfies the following equation

h2n+1$2n+1 + h2n$2n + -+ hx+1=0.

By Vieta’s Theorem, we have

2n+1

1 hon han,
§ U (3.8)
BJ h2n+1 det N
For 1 < i < 2n, let W; be the ith order principal submatrix formed by the first ¢ rows and columns of N and

w; = det W . The following fact gives the formula of w;, which will be used to calculate ho, and det N.
Fact 1. For 1 <i < 2n,

VIO+VE (VE+1)' | VTI-VEE (V1) —
10 \/% 10 \/% , U 118 oad;

4+7vV2 [(V2+1 i+14_7ﬁ vi-1)' i
\/% s 17 1 1S even.

20 V35 20

Proof of Fact 1. It is easy to see that w; = %,wg = %,wg = % and wy = %. For 3 < i < 2n, expanding
det W; with respect to its last row, we obtain
4 1
—Wi—1 — =W;—2, if 7 is Odd,
w; = z 315
—w;_1 — —w;_o, if iis even.
5 1—1 35 i—2

For 1 <i<mn,let e; =wy; and for 1 <i<n—1,let f; = wg;+1. Then e; = %, fi= ﬁ and for i > 2, we have

e 2f 1 e
i = gJi-1 = 5x€i-1,

3 (35 (3.9)
fi= §6i - g,fifl-

From the first equation in (3.9), one has f;_1 = %ei + %ei_l. Hence, f; = gei+1 + ﬁei. Substituting f;_1
and f; into the second equation in (3.9) yields e;11 = 35€i — 1212561 1, ¢ > 2. Similarly, we can obtain f; =
3—65f i—1 = 1225 fi—2, i > 3. Therefore, w; satisfies the recurrence relation

6 1 _ 3 1 17 29

i = ——Wj—2 — ———W;—4, Z 5 y = -, = -, = 5 - —=. 310
Wi = gpWi-z ~ ppti-e, (025), wi=g, wp=g, ws=qmg wi= g (3.10)
Then the characteristic equations of {w;};>1 is 2* = Za? — -, whose roots are z1 = %, Ty = —%,
r3 = 3= 2‘/_ and x4 = —3= 2‘/_ The general solution of (3.10) is
3+2v2\ 3+2v2\ 3-2v2)’ 3-2v3\
b _2reve i _2TEAVA) L 3.11
w < 35 ) y1+< 35 ) y2+< 35 Y3 + 35 Ya (3.11)
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Together with the initial conditions in (3.10), we have the system of equations

3%?/5@1 2—y2) + 3_37?/5@3 - y4)2: g

<¥> (1 +y2) + (3_37?/3 (y3 +ya) = é
<%>3 (Y1 —y2) + (3_37?/5; (Y3 —ya) = 11—775
<%>4(m +y2) + (3_37?/34 (ys +ya) = %-

Solving it, we get the unique solution of this system of equationsis y; = 7\/§+14+4210v 10+2v35 ) = 7‘@“4*36 70-2v35
_ TV2-14+2V70-2V35 g _ 7V/2-14-2V7042V/35
Yys = 10 and ygq = 40

into (3.11).

. Thus Fact 1 follows by substituting y1, yo, y3 and y4 back

By expanding det V with regards to its last row, we have

3 1 3 1
det N = — det Wa,, — —det Wy,,_1 = —way, — ——wap—_1.
e 5 det i o5 det Wan—1 = w2 95 W2n—1

Together with Fact 1, we immediately have the following fact.

7\/5[(\/§+1)2n+27(\/§71)2n+2]

Fact 2. det N = T00.35% .

The formula of hy, is presented by the following fact. For the sake of convenience, let the diagonal entries of
N be l; and wg be 1.

7[48+55v2468(3+2v/2)n] (vV2+1)?" +7[48—-55v/2+68(3—2v2)n| (vV2—1)*"

Fact 3. ho, = 500357

Proof of Fact 3. Since ha, (= (—1)*"ha,) is the sum of those principal minors of N which have 2n rows and
columns, we have

lh —% 0 0 0 0 0
—% l22 0 0 0 0 0
A %il 0 0 - lLii,1 O 0 0
2n = - 0 0o --- 0 ittt _\/% 0
0 o - 0 0 lon 2n _%
0 0 e 0 0 co _% 12n+1,2n+1
I1; _% 0 Liviit _\/% 0
% —1 0 : .
i=1 : : : 0 lon,2n —%
O O lifl,ifl O e —% lgn+172n+1

Note that a permutation similarity transformation of a square matrix preserves its determinant. Together with
the property of N, we have

1
lit1,i+1 ~ 75 0
det Wopy1-i = Y
0 e lQn,Qn —5
0 .. -1
5 2n+1,2n+1

13



Whence

2n+1 n—1 n

han = E Wi 1Woapt1—i = 2Wap + g WopWan—2k + E W2l —1W2p—20+1-
i=1 k=1 =1

By Fact 1, we have

2n 2n
oy~ MAFTV2 (V241N 14TV (V21
STV V35 10 V35 ’

_ e 2k 2k
s Y14+ ve (V21 14-7v/2 (V2-1
Z Wk Won—2k = Z +
k=1

et BEECIANRE S 20\ V&
U+7v2 (V241 2n72k+ M-7v2 (vVa-1\"""
20 V35 20 V35
~ [196(3 4+ 2v2)n — 49(16 + 5v2)] (V2 + 1) + [196(3 — 2v/2)n — 49(16 — 5v2)] (V2 — 1)*"
N 800 - 357 ’

and

21—1 21—1
- " VT0+ V35 [(V2+1 VI0—+35 (V2 -1
Zw2l+1—lw2n—2l+l+l :Z +

— — 10 V35 10 V35
2n—21+1 2n—21+1
VT0+ 35 (V2 +1 N V70 —+/35 (V2 -1
10 V35 10 V35
_ [140(3 4 2v2)n 4 35v2] (V2 + 1)*" + [140(3 — 2v/2)n — 35v2] (V2 — 1)*"
N 400 - 35m ’
Thus, Fact 3 follows immediately.
In view of (3.8), Facts 2 and 3, Lemma 3.5 follows directly. g

By Lemmas 3.3 — 3.5, the following result follows immediately.

Theorem 3.6. Let L2 be the strong prism of a linear hexagonal chain with n hexagons. Then
Kf*(L2) = (96n® + 2360 + 149n + 19) + (12n + 3)¢(n),

where

(n) = [48 + 55v2 + 68(3 + 2v/2)n] (V2 + 1)>" + [48 — 5512 + 68(3 — 2v/2)n] (V2 — 1)*"
’ 42 [(\/5 +1) o (V2 - 1)2"“} '

The explicit closed formula of the number of spanning trees of L2 is in the following.

Theorem 3.7. Let L? be the strong prism of a linear hexagonal chain with n hezagons. Then
2n+2 2n+2
7(L2) = V2. 21275 . g2ntd {(\/5—1- 1) - (\/5 - 1) } .

Proof. From the proof of Lemma 3.4, we know that a; (i = 2,3,...,2n + 1) is the root of the equation 2" +
a1 z® '+ ..+ asy_12 + as, = 0. Then we have

2n+1

H A = A92n .
1=2

14



By Claim 1, we have
2n+1

84n+21 1\"
20 — | 2%
L[ = =52 ()

2n+1 92n+1 7\/5 {(\/i-i- 1)2n+2 B (\/5 B 1)2n+2}
jl;[l 26; = 100 - 357 '

Similarly,

Note that
II do.(Ly) =55 7% |E(L})| = 24n + 6.
zeV(L2)
Together with Lemma 2.2, we have

8n+4 2n+1 2n+1

T(L2) = STEEE] L2 { H di(L2)) 2n+4 2n 2 H 20;) - ( H Qﬁj):|

V3 g1 gnt [(@ ¥ 1)2”“ - (\/5 - 1)2”“} |

O

At the end of this section, we show that the degree-Kirchhoff index of L2 is approximately one eighth of its
Gutman index.

Theorem 3.8. Let L2 be the strong prism of a linear hexagonal chain with n hexagons. Then
Gut(L?) = 768n> + 1152n? + 892n + 38.

Proof. We compute d,d,d(x,y) for all vertices (fixed = and for all y) (there are three types of vertices) and then
add all together and finally divided by two. The expressions of each type of vertices are:
Corner vertex of LZ:

2n 2n—1
fl(n)_2l25~5~k+ > 5.7 k+5-5(4n+2)| +5-5-1=240n* + 180n + 55.
k=1 k=2

Vertex in {ug;, va;, ub;, vh,; }, where 1 < i < n:

2i—1 2n—2i+1 2i—2 2n—21
fali,n) =2 [25-5-“ > 55 k+5:5:34 Y 5:-T-k+ » 5-7-k+5-5(4n+2)| +5-5-1
k=2 k=2 k=1 k=1
= 480i? — 480i + 170 + 24012 — 480ni + 420n + 125.
Vertex in {ugiy1,V2it1, U1, V9,1, where 1 <i <n —1:
21 2n—21 21—1 2n—2i—1
f3(i,n) =2 [27-5~k+ SNoT5k+ Y TTk+ Y T T kAT T 145 7(An+2)| +7-7-1
k=1 k=1 k=2 k=2
= 67202 + 336n2 — 672ni + 252n + 91.
Hence,
n . n—1 .
Gut(L2) = 8fi(n)+4>0" fQ(Zén) +43°7 f3(i,n)
= 768n> + 1152n2 + 892n + 38.
This completes the proof. O

Based on Theorems 3.6 and 3.8, we obtain
Theorem 3.9. Let L2 denote a linear hexagonal chain with n hexagons. Then
* 2
i BLE) L
n—oo Gut(L2) 8
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