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Abstract

Mapping the genes underlying ecologically-relevant traits in natural populations is fundamental

to develop a molecular understanding of species adaptation. Current sequencing technologies

enable the characterisation of a species’ genetic diversity across the landscape or even over its

whole range. The relevant capture of the genetic diversity across the landscape is critical for a

successful genetic mapping of traits and there are no clear guidelines on how to achieve an

optimal sampling. Here we determine through simulation, the sampling scheme that maximises

the power to map the genetic basis of a complex trait across an idealised landscape and draw

genomic  predictions  for  the  trait,  comparing  individual  and  pool  sequencing  strategies.  Our

results show that QTL detection power and prediction accuracy are higher when performing a

shallow  sampling  of  more  populations  over  the  landscape  which  is  done  best  using  pool

sequencing.  Populations  should  be  collected  from  areas  of  high  genetic  diversity  and  we

recommend against sampling from the margins of the species’ range. As progress in sequencing

enables the integration of trait-based functional ecology into landscape genomics studies, these

findings  will  guide  study  designs  allowing  direct  measures  of  genetic  effects  in  natural

populations across the environment.

Introduction

Connecting  a  species’  molecular  variation  to  functional  traits  is  a  central  goal  in  ecology.

Genomic information for a species can then be leveraged to understand and eventually predict

population  fitness  under  a  range  of  eco-evolutionary  scenarios.  Unfortunately,  the  required

genotype-to-phenotype map is  only  available  for  a  handful  of  traits,  and  primarily  in  model

organisms.  With  the  improved  accessibility  of  sequencing  technologies,  genome-wide
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association  studies  (GWAS)  and  genomic  prediction  (GP)  are  becoming  straightforward

approaches to understand and predict complex traits (Gondro et al., 2013). We thus coined the

term GPAS (Genomic Prediction and Association Studies) to denote genome-wide association

studies designed to both identify quantitative trait loci (QTL) and accurately predict traits from

genomic data. These studies rely on cost-effective, high-throughput sequencing and share the

same well-established linear modelling framework. However, how to sample natural populations

to train accurate GPAS models that are representative of the genetic diversity of a species is far

from obvious. More insights are needed to develop an optimal strategy and move away from ad

hoc field sampling.

Research in ecological genomics deals with the challenge of characterising the genetic basis of

traits across multiple natural populations. This requires collecting phenotype and genotype data

over the whole species’ range which in practice, is often performed with limited resources. This

raises  the problem of  how to sample  across  a  landscape to capture  representative  genetic

variation while constrained by the total sequencing depth attainable for a given budget. Here, we

address  the question:  how do we allocate  a  fixed sequencing capacity  so  that  the  genetic

information captured over the landscape leads to an optimal GPAS performance?

It is becoming easier to genotype genome-wide markers for large numbers of individuals, either

through  whole-genome sequencing  or  complexity  reduction  approaches  like  restriction  site-

associated  DNA  sequencing  (RADseq)  (Baird  et  al.,  2008) for  large  complex  genomes.

Increasing the density and number of  markers for  GPAS has the potential  to increase QTL

detection power and prediction accuracy (de Roos et al., 2009; Long & Langley, 1999). Despite
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the declining costs of  sequencing,  genotyping every individual  of  every population across a

landscape is  usually  not  feasible,  and phenotyping remains resource-consuming.  As a cost-

effective alternative to sequencing individuals (Indi-seq), sequencing pools of individuals (Pool-

seq) (Schlötterer et al., 2014) has gained popularity in ecology (Bastide et al., 2013; Boitard et

al., 2012; Cheng et al., 2012; Nielsen et al., 2018), evolution (Boitard et al., 2012; Fracassetti et

al.,  2015),  and  breeding  (Beissinger  et  al.,  2014;  Bélanger  et  al.,  2016) supported  by

developments in quantitative genetics  (Fournier-Level  et  al.,  2017;  Guo et  al.,  2018;  Knight,

Saccone et al., 2009; Macgregor et al., 2006; Micheletti & Narum, 2018; Jinliang Yang et al.,

2015).

Indi-seq generates high-resolution  genomic  data  of  a  population;  while  Pool-seq yields  low-

resolution  data  in  favour  of  cost  reduction.  Indi-seq  yields  individual  allele  information  after

variant calling, while Pool-seq generates allele frequency estimates. Identifying when best to use

one over the other is important. Pool-seq has been shown to accurately capture genome-wide

allele frequencies (Fracassetti et al., 2015; Gautier et al., 2013; Rellstab et al., 2013; Zhu et al.,

2012), but is also prone to biases in genome representation when sample size and depth of

coverage  are  low  (i.e.  <40  individuals  per  pool  and  <50X  depth)  (Cutler  &  Jensen,  2010;

Schlötterer  et  al.,  2014).  Pool-seq  also  loses  haplotype  and  linkage  disequilibrium  (LD)

information (Fariello et al., 2017) which limits the number of quantitative and population genetics

models that can be used and requires the design of novel analysis methods (Cutler & Jensen,

2010). Pool-seq is more cost-effective than Indi-seq (Futschik & Schlötterer, 2010; Gautier et al.,

2013), particularly for non-model organisms where individuals cannot be maintained indefinitely
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and used in multiple experiments. Additionally, Pool-seq can include more individuals, grouped

into one or a few pools and sequenced at a high depth.

Field researchers often transfer techniques initially developed for model organisms or crops in

highly  controlled  environments;  however,  with  natural  populations  having  evolved  in  natural

environments this problem becomes non-trivial. Individuals and pools can be sampled from one

to  a  few  populations  or  from  a  large  number  of  populations.  Identifying  which  populations

warrant higher resolution (Indi-seq instead of Pool-seq), requires some prior knowledge of the

spatial  distribution  of  genetic  variability  across the landscape.  To address  this  question,  we

simulated landscapes under different trait architectures and population genetics scenarios with

the aim of providing recommendations on the optimal sampling strategies. Specifically, we aim to

answer the following three questions. How many populations do we need to sample to yield

optimal GPAS performance? Under which landscape-specific circumstances should we use Indi-

seq or Pool-seq? And which populations to select under different landscape scenarios?

Materials and methods

Landscape simulations

Variation for a quantitative phenotype over a landscape was simulated as a function of migration

rate, number of QTL controlling the trait, causal allele diffusion gradient, and selection intensity

with 3 levels for each of these parameters (Table 1). 

5

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101



Each  landscape  consisted  of  100  populations  arrayed  in  a  uniform  square  lattice  without

barriers. Migration was modelled using a 2-dimensional stepping-stone model with bidirectional

gene flow with a uniform rate into the 8 adjacent populations and absorbing boundaries.

The quantitative trait was determined by additive QTL with effects sampled from a χ2 distribution

with 1 degree of freedom to generate a cumulated heritability of 0.5. At the initial step of the

simulation, all the causal alleles had a frequency (q0) of 0.01 in the populations of origin and 0

elsewhere.  Under the uniform allele diffusion gradient, all populations have q0=0.01. Under the

unidirectional gradient, one boundary row has q0=0.01 for all 10 populations in that row and 0

elsewhere. Under the bidirectional gradient, two opposite boundary rows have q0=0.01 in each

of  the  populations  and  0  elsewhere.  For  clarity,  these  causal  allele  diffusion  gradients  are

illustrated in Figure 1 Panel A.

Selection was simulated using a generalised logistic model (Richards, 1959) as 

, 

where w is fitness, y is the quantitative trait ( ), yc = ymin + s(ymax-ymin), with ymax and ymin  the

maximum and minimum trait values, and s is the selection intensity.

The 10,000 biallelic loci were randomly distributed across a genome with 7 chromosomes and a

total length of 2 10✕ 9 bases and 750 centimorgans to represent a large genome. The final (200th)

generation was sampled for the GPAS. Phenotypic values in this generation were scaled in the 0

to 1 interval for the GPAS experiments.
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Genome-wide association and trait prediction based on polygenic scores

GPAS experiments were performed using Indi-seq and Pool-seq data without genotyping error.

We used established tools for Indi-seq data, and developed a suite of tools for Pool-seq data.

GPAS was performed on all  the populations with 384 individuals per population for Indi-seq

simulating four 96-well sample plates used in high-throughput molecular biology workflows; and

5  pools  per  population  for  Pool-seq,  where  each  pool  consists  of  100  individuals.  This

corresponds to a high power design that was shown to be optimal to capture QTL association

(Fournier-Level et al., 2017). GPAS models were trained within each population sampled and

cross-validated on all other populations to assess prediction accuracies.

Allele effects were estimated using 6 Indi-seq-based GPAS (Indi-GPAS) and 3 Pool-seq-based

GPAS (Pool-GPAS) modelling frameworks. Efficient mixed-model association expedited model

(EMMAX) (Kang et al., 2010), genome-wide complex trait analysis (GCTA) (Jiang et al., 2019),

and genome-wide efficient mixed-model analysis (GEMMA) (Zhou & Stephens, 2012) together

with GCTA-derived sparse genetic relationship matrix (GRM; off  diagonals <0.05 were set to

zero)  (Jiang  et  al.,  2019;  Yang  et  al.,  2010;  Zaitlen  et  al.,  2013) and  GEMMA-derived

standardised relatedness matrix (STD)  (Zhou & Stephens, 2012) were used to build the Indi-

GPAS models. Genome-wide estimation of additive effects based on trait quantile distribution

from Pool-seq data (GWAlpha)  (Fournier-Level et al., 2017), and linear mixed models (LMM)

were used  to  build  the  Pool-GPAS models,  with  random effect  variance determined  by  FST

derived using Hivert’s (Hivert et al., 2018) or Weir and Cockerham’s method (Weir & Cockerham,

1984), and variance components estimated using restricted maximum likelihood (REML).
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Phenotype  predictions  were  made  using  polygenic  scores,  i.e.  the  sum of  the  products  of

estimated allele effects and allele dosages or allele frequencies. For the Indi-GPAS models and

GWAlpha, this involved a two-step approach. For each training set, the polygenic scores of the

training set ( ) were calculated as:

,

where   is the allele dosage or allele frequency data of the training set, and   are the

single-SNP effect estimates. The polygenic scores and actual phenotype values have a linear

relationship (Figure S1; mean R2
adjusted=0.97±0.0031 at 1,000 individuals per population for Indi-

seq and mean R2
adjusted=0.99±0.0006 at 5 pools per population for Pool-seq) as expected under

the additive model used to simulate the phenotypes. These polygenic scores were regressed

against the actual phenotype values of the training set ,

,

where   is the intercept,  and  is the slope.  The polygenic scores of the validation set,

, were transformed into the predicted phenotype values ( ) using 

.

For the Pool-GPAS linear mixed models, the predicted phenotypes ( ) were calculated 

as:

,
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where  is the matrix of allele frequencies of the validation set, and  is the estimated

allelic  effects  from  the  GPAS  model  built  using  the  training  set.  The  trained  models  were

validated on all populations in the landscape.

GPAS performance was measured using three GWAS metrics, and one phenotype prediction

metric.  The GWAS metrics were:

1. area under the receiver operating curve (AUC) (Fawcett, 2006), 

2. true  positive  rate  (TPR)  which  was  defined  as  the  fraction  of  causal  QTL  with  a

significantly associated  SNP within 1 kbp, and

3. false positive rate (FPR) which was defined as the fraction of the significantly associated

SNPs with no causal QTL within 1 kbp, unless it  tags a true QTL through a chain of

associated SNPs each less than 1kb apart; multiple associated SNPs within 1kbp were

counted as one.

The family-wise type I error rate was set at α=0.05. The metric for phenotype prediction is the

root mean square error (RMSE) between actual and predicted phenotype values:

,

where   is the actual phenotypes,   is the predicted phenotypes and   is the number of

observations.

Sampling strategy optimisation

A total of 405 landscapes were simulated using all combinations of the 4 landscape parameters

allowed to vary with 3 levels each and 5 replicates (Table 1). For each landscape, Indi-GPAS

9

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188



and Pool-GPAS experiments were performed for each population independently. This constitutes

the  intra-population  dataset.  To  simulate  the  stratified  sampling  strategy  commonly  used  in

ecology (Hoel, 1943; Li et al., 2017; Williams & Brown, 2019), the landscape was divided into

equally sized rectangular regions, and the approximately central population was selected from

each region. This is illustrated in Figure 1 Panel B. This constitutes the inter-population dataset.

AUC and RMSE were averaged across the populations sampled. TPR and FPR were calculated

using the cumulative number of true and false positive candidate loci across the populations

sampled. AUC was used to measure the accuracy of QTL detection per population, while TPR

and FPR were used to measure QTL detection accuracy of multiple populations.

The single best  performing modelling framework was identified for  each genotyping scheme

(Indi-GPAS and Pool-GPAS) based on AUC and RMSE for independent populations tests using

Tukey’s honest significant difference (HSD mean comparison) at α=0.05. 

How many populations do we need to sample to yield optimal GPAS performance?

To determine how many populations to sample to yield optimal GPAS performance, we used the

inter-population dataset. We assessed the suitability of the four metrics (i.e. mean AUC, mean

RMSE, TPR and FPR) to address this question by visualising their relationships with the number

of populations sampled. Additionally, we compared the expected performance of Indi-GPAS and

Pool-GPAS under the same sequencing capacity constraint.  The Indi-GPAS experiments we

simulated included 384 individuals per population, while Pool-GPAS included only 5 pools per

population. Assuming a 5X sequencing depth per individual for Indi-seq  (Brouard et al., 2017)

and the recommended 50X depth per pool for Pool-seq (Schlötterer et al., 2014), these equate
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to a sequencing depth of 1,920X per base per population for Indi-seq and only 250X for Pool-

seq.  This  means  that  for  the  sequencing  capacity  required  to  characterise  one  population

through  Indi-seq,  approximately  7  populations  ( 1920/250 )  could  be  characterised  through⌊ ⌋

Pool-seq.

Under which landscape-specific circumstances should we use Indi-seq or Pool-seq?

The second main question we addressed was which landscape-specific circumstances warrant

Indi-GPAS or Pool-GPAS? Specifically, if we were to perform GPAS on one population, which

sequencing strategy  (Indi-seq or Pool-seq) is better, and how does the optimal choice vary with

the polygenicity of the trait, selection intensity, and gene flow? The intra-population dataset was

used together with AUC and RMSE as the GPAS performance metrics.

Which populations to select under different landscape scenarios?

To determine  which populations to select to best capture the genetic basis of a trait and yield

accurate  trait  predictions,  we  used  AUC  and  RMSE  as  the  GPAS  metrics  and  the  intra-

population  dataset  to  test  the  effect  of   the  three  causal  allele  diffusion  gradients.  The

populations were classified into 10 groups, where each group represents a row perpendicular to

the causal allele diffusion gradient. The top row refers to populations 1 to 10, the second row to

populations 11 to 20, and so on. The general trends and landscape parameter-specific trends in

GPAS  performance  across  the  landscape  were  visualised  using  violin  plots  and  means

compared  using  Tukey’s  HSD  (α=0.05).  Linear  mixed  models  fitted  linear  and  quadratic

relationships (using second degree polynomial  fit)  between GPAS performance and the row
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groups. The row group was treated as a numeric variable, and nested within each level of the

parameters: number of QTL, selection intensity, migration rate, and GPAS model.

Implementation

The  landscapes  were  simulated  using  quantiNemo2  (Neuenschwander  et  al.,  2018).  The

genome and  QTL information  were  simulated  in  R  (R Core  Team,  2018).  The  quantiNemo

outputs were parsed using R and Julia (Nardelli et al., 2018). GEMMA (Zhou & Stephens, 2012),

EMMAX (Kang et al., 2010), GCTA (Jiang et al., 2019), and Plink (Purcell et al., 2007) were used

for Indi-GPAS.  GWAlpha.jl was used for Pool-GPAS. The R package  violinplotter was used to

generate  violin  plots  with  HSD mean comparison  grouping.  The  GNU shell  (Free  Software

Foundation, 2016), Spartan  (Lafayette & Wiebelt,  2017), Slurm  (Yoo et al.,  2003), and GNU

parallel (Tange, 2011) were used extensively. The workflow is available in the github repository:

https://github.com/jeffersonfparil/GPAS-landscape-simulation.git.

Results

GPAS model representatives and the relationships of GPAS performance with 

landscape and sampling parameters

GEMMA (STD) and GWAlpha showed the best GPAS performances, with >79% AUC and <5.9%

RMSE (Table S1).  Therefore, these two frameworks were selected as the representatives of

Indi-GPAS and Pool-GPAS models, respectively. Overall, Indi-GPAS performed better than Pool-

GPAS.
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Factors  increasing  statistical  power  to  identify  causal  loci  through  GPAS  included  a  lower

number of QTL controlling the trait, more intense selection, higher migration among populations,

and more populations sampled (Figure S2). Accuracy in phenotype predictions improved as the

number of QTL controlling the trait increases, as selection intensity decreases, and as migration

rate increases (Figure S3). Accuracy was unaffected by increasing the number of populations

sampled since each model was trained independently for each population. In addition, power

and accuracy are high when QTL diffuses across the landscape uniformly.

How many populations do we need to sample for optimal GPAS performance? 

And when should we use Indi-seq or Pool-seq?

TPR and FPR increase logarithmically as the number of populations sampled increases (Figure

2), so there is no optimum based on these metrics.

Indi-GPAS achieves greater power than Pool-GPAS at the cost of a higher false positive rate

(Figure 2).  However, Pool-GPAS can outperform Indi-GPAS under the assumptions detailed in

the materials  and  methods  section,  where for  every  population  characterised  with  Indi-seq,

approximately 7 populations can be characterised with Pool-seq. Under this 1:7 ratio, Indi-GPAS

on 10 populations yield an average TPR of 0.388 and FPR of 0.0150; for the same sequencing

capacity Pool-GPAS can be performed on 70 populations, yielding an average TPR of 0.418 and

FPR of 0.0115. We explored a range of ratios deviating from this 1:7 ratio. This is because the

5X depth requirement for variant calling in Indi-seq and 50X depth for allele frequency estimation

in Pool-seq depend on the species of interest and the resources available. Lower ratios, e.g. 1:8

to 1:10, mean even more populations can be characterised with Pool-seq for every population
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characterised with Indi-seq. Using our simulated data to explore various ratios, we find that there

exists a range where Pool-GPAS can outperform Indi-GPAS, i.e. TPR is higher and FPR is lower

for Pool-GPAS than Indi-GPAS (Figure 3). This shows that characterising more of the landscape

at  low resolution can be better  than characterising a small  portion of  the landscape at  high

resolution.

If we were to perform GPAS on one population, Indi-GPAS is better than Pool-GPAS. However in

cases where selection intensity is high (i.e. 0.90 to 0.95) or migration rate is high (i.e. 0.01)

Pool-GPAS  performance  is  not  significantly  different  from  Indi-GPAS  in  terms  of  prediction

accuracy (Figure 4).

Which populations to select under different landscape scenarios?

GPAS  performance  is  maximised  in  populations  with  high  genetic  variability  which  at  the

landscape level, means sampled close to the place of origin of the causal allele (Figure 5). This

area of high genetic variability is characterised by intermediate causal allele frequencies which

translate  into  populations  with  high phenotypic  variability.  In  the  absence  of  a  causal  allele

diffusion  gradient  (i.e.  uniform  causal  allele  distribution),  no  row  seems  to  be  optimal  for

sampling,  except  for  some slightly  better  performance from populations  in  the  middle  rows.

Under  unidirectional  gradient  (i.e.  causal  alleles  originated  from  the  top  row  and  diffused

downwards hence a single diffusion front) and in terms of QTL detection accuracy, sampling the

populations  from  the  top  row  is  optimal;  however,  in  terms  of  prediction  accuracy,  the

populations in  the middle rows appear  to be better.  Under  bidirectional  gradient  (i.e.  causal

alleles originated from the top and bottom rows hence two diffusion fronts) both QTL detection
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and prediction accuracies are optimal in the populations from the top and bottom rows. These

trends across the landscape coincide with the trends in the mean number of polymorphic QTL

per population and causal allele frequencies.

In the presence of causal allele diffusion gradients, the relationships between QTL detection or

prediction accuracies and the sampling location (defined as rows perpendicular to the diffusion

gradient) appear to be quadratic, except for QTL detection accuracy under unidirectional causal

allele diffusion, for which the relationship is linear (Figure 5). In terms of GWAS accuracy as

measured by AUC, sampling near the diffusion fronts becomes less important (i.e. slope under

unidirectional gradient and curvature under bidirectional gradient are reduced) as the number of

QTL increases,  as  selection  intensity  decreases,  and as  migration  rate  increases (Figure  6

columns 1-3). In addition, sampling near the diffusion fronts is more important for Pool-GPAS

than Indi-GPAS  (Figure 6 column 4), in other words, power diminishes quicker for Pool-GPAS

than Indi-GPAS as we move away from areas of high diversity.

In terms of prediction accuracy as measured by RMSE, the degree to which the middle rows (i.e.

areas  of  high  genetic  and  phenotypic  variability)  are  the  optimal  sampling  locations  under

unidirectional diffusion decreases (i.e. curvature becomes less severe) as the number of QTL

increases,  as  selection  intensity  decreases,  and  as  migration  rate  increases  (Figure  7  top

graphs).  Also,  sampling from the middle  rows  under  unidirectional  diffusion is  slightly  more

important for Indi-GPAS than Pool-GPAS. On the other hand, the degree to which the top and

bottom rows are optimal under bidirectional diffusion decreases (i.e.  curvature becomes less

severe) as the number of QTL, selection intensity, and migration rate increase (Figure 7 bottom
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graphs).  Also,  sampling from the top and  bottom rows  under  bidirectional  diffusion is  more

important  for  Pool-GPAS than Indi-GPAS,  in  other words,  similar  to  that  of  power,  accuracy

diminishes  quicker  for  Pool-GPAS  than  Indi-GPAS  as  we  move  away  from  areas  of  high

diversity.

These  trends  in  GPAS performance  across  the  landscape  under  variable  parameter  levels

correlate with the trends in genetic variability (expressed in terms of causal allele frequency, i.e.

frequencies closer to 0.5 indicates higher diversity) across the landscape (Figures S4 to S9).

The opposite trends observed between causal allele diffusion gradients for RMSE as selection

intensity increases is explained by the shift of the optimal row. At low selection intensity under

unidirectional causal allele diffusion, the relationship between RMSE and the row group is linear,

i.e. sampling near the diffusion front is better than sampling the middle rows (Figure S5). At high

selection intensity under bidirectional causal allele diffusion, the rows in between the middle and

top rows, as well as in between the middle and bottom rows become the optima (Figure S8).

Discussion

GPAS in ecology and evolution

GPAS  has  the  potential  to  expand  genomic  studies  in  ecology  and  evolution  beyond

environment  association and niche modelling  (Dormann et  al.,  2012;  Exposito-Alonso et  al.,

2018;  Fournier-Level  et  al.,  2011).  By focusing on functional  traits,  GWAS can identify  QTL

controlling fitness and other ecologically important traits in natural populations. GP exploits the

same modelling framework as GWAS to predict phenotype values for the rapid monitoring of

species  adaptation  to  existing  or  changing  environmental  conditions.  The  predicted
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environmental range of individuals using genome-environment associations (Manel et al., 2018)

can be complemented by the phenotype predictions of GPAS. This can be transformational for

the way we monitor invasive species or assess the adaptive potential of endangered species.

Our results complement previous research on sampling optimisation in ecology and evolution.

We specifically  focused  on providing  recommendations  on  the optimal  sampling strategy to

maximise the power to detect QTL and the accuracy of  quantitative phenotype prediction in

natural  populations.  We  stress  the  importance  of  capturing  sufficient  representation  of  the

genetic  variability  present  over  the  landscape  by  sampling populations  from areas  of  high

genetic diversity. On a per population basis or if only one population were to be sampled, we

recommend using Indi-seq over Pool-seq. We have not here considered phenotyping costs, but

higher costs would increase the attractiveness of Indi-seq to maximise information per unit cost.

However, similar to a meta analysis of several landscape genomics studies (Santos & Gaiotto,

2020) we demonstrate the value of Pool-seq in maximising the number of populations that can

be  analysed  without  compromising  power.  This  is  especially  true  if  the  aim  is  to  predict

phenotypes  of  some future  populations  for  the  rapid  and timely  monitoring  of  invasive  and

threatened species.

Indi-seq provides high-resolution genomic information for a population, but comes at a high cost.

A given genomic region needs to be sequenced at least 5 times for each individual to yield

accurate basecalling information  (Brouard et al.,  2017), and many individuals are required to

accurately represent a population. This is only resource-effective when the individuals are part of

an  association  panel  and  the  genomic  information  can  be  leveraged  for  several  research
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projects  (Robin et al.,  2019). On the other hand, Pool-seq generates low-resolution genomic

information on a population that  is  cost-effective while  maintaining high power.  Hundreds of

individuals can be pooled to yield accurate allele frequency data (Schlötterer et al., 2014). This

means that a few pools consisting of hundreds of individuals each can represent a population

better than a few individual sequences. As expected, Pool-seq is more widely used than Indi-seq

in ecological and evolutionary studies because the focus is generally on populations rather than

individuals,  and because of  its cost-effectiveness  (Futschik  & Schlötterer,  2010). In contrast,

Cutler and Jensen (2010) concluded that Indi-seq should be preferred over Pool-seq for many

applications due to the loss of haplotype and LD information. They focused on applications in

human and model organisms, whereas Pool-seq has its highest impact for high-throughput data

acquisition in non-model species of critical ecological and economical importance.

The  GPAS models  used  in  this  study  are  representative  of  quantitative  genetics  modelling

frameworks  utilising  Indi-seq  and  Pool-seq  genomic  data.  GEMMA using  the  standardised

relatedness matrix is routinely used for association studies in crops (Begum et al., 2015; Wang

et al., 2016; Xiao et al., 2017), livestock (Li et al., 2019; Smith et al., 2019; Wu et al., 2019), and

humans  (Charng  et  al.,  2020;  Fatumo  et  al.,  2019).  GWAlpha  is  a  parametric  method  for

estimating  additive  allelic  effects  from Pool-seq  data  that  goes  beyond  the  use  of  just  two

extreme pools. In this study we have shown that allelic effects estimated using GWAlpha can be

used to predict trait values as accurately as Indi-GPAS. In ecological and evolutionary context,

Indi-GPAS is  performed mostly  on model  species,  e.g.  Arabidopsis  thaliana and  Drosophila

melanogaster, because of the wealth of individual genomic information readily available  (1001

Genomes Consortium, 2016; Exposito-Alonso et al., 2018; Flatt, 2020; Mackay et al., 2012). The
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cost-effectiveness  of  Pool-seq  can  help  close  the  gap  in  the  application  of  these  powerful

statistical  frameworks  between  model  and  non-model  species.  Hence,  Pool-GPAS  with

GWAlpha can bring a powerful and cost-effective framework to ecology and evolution for the

identification of the genetic basis of quantitative traits and the prediction of trait values for the

rapid monitoring of species adaptation.

GPAS performance as affected by trait polygenicity and landscape properties

QTL detection and phenotype prediction accuracies can have similar or contrasting responses to

varying genetic architectures and landscape properties. QTL detection power increases as the

contribution of each QTL to the trait increases and as the frequency of QTL alleles is balanced

(ie. close to 0.5). On the other hand, prediction accuracy increases as the total additive genetic

variance  increases.  Allele  frequencies  and  additive  genetic  variance  vary  in  response  to

evolutionary forces,  e.g. selection intensity and migration rate. Some prior  knowledge of  the

polygenicity of  the trait  and the spatial  heterogeneity of  selection intensity and gene flow is

valuable for identifying the optimal locations for population sampling.

There is less power to detect QTL but higher prediction accuracy in highly polygenic traits than

traits controlled by fewer loci.  Increasing the number of loci  controlling the trait  reduces the

selection pressure acting on each locus  (Walsh & Lynch, 2018). This decreases the power to

detect QTL since the individual contribution of each QTL decreases as more loci control the trait

(Wang & Xu, 2019). This in turn reduces the proportion of polymorphic QTL within populations: if

the majority of the QTL have small effects, they have a higher chance of getting lost due to drift

than QTL with large effects. On the other hand, prediction accuracy increases since the rate at
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which genetic variance decreases due to directional selection is reduced as the number of QTL

increases.  Genetic  variance  should  eventually  become  zero  under  constant  stabilising  or

directional selection, but the rate of this reduction becomes slower with an increased number of

loci controlling the trait (Crow & Kimura, 1970). Hence, GWAS and GP complement each other

to  achieve  high  QTL detection  accuracy  or  high  prediction  accuracy  for  quantitative  traits

controlled by any number of loci.

There is higher power to detect QTL but lower prediction accuracy in populations under intense

selection.  Increasing  the  selection  intensity  increases  QTL  detection  power,  since  the

contribution of individual QTL becomes greater in each population (Wang & Xu, 2019) and less

QTL alleles are lost due to drift. However, the predictive ability will be reduced by the Bulmer

effect  (Bulmer,  1971),  where  covariance  between  loci  (partially  explained  by  linkage

disequilibrium (Walsh & Lynch, 2018)) is reduced after selection. Increasing selection intensity

magnifies this reduction resulting in  diminished additive genetic variance and less predictive

models. This further solidifies the complementary nature of GWAS and GP and the utility of

performing both with GPAS.

There is more power to detect QTL and greater prediction accuracy in populations experiencing

high  migration  than  in  reproductively  isolated  ones.  Increasing  migration  rate  decreases

differentiation between populations allowing for more causal alleles to be shared, resulting in

higher power and more accurate predictions. This is expected to reduce the contribution of each

QTL since the number of QTL per population increases thereby decreasing power  (Griswold,

2006;  Wang  &  Xu,  2019).  However,  our  results  suggest  the  opposite:  power  increases  as
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migration  increases.  This  is  because  the  total  number  of  loci  controlling  the  trait  does  not

increase per se, only the proportion of the polymorphic QTL per population does, which leads to

higher variance for these QTL per population. Increasing the additive genetic variance in each

population (Liu et al., 2020) also results in higher prediction accuracy.

Sampling strategy for GPAS in ecology and evolution

The results of  this simulation study emphasise the need to sample as many populations as

possible from regions of high genetic diversity. The power to detect QTL is maximised if all the

populations in the landscape were included in the study. This is possible for highly endangered

species with a small number of populations in the wild. However this is not feasible for species

with a healthier number of populations. The best populations to sample are located in areas of

high genetic diversity which manifests as areas with high trait variability where the causal alleles

are at intermediate frequencies.

Our results show a diminishing return in terms of GPAS power when sampling an increasing

number  of   populations.  This  is  consistent  with  a  previous  study  on  sampling  strategy

optimisation which found that sampling an intermediate number of sites can perform as well as

maximising the number of sites sampled (Selmoni et al., 2020). This study only considered Indi-

seq and tested different sample sizes per population, and our approach is comparable because

using Indi-seq equates to a high-resolution characterisation of the landscape and Pool-seq to a

low-resolution one.  Our analysis  extends this  result  further because it  is  independent  of  the

number of  individuals sampled per population.  The cost-effectiveness of  Pool-seq allows for

more populations to be sampled and included in the study than Indi-seq.
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The  number  of  individuals  per  population  selected  for  our  Indi-GPAS  simulations  (384

individuals) exceeds the sample size of most ecological studies (e.g. 100-200 individual samples

per population in birds (Hansson et al., 2018; Perrier et al., 2018), <100 samples per population

in trees (Cappa et al., 2013; Holliday et al., 2010),  ~100 samples per population in mammals

(Johnston et al., 2011; Pallares et al., 2014), and <20 samples per population in fish (Willing et

al., 2010)). Thus for most experiments, the power of Indi-GPAS is expected to be lower than in

our simulations. On the contrary, the power of Pool-GPAS is expected to remain the same since

five pools per population was found to be optimal (Fournier-Level et al., 2017) and each pool can

include a non-limiting number of individuals. The sequencing capacity required for Indi-seq is

always higher than Pool-seq and more populations can be characterised with Pool-seq than Indi-

seq under the same budgetary constraints (Schlötterer et al., 2014). Therefore, the range of the

number of populations sampled where Pool-GPAS outperforms Indi-GPAS is likely to be even

broader than reported here, as long as the genomic characterisation approach yields accurate

genomic data.

We  have  shown  that  sampling  from  genetically  diverse  populations  maximises  GPAS

performance. Capturing greater genetic diversity was shown to increase the power to detect

causal  loci  (Alqudah  et  al.,  2020;  Rosenberg  et  al.,  2010;  Wojcik  et  al.,  2019).  Similarly,

populations which represent the overall  diversity found in the landscape or are similar to the

validation populations, improve prediction accuracies (Akdemir & Isidro-Sánchez, 2019; Asoro et

al., 2011; Edwards et al., 2019). Populations with high genetic diversity were found along the

diffusion fronts, i.e. the areas where the causal alleles migrate from their site of origin into the
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neighbouring populations. The rate at which GPAS performance decreases as we sample farther

away from the diffusion fronts correlates with the decrease in genetic diversity at the causal loci.

In the absence of prior genomic information, the areas of high genetic diversity coincide with

regions of high phenotypic diversity. Gaining prior information on the location of these areas of

high  genetic  diversity  and  causal  allele  diffusion  fronts  or  more  broadly  the  landscape  of

adaptive genetic diversity (Eckert & Dyer, 2012) is key to an optimal sampling strategy.

When the causal allele diffusion gradient is unknown and a uniform causal allele distribution is

assumed there is a small advantage in choosing populations in the middle of the landscape. This

can be explained by the absorbing boundaries used in the migration model which simulates a

restricted range whereby alleles going beyond the border are lost. In the context of a species

distributed over a restricted range,  alleles have a higher  probability  of  getting lost  in  border

populations  than  in  the  populations  in  the  middle  of  the  range.  The  non-linear  relationship

between  the  RMSE and  the  distance  from  the  diffusion  front  under  unidirectional  diffusion

gradient also highlights this border effect.  Populations in the middle of the distribution range

have a similar number of polymorphic causal loci as the populations closer to the diffusion front.

This phenomenon reflects what happens in fringe populations where migration regularly occurs

beyond the suitable environmental niche of the species and the migrants fail to survive (Sexton

et al., 2009). Hence, in the absence of prior information on the location of high genetic diversity,

we do not recommend sampling from these fringe or border populations.

23

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508



Conclusion

Genome-wide association studies and genomic prediction (GPAS) are poised to complement 

existing methodologies in ecology in evolution. GPAS provides powerful tools to dissect the 

genetic basis of ecologically important quantitative traits including fitness and to rapidly monitor 

natural populations including invasive and threatened species. Understanding how the number 

of population samples and the different landscape properties affect the QTL detection power and

phenotype prediction accuracies is integral to planning population collections for GPAS 

experiments. We recommend sampling as many populations as possible from areas of high 

genetic diversity. We also recommend Pool-seq whenever Indi-seq is too costly; since sampling 

more populations at the cost of lower resolution can be better than characterising a small 

number of populations at high resolution. The complementary nature of GWAS and GP allows 

good QTL detection power or prediction accuracy under low to high trait polygenicity and 

selection intensity. In the absence of prior information on the areas of high genetic diversity, we 

recommend against sampling populations at the border of the species’ range.
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Tables and Figures

Table 1. List of parameters used in landscape simulations.

Parameter Levels

Number of populations per landscape 100

Number of hermaphroditic individuals per 

population

1,000

Number of loci per individual 10,000

Number of generations 200

Number of loci controlling the trait 10, 50, and 100

Migration rate per population per generation 0.0001, 0.001, and 0.01

Causal allele diffusion gradient Uniform, unidirectional, and bidirectional

Selection intensity 0.50, 0.90, and 0.95

Number of replicates per landscape 5
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Figure 1. Panel A: Causal allele diffusion gradients across the simulated landscape. Panel B:
Systematic  sampling  strategy  across  the  simulated  landscape.  Note:  For  one
population  sampling,  all  populations  across  the  landscape  were  sampled
independently.
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Figure 2. Relationships between the proportion of the landscape sampled and GPAS 
performance. Dots represent means and whiskers indicate  ±1 standard deviation from
the mean.
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Figure 3. Pool-GPAS can outperform Indi-GPAS under the same sequencing capacity. Panel A: 
Difference in true positive rate (TPR) between Indi-GPAS and Pool-GPAS models as 
the ratio between the number of populations characterised through Indi-seq and Pool-
seq increases. Panel B: Difference in false positive rate (FPR) between Indi-GPAS 
and Pool-GPAS models as the ratio between the number of populations characterised 
through Indi-seq and Pool-seq increases. Vertical red lines: The range of ratios 
between the two vertical red lines correspond to cases when Pool-GPAS can 
outperform Indi-GPAS in our study, i.e. Pool-GPAS has higher TPR and lower FPR 
than Indi-GPAS. Moving along the x-axis involves modifying the sequencing depths for
Indi-seq or Pool-seq and not the number of individuals or pools sampled per 
population, since 384 individuals per population and 5 pools per population were kept 
constant in the simulations.
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Figure 4. Differences in QTL detection and polygenic score prediction accuracies between Indi-
GPAS and Pool-GPAS per population. AUC = Area under the ROC curve. RMSE = 
root mean square error of the polygenic score prediction. The term “ns” beside the 
bars indicates non-significant differences based on HSD at p<0.05.
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Figure 5. Violin plots of the area under the receiver operating curve (AUC; measure of QTL
detection  accuracy),  root  mean square  error  (RMSE;  measure  of  polygenic  score
prediction accuracy),  mean number of  polymorphic  causal loci  per population,  and
causal allele frequencies across the landscape divided into 10 rows under uniform,
unidirectional, and bidirectional causal allele diffusion. Each row is perpendicular to
the causal allele diffusion gradient.  Black dots represent the mean, black whiskers
show ±1 standard deviation, red whiskers are the 95% confidence interval, and the
letters  on  top  of  each  plot  are  Tukey’s  honest  significant  difference  (HSD)-based
grouping (i.e. row groups with the same letter are not significantly different at p<0.05).
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Figure 6. Effects of sampling across the landscape on QTL detection accuracy under varying 
number of simulated QTL, selection intensities, migration rates, and GPAS models for 
unidirectional (top graphs) and bidirectional (bottom graphs) causal allele diffusion 
gradients. QTL detection accuracy was measured using the area under the curve 
which describes the relationship between power and false positive rate, where high 
values mean high QTL detection accuracies.

Figure 7. Effects of sampling across the landscape on prediction accuracy under varying 
number of simulated QTL, selection intensities, migration rates, and GPAS models for 
unidirectional (top graphs) and bidirectional (bottom graphs) causal allele diffusion 
gradients. Polygenic score prediction accuracy was measured using root mean square
error where low values mean high accuracies.
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