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Abstract

This article aims to study the Quasi-least square mixed finite element (FE) method for the approx-
imate solution of Magnato-Hydro-Dynamic equations (MHD). The resulting non-linear system of
equations are linearized around a characteristic state, resulting in first order linearized least-square
models that yield algebraic system of equations with symmetric positive definite coefficient matri-
ces. A central feature of the method is that it does not require (Ladyzhenskaya-Babuška-Brezzi)
LBB conditions on the finite-dimensional subspaces and the resulting bilinear form is symmetric
and positive definite. Secondly, it only needs to choose the value of a single parameter to find
the well-posedenss of the model equations. For the theoretical accuracy and authentication of the
method, we investigate existence of the solutions and obtain a priori error estimates. The variables
are fluid velocity, fluid pressure and magnetic field. Numerical tests are performed in order to
assess the stability and the accuracy of the resulting methods. Result shows good agreement with
analytical solutions.

Keywords: Quasi-least-square finite element scheme, stationary magnetohydrodynamic equations,
stability, convergence analysis.

Magnetohydrodynamics (MHD) deals with the study of the interaction of electromagnetic field-
s and conducting fluids. These equations consist of a coupling between Maxwell equations and
Navier-Stokes equations. The field of MHD is first introduced by Alfven in [29]. This field has
many applications in astrophysics, geophysics and many other engineering fields, such as liquid
metal cooling [2], process metallurgy [3], controlled thermonuclear fusion and sea water propulsion
[4] etc. Moreover, the hydrodynamical behavior of conducting fluids, e.g., plasmas, liquid metals,
and electrolytes, etc., are usually modeled by the MHD system [5]. Since the applied magnetic
fields can induce currents which in turn polarizes the fluid and reciprocally changes the magnet-
ic field itself, the governing system is a combination of hydrodynamics (Navier-Stokes equations)
and electromagnetism (Maxwell equations). About the extensive study of the theoretical model-
ing/numerical analysis of the MHD system, we refer to [6, 10, 11] and the references therein.

A mixed finite element method for the MHD equation is discussed in the following articles
[8, 14, 25, 15] and uniqueness and existence of stationary equations have been given in [1].

In this contribution, we develop a quasi-least-square finite element scheme (QLSFES) in the
L2 inner product and perform an analysis of existence and convergence for them. The key idea
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of QLSFES is to apply least-square method in L2-norm to linearized forms of nonlinear problems.
We introduce several methods contrast from the previous studied methods. Say we have developed
a non-singular solution a branch of nonlinear problems to analyze existence and convergence of
approximate solutions of QLSFES. It has many advantages over the least square finite element
method. Firstly, only L2 -norm is used in these methods which is convenient for programming sense.
Secondly, by linearizing procedure one can derive simple iterative methods with symmetric positive
definite coefficient metrics. So, these simple iterative methods are convergent in a large region of
initial functions. Remember that this is strongly contrast to locally convergent properties of any
standard least-square finite element schemes for nonlinear problems. Lastly, QLSFES and analysis
for their convergence are independent of the algorithm and theory for non-singular solution branches
of nonlinear problems with respect to the two viscosities i.e., fluid viscosity ν and magnetic viscosity
νm. However, in practical engineering applications, many other complicated nonlinear systems are in
practice, such as singular solutions of bifurcation-driven multiplicity [22, 23], viscoelastic fluid flows
[19, 20], flows and heat transfer [17], fluids with a velocity dependent or temperature-dependent
viscosity [], are of great significance, for further study, we refer reader to (see [25]). For the mention
fluid flows, algorithms and theories for approximation of the non-singular solutions of nonlinear
problems are invalid. QLSFES can be applied to study such type of complicated nonlinear problems.

The remaining work is organized as follows. In the next section, we introduce magnetohydro-
dynamic equations linear and non-linear forms and QLSFES. While the former has a simpler form
than the later. In section 3, we analyze the existence and convergence of the QLSFES. We show
the solutions of QLSFES converges to different solutions of the system depending on the initial
guess. In section 4, we analyze the convergent rate of the QLSFES in case that the exact solution
is nonsingular. In section 5, we give some numerical experiments and some further discussion to
end this work.

This work deals with the numerical resolution of the stationary incompressible magnetohydro-
dynamics system of equations [13]. The unknowns for this problem are velocity field u, the pressure
p in the fluid and the magnetic field B (in fact the magnetic induction).

The unknowns for this problem are velocity field u, the pressure p in the fluid and the magnetic
field B (in fact the magnetic induction) [13, 18]. The non-dimensional magnetohydrodynamics
(MHD) equation for the unknowns are as follows

u · ∇u− 1

Re
∆u +∇p+ S(B× curl B) = f in Ω, (0.1)

∇ · u = 0 in Ω, (0.2)

1

Rm
curl (curl B)− S(curl (u×B)) = 0 in Ω, (0.3)

∇ ·B = 0 in Ω. (0.4)

Here Re, Rm and S = M2

ReRm
, with M > 0 being the hydrodynamic Reynolds number, magnetic

Reynolds number, coupling number and Hartman number respectively. In the industrial cases, we
have in mind, Re ≈ 105, Rm ≈ 10−1 and S ≈ 1. To find the velocity u = (u1, u2) and pressure
field p define in Ω and magnetic field B = (b1, b2). The function f represents external force term.
In the two-dimensional case, the curl operator ∇× applied to a vector B = (b1, b2) is defined as
∇×B = ∂b2

∂x −
∂b1
∂y while the cross product of two vectors u = (u1, u2) and B = (b1, b2) is given by

u×B = u1b2 − u2b1.
The system is set on a simply connected and bounded domain Ω ∈ R2 with simplest essential
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homogeneous boundary conditions on ∂Ω [7, 21, 9, 18]:

u = 0 on ∂Ω, (0.5)

B · n = 0 on ∂Ω, (0.6)

curl B× n = 0 on ∂Ω, (0.7)

where n denotes the normal to Ω [25]. Here (0.5) is a no-slip boundary condition implied by the
viscous nature of the fluid, (0.6) and (0.7) are known as perfectly conduction wall.

Remark 1. Instead of the boundary conditions that B · n = 0 in (0.6)and curl B × n = 0 in
(0.7) for the magnetic field B, we can equally apply B× n = 0 and n× (∇×B) = 0 which is also
frequently used for the MHD system; see, e.g., [11, 12, 24, 21, 26] .

1. Quasi-least-square finite element schemes

In this section, we discuss the quasi-least-square finite element schemes based on L2-inner prod-
uct for the MHD system of equation.

1.1. Notations and definitions

In the next sections, we will use the following Sobolev function spaces: Let C∞(Ω) be the set of
functions of infinitely order derivatives and C∞0 (Ω) = {a,b ∈ C∞(Ω)}; the support of a,b are in Ω
( In the whole sections, where a,b are two known functions as Oseen type iterative values using for
the linearization of the system of the equations). Moreover, the standard Sobolev function spaces
we introduce are as follows:

z : = [H1(Ω)]d×d,

X : = H1
0 (Ω)d,

Q : = {q ∈ H1(Ω);

∫
Ω
qdx = 0},

Y : = H1
0 (Ω),

M : = [H1(Ω)]d.

Let U = (Uij)d×d = (U1,U2...,Ud) be a matrix function of d×d degree with column vectors Uk, 1 ≤
k ≤ d. For each d-dimensional vector-valued function u and matrix U, define ∇u = (u1, u2......., ud)
and ∇×U = (∇×U1,∇×U2...,∇×Ud), ∇·UT = (∇·U1,∇·U2...,∇·Ud)

T similarly Z = curlB.
By using the symbolical representations, we can easily describe the first order system equivalently
to the original system and their algorithms.

1.2. The first order MHD system and QLSFES algorithms

We develop an algorithm to solve the incompressible MHD system (0.1)-(0.4). The first quasi-
least-square scheme is based on the following first-order system:

−ν∇ · UT + (u · ∇)u +∇p+ S(B× curl B) = f in Ω, (1.1)

U−∇u = 0 in Ω, (1.2)

∇ · u = 0 in Ω, (1.3)

νmcurl (Z)− S(curl (u×B)) = 0 in Ω, (1.4)

Z− curlB = 0 in Ω, (1.5)
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∇ ·B = 0 in Ω. (1.6)

Here in the upcoming formulation for any a,b ∈ X is supposed to make the nonlinear system in
to linear form [17, 19]. Because a and b are known functions(usually stand for the approximate
solutions for u and B in the previous iterative step of the Picard iterations and are also supposed
regular). We denote viscosity of the hydrodynamic fluid ν = 1

Re
, and magnetic diffusivity νm =

1
Rm

. For further formulation the bilinear form with respect to (U,u, p,Z,B) and (W,w, q, τ, c) in
(z×X×Q×Y×M) can be written as

L(a,b; (U,u, p,Z,B), (W,w, q, τ, c)) (1.7)

=
(
− ν∇ · UT + (a · ∇)u +∇p+ S(b× curl B),

− ν∇ ·WT + (a · ∇)w +∇q + S(b× curl c)
)

+ (U−∇u,W −∇w) + γ2(∇ · u,∇ ·w)

+ (νmcurl Z− curl (u× b), νmcurl τ − curl (w× b))

+ (Z− curl B, τ − curl c) + η2(∇ ·B,∇ · c)

where γ and η are the two positive constants to be determined in later sections. Suppose that
(u, p,B) are the solution of system equations (0.1) − (0.4) is in [H2(Ω)]d × H1(Ω) × H2(Ω). Let
U = ∇u and Z = curl B. The solution (U,u, p,Z,B) satisfies the following quasi-least-squares
variational formulation:

L(u,B; (U,u, p,Z,B), (W,w, q, τ, c)) (1.8)

= (f,−ν∇ ·WT + u · ∇w +∇q + S(B× curl c))

∀(W,w, q, τ, c) ∈ z×X×Q×Y×M.

1.3. Finite element Variational formulation

For the mathematical setting, some notations used in function spaces are introduced. For m ∈ N
the norm associated with Sobolev space Wm,p(G) for [m ≥ 0 and 1 ≤ p ≤ ∞] by || · ||Wm,p(G), with
the special case Wm,2(Ω) being written as Hm(Ω) with the norm || · ||m and seminorm |·|m[16, 28]. If
p = 2 and m = 0 then W 0

2 (Ω). The L2(Ω) inner product and norm are denoted by (·, ·), || · ||=|| · ||0
respectively, the Lp(Ω) norm by || · ||Lp , with the special cases of L2(Ω) and L∞(Ω) norms being
written as || · || and || · ||∞. For the sake of simplicity, we omit G if G = Ω without any confusion.

In order to find the corresponding variational formulation, we introduce finite element spaces
(zh ×Xh ×Qh ×Yh ×Mh) ⊂ (z×X×Q×Y×M) on triangulations Th. Where Th is a family
of finite element triangulations of the domain Ω and subscript h denotes the largest mesh size of
the elements in Th. Based on the quasi-least-square formulation, we define

QLSFES. Find (Uh,uh, ph,Zh,Bh) ∈ (zh ×Xh ×Qh ×Yh ×Mh) such that

L
(
uh,Bh; (Uh,uh, ph,Zh,Bh), (Wh,wh, qh, τh, ch)

)
=
(
f,−ν∇ ·Wh + uh · ∇wh +∇qh + S(Bh × curl ch)

)
∀ (Wh,wh, qh, τh, ch) ∈ (zh ×Xh ×Qh ×Yh ×Mh). (1.9)

Remark 2. We have the linear scheme for the MHD equation. It is clear that for a given a and
b, the bi-linear form L(a, b; ·, ·) are least-square bi-linear form derived by applying the least-squares
minimization principle to linearized form of a nonlinear system (1.8). Here we take a and b as a
known values for the approximation of u and B. Thus we call this scheme as QLSFES.
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Remark 3. QLSFES is a simple symmetric form. We introduce the parameters γ and η with
the incompressibility conditions, which plays a key role in practical calculation. It is impossible to
ensure the coerciveness of L(a, b : ·, ·) for each a, b ∈ X. But by choosing suitable γ and η they
became positive definite if a and b lies in some bounded function sets which contain solution of the
(0.1)-(0.4). In next sections, we would discuss the suitable and judicious choice of the parameters
γ and η for the linear form. The well feature of this technique is that some one can use some
iterative procedure to find solutions of nonlinear complex problems in a large region of functions
without requiring good guess for exact solutions. We confirm this feature in numerical examples in
our experimental part.

2. Existence and convergence of solutions of QLSFES

In this section, we derive existence and convergence of solution of QLSFES. The process of this
analysis is divided into four steps:

• We analyze the positive definite property of the bilinear form L(a,b : ·, ·) , we prove that for
a given γ and η there exist a bounded function set such that L(a,b : ·, ·) is positive definite
and continuous as a and b lies in this function set.

• In second step, we determine a large region of function set which contains all solutions of the
system (1.1)− (1.6). We intend to seek all solutions of the nonlinear system by suitable choice
of γ and η, L(a,b : ·, ·) is a positive definite as a and b are in this large region of functions.

• To prove existence of solutions of QLSFES, we introduce the nonlinear map such that solutions
of QLSFES are fixed points of the map. In step one and step two, we prove that for a suitable
parameter γ and η, the nonlinear map is uniquely determined in this bounded function set
and maps it to itself (see detail in lemma 2.3 and 2.4). Moreover, by using the fixed point
theory, we prove existence of solutions of the QLSFES in theorem 2.1.

• In the last step, we shall prove the convergence of the solutions of QLSFES briefly in theorem
2.2.

Before going to proceed the main work, we give several known results which are applicable
on the next sections. Hence, by Poincaré’s inequality and the embedding theory, there exists
positive constants C, a0 and a1 which are independent on the parameters and any mesh size
domain.

a0 ‖ w ‖2L4 ≤ ‖ ∇w ‖20, (2.1)

a1 ‖ w ‖21 ≤ ‖ ∇w ‖20, ∀ w ∈ X.

‖ u ‖2L4 ≤ C ‖ u ‖21 ∀ u ∈ X.

‖ B ‖20 ≤ a2( ‖ curl B ‖20 + ‖ ∇ ·B ‖20), ∀ B ∈M (2.2)

‖ B ‖2L4 ≤ C ‖ B ‖21
‖ curl B ‖20 ≤ a3 ‖ B ‖21 (2.3)

‖ B ‖20 ≤ C ‖ curl B ‖20 (2.4)

≤ C ‖ B ‖20 (2.5)
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Two Green’s formula on integration by parts [30], are as follows:

(∇ u,w)− (u,∇ w) = 0, ∀ u,w ∈ X (2.6)

(a · ∇w,w) +
1

2
(div a, | w |2) = 0, ∀w,a ∈ X

(b× curl B,w)− (u× b, curl B) = 0, ∀w ∈ X, ∀b,B ∈M

‖ a× b ‖20 ≤ C ‖ a ‖2L∞‖ b ‖20 ∀a,b ∈ (L2(Ω)d×d).

Here (·, ·) is an inner product in L2(Ω) or L2(Ω)d. For each q ∈ L2(Ω) satisfies the boundary
condition (q, 1) = 0 there exists φ ∈ [H1

0 (Ω)]d such that

∇ · φ = q, (2.7)

‖ φ ‖1 ≤ C0 ‖ q ‖0 .

Lemma 2.1. Let constants K > 0, 0 < δ < 2a0min(ν, νm2 ) and γ > max(K, 1). There exists two
constants α and α∗ such that for each a ∈ X, b ∈ M satisfying ‖ ∇a ‖0≤ K and ‖ ∇ · a ‖0≤ δ ,
‖ b ‖L∞≤ π and for each (Wh,wh, qh, τh, ch) ∈ z,X,Q,Y,M,

(i) α
[
‖ ∇w ‖20 + ‖ curl c ‖20

]
≤ L

(
a, b; (W,w, q, τ, c), (W,w, q, τ, c)

)
, (2.8)

(ii) αα∗
[
‖ W ‖20 + ‖ τ ‖20 + ‖ q ‖20

]
≤ L

(
a, b; (W,w, q, τ, c), (W,w, q, τ, c)

)
,

where the constants α and α∗ are defined as follows

α = min(α1, α2, α3, α4, α5), α∗ =
α

α+ 1
, (2.9)

αi, 1 ≤ i ≤ 5, are given by

α∗ = min
(

1
2(1+α) ,

1
2(C0)2α

, 1
4ν2C2

0 (1+α)
,

a20a1
2C2

0 (δ+K)2a1

)
Proof. From the given conditions and the Young’s inequality, we can get

‖ ∇w ‖2L2 = (∇w−W,∇w) + ν−1
[
(−ν∇ ·WT + (a · ∇)w +∇q + Sb× curl c,w)

]
(2.10)

+
[ 1

2ν
(∇ · aw,w)

]
+ ν−1(q,∇ ·w) + ν−1[(Sb× curl c,w)]

≤ 1

2a2
1ε0ν

2
‖ −ν∇ ·WT + (a · ∇)w +∇q + Sb× curl c ‖2L2

+
1

2ε0
‖ ∇w−W ‖2L2 +

γ2

4ε1
‖ ∇ ·w ‖2L2 +

ε1
γ2ν2

‖ q ‖2L2 +(2ε0 +
δ

2ν2a0
) ‖ ∇w ‖2L2

+
S2π2

4ν2a0ε0
‖ curlc ‖2L2 (2.11)

and

‖ W ‖2L2 ≤ 2
[
‖ ∇w ‖2L2 + ‖ ∇w−W ‖2L2

]
. (2.12)

Let us suppose φ satisfies (2.7), we get the following estimation

‖ q ‖2L2 = −(−ν∇ ·WT + (a · ∇)w +∇q + S b× curl c, φ) (2.13)

+ ν(W,∇φ) +
(
(a · ∇)w + S b× curl c, φ

)
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≤
[
‖ (−ν∇ ·WT + (a · ∇)w +∇q + S b× curl c) ‖L2

+ ν ‖ W ‖L2 +
1

a0
(‖ ∇ · a ‖L2 + ‖ ∇a ‖L2) ‖ ∇w ‖L2 +Sπ ‖ curl c ‖L2

]
‖ φ ‖H1 ,

by using the (2.7), implies

‖ q ‖2L2 ≤ 2C2
0

[
‖ −ν∇ ·WT + (a · ∇)w +∇q + S b× curl c ‖2L2 (2.14)

+ ν2 ‖ W ‖2L2 +
(δ +K)2

a2
0

‖ ∇w ‖2L2 +S2π2 ‖ curl c ‖2L2

]
,

At the same time,

‖ curl c ‖2L2=(curl c, curl c− τ) + ν−1
m (c, νmcurl τ − curl (w× b)) (2.15)

+ ν−1
m (c, curl (w× b))

‖ curl c ‖2L2 ≤ 4 ‖ curl c− τ ‖2L2 +
4νma2

νm2a2 − δ
‖ νm curl τ − curl(w× b) ‖2L2 (2.16)

+
2π2

ν2
m

‖ ∇w ‖2L2 +
1

4
‖ ∇ · c ‖2L2 .

By putting (2.14) and (2.16) in equation (2.10), we get

‖ ∇w ‖2L2 ≤
1

2a2
1ε0ν

2
‖ (−ν∇ ·WT + (a · ∇)w +∇q + Sb× curl c) ‖2L2 (2.17)

+
1

2ε0
‖ ∇w−W ‖2L2 +

γ2

4ε1
‖ ∇ ·w ‖2L2 +(ε0 +

δ

2νa0
) ‖ ∇w ‖2L2

+
a2S

2

4ν2ε1
‖ νmcurlτ − curl(w× b) ‖2L2 +2ε1 ‖ curlc ‖2L2

+ ε1 ‖ ∇ · c ‖2L2 +
S2ν2

m

4ν2ε1
‖ curlc− τ ‖2L2

+
2ε1C

2
0

γ2ν2

[
‖ −ν∇ ·WT + (a · ∇)w +∇q + S b× curl c ‖2

+ ν2 ‖ W ‖2L2 +
(δ +K)2

a2
0

‖ ∇w ‖2L2 +S2π2 ‖ curl c ‖2L2

]
≤
(

1

2a2
1ε0ν

2
+

2ε1C
2
0

γ2ν2

)
‖ (−ν∇ ·WT + (a · ∇)w +∇q + Sb× curl c) ‖2L2

+

(
4ε1C

2
0

γ2
+

1

2ε0

)
‖ ∇w−W ‖2L2 +

γ2

4ε1
‖ ∇ ·w ‖2

+

(
ε0 +

δ

2νa0
+

2ε1C
2
0 (δ +K)2

γ2ν2a2
0

+
4ε1C

2
0

γ2

)
‖ ∇w ‖2L2

+

(
2ε1C

2
0S

2π2

γ2ν2
+ 2ε1

)
‖ curl c ‖2L2
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+
a2S

2

4ν2ε1
‖ νmcurlτ − curl(w× b) ‖2L2 +ε1 ‖ ∇ · c ‖2L2 +

S2ν2
m

4ν2ε1
‖ curlc− τ ‖2L2 .

Letting the parameters

ε0 = 1
4(1− δ

2νa0
), ε1 = a0νν2m(2a0ν−δ)

16(C2
0 (δ+K)2ν2m+2C2

0ν
2ν2ma

2
0+2a20C

2
0S

2π4+2a20ν
2π2)

,

we have

‖ ∇w ‖2L2 ≤
(

1

4a2
1ε0ν

2
+
C2

0ε1
ε0ν2

)
‖ (−ν∇ ·WT + (a · ∇)w +∇q + Sb× curl c) ‖2L2 (2.18)

+

(
2C2

0ε1
ε0

+
1

4ε20

)
‖ ∇w−W ‖2L2 +

γ2

8ε0ε1
‖ ∇ ·w ‖2L2

+

(
ε1C

2
0S

2π2

4ε0ν2
+

3ε1
4ε0

)
‖ ∇ · c ‖2L2

+

(
a2S

2

8ε0ε1ν2
+

4a2ε1C
2
0S

2π2

ε0ν2ν2
m

+
4a2ε1
ε0ν2

m

)
‖ νmcurlτ − curl(w× b) ‖2L2

+

(
S2ν2

m

8ε0ε1ν2
+

4ε1C
2
0S

2π2

ε0ν2
+

4ε1
ε0

)
‖ curlc− τ ‖2L2 .

we estimate ‖ τ ‖2L2 again:

‖ τ ‖2L2 ≤ 2
[
‖ curl c− τ ‖2L2 + ‖ curl c ‖2L2

]
(2.19)

≤ 2 ‖ curl c− τ ‖2L2 +
4νmα0

νmα0 − δ
[
‖ curl c− τ ‖2L2 +

1

α1νm2
‖ νm curl (b×w) ‖2L2

]
.

From (2.16) and (2.18), we know that the end of condition given in equation (2.8 (i)) holds for the
α defined by (2.8)and (2.9), while by (2.8 (ii)), (2.12)(2.14) and (2.19 ) also holds �

Remark 4. In lemma 2.1, there are three parameters K, δ and γ. Parameters K and δ are two
constrain conditions for the gradient and divergence of a in the lemmas below, we would see that
K is related to bound of the right hand side terms. By using K, we can know the bounded function
set which contains all of solutions of the model equations. On the other hand, it is not easy to
treat divergence-free condition in practical calculation. Here we deal divergence-free condition to
‖ ∇ ·a ‖L2≤ δ and ‖ ∇ · b ‖L2≤ π. The coefficient α is independent of K and γ but it depends upon
δ and π, α becomes smaller if δ is larger. Hence lemma 2.1 gives formula to calculate the parameter
α. This will be useful to determine the parameter γ in practical applications. The parameter γ is a
penalty factor to control the constrain condition for divergence of the velocity field. The parameter
α∗ has actually no practical applications.

Remark 5. It is necessary to understand that the magnetic field is a solenoidal field so it is
not consider as compressible or incompressible more, we refer reader to the work of stabilization
magnetohydrodynamic equation [10]. To relax or penalize, we do not have any coefficient for the
so called curl or divergence of magnetic field in this segment. We may consider this problem in
our future work, where we will consider two inf-sup conditions for the magnetohydrodynamics model
equations.

In practical applications, the entirely positive definite property of L(a,b; ·, ·) for all a ∈ X is not
necessary and similarly assumption for term b is applied. However, one seek approximate solutions
in the bounded function set which contains all exact soluitions.We need to find this set. To this
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end, introduce function sets in z×X×Q×Y×M

L̃ (δ,K, ρ) =

[
(W,w, q, τ, c); ‖ ∇ ·w ‖L2≤ δ, (2.20)

[‖ ∇w ‖2L2 + ‖ curl c ‖2L2 ]1/2 ≤ K,

[‖ W ‖2L2 + ‖ τ ‖2L2 + ‖ q ‖2L2 ]1/2 ≤ K
√
ρ

]
,

L̃ h(δ,K, ρ) = L̃ (δ,K, ρ) ∩ [zh ×Xh ×Qh ×Yh ×Mh]. (2.21)

The following lemma shows that all solutions of (1.1)-(1.6) are in the bounded set L̃ for some given
parameters δ,K, ρ.

Lemma 2.2. Let 0 < δ < 2a0min(ν, νm2 ). Assume that α and α∗ satisfy (2.8 i and ii) and K
satisfies

‖ f ‖L2 ≤ min(
√
α, 1)K (2.22)

All solutions of system equations (1.1)-(1.6) are in the function L̃ (δ,K, α∗).
Proof.

Let (U,u, p,Z,B) be one solution of the system . For all γ ≥ 0, we see that

L(u,B; (U,u, p,Z,B), (U,u, p,Z,B)) (2.23)

= (f,−ν∇ · UT + u · ∇u +∇p+ SB× curlB).

This implies that

L(u,B; (U,u, p,Z,B), (U,u, p,Z,B)) ≤ ‖ f ‖2L2 . (2.24)

We have the condition ∇ · u = 0 and ∇ ·B = 0 in Ω,

‖ ∇u ‖2L2 = ν−1(−ν∇ · UT + (u · ∇)u +∇p+ SB× curl B,u) (2.25)

+ (∇u− U,∇u)− ν−1(SB× curl B,u)

≤ ν−1(−ν∇ · UT + (u · ∇)u +∇p+ SB× curl B,u)

+ (∇u− U,∇u) +
S

ν
(νmcurlZ− curl(u×B),B) +

Sνm
ν

(curlB− Z, curlB)

≤ 2

a2
1ν

2
‖ −ν∇ · UT + (u · ∇)u +∇p+ SB× curl B ‖2L2

+ 2 ‖ ∇u− U ‖2L2 +
1

4
‖ ∇u ‖2L2

+
2a2S

2

ν2
‖ νmcurlZ− curl(u×B) ‖2L2 +

1

4
‖ curlB ‖2L2 +

2S2ν2
m

ν2
‖ curlB− Z ‖2L2

and
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‖ curl B ‖2L2 ≤ 2 ‖ curl B− Z ‖2L2 +
2a2

νm2
‖ νm curl Z− curl(u×B) ‖2L2 (2.26)

+
2

a2
1S

2ν2
m

‖ −ν∇ · UT + (u · ∇)u +∇p+ SB× curl B ‖2L2

+
2ν2

S2ν2
m

‖ ∇u− U ‖2L2 +
1

4
‖ ∇u ‖2L2 +

1

4
‖ curl B ‖2L2 .

Hence

α̃[‖ ∇u ‖2L2 + ‖ curlB ‖2L2 ] ≤ L(u,B; (U,u, p,Z,B), (U,u, p,Z,B)) ≤ ‖ f ‖2L2 , (2.27)

where α̃ = min(
a21S

2ν2ν2m
4(S2ν2m+ν2)

, S2ν2m
4(S2ν2m+ν2)

, ν2

4a2S2 ,
ν2

4S2ν2m
). Hence it can be easily checked that α ≤ α̃.

Because ‖ ∇u ‖2L2≤ K. By taking γ ≥ max(1,K) and using lemma 3.1, we know that (U,u, p,Z,B)

is in L̃ (δ,K, α∗).
�

We seek approximate solution of the system (1.1) -(1.6). To this end, we define a nonlinear map
from zh ×Xh ×Qh ×Yh ×Mh into zh ×Xh ×Qh ×Yh ×Mh given as

L(Wh,wh, qh, τh, ch) = (Ŵh, ŵh, q̂h, τ̂h, ĉh)

such that for each (Wh
,wh, qh, τh, ch) ∈ zh ×Xh ×Qh ×Yh ×Mh,

L(wh, ch; (Ŵh, ŵh, q̂h, τ̂h, ĉh), (Wh
,wh, qh, τh, ch)) (2.28)

= (f,−ν∇ ·Wh
+ wh · ∇wh +∇qh + SB

h × τh)

So it is clear that the system (2.28) is linear with respect to (Ŵh, ŵh, q̂h, τ̂h, ĉh). For this non-linear
map, we have the following estimated results.

Lemma 2.3. Assume that conditions of the lemma 2.1 and lemma 2.2 holds, the non-linear map
L from L̃ h(δ,K, α∗) to zh ×Xh ×Qh ×Yh ×Mh is uniquely defined.

Note that this lemma 2.3 is the direct corollary of the lemma 2.1.

Lemma 2.4. Assume that conditions of the lemma 3.1 and 3.2 hold and that γ satisfies

γ ≥ ‖ f ‖L2 max(1, 1/δ, 1/
√
α). (2.29)

Here now the operator L maps L̃ h(δ,K, α∗) to itself.

Proof. Hence from equation (2.28)

L(wh, ch; (Ŵh, ŵh, q̂h, τ̂h, ĉh), (Ŵh, ŵh, q̂h, τ̂h, ĉh)) ≤‖ f ‖2L2 .

since we have ‖ ∇wh ‖L2≤ K and ‖ ∇ ·wh ‖L2≤ δ so equation (2.8) tends to

• ‖ ∇ŵh ‖2L2 + ‖ curl ĉh ‖2L2 ≤ 1
α ‖ f ‖2L2≤ K2;
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• ‖ Ŵh ‖2L2 + ‖ τ̂h ‖2L2 + ‖ q̂h ‖2L2 ≤ 1
αα∗ ‖ f ‖2L2≤ K2

α∗

Furthermore,
‖ ∇ · ŵh ‖L2≤ γ−1 ‖ f ‖L2≤ δ.

Therefore, (Ŵh, ŵh, q̂h, τ̂h, ĉh) ∈ L̃ h(δ,K, α∗). This proves lemma 3.4 completed �

Theorem 2.1. Assume that 0 < δ < 2a0min(ν, 1
νm

), K satisfies (2.22), γ satisfies (2.29), α and

α∗ satisfy (2.8 i and ii). So QLSFES has at least one solution in L̃ h(δ,K, α∗). However, all the

solutions of the nonlinear system (1.9) are in L̃ h(δ,K, α∗).

Proof. By lemma 2.4, the operator L maps the boundary function set L̃ h(δ,K, α∗) into itself
under the conditions of theorem2.1. On the other hand, it follows Browners theory of fixed point
that the nonlinear system (1.9) has atleast one solution in L̃ h(δ,K, α∗). It is obvious that all of

solutions of the system (1.9) are in L̃ h(δ,K, α∗). Hence the proof of theorem 2.1 is completed. �
Next, we study convergence of solutions of QLSFES. To this end we have the following conver-

gence result.

Theorem 2.2. Assume that conditions of theorem 2.1 hold and (Uh,uh, ph,Zh,Bh) is one sequence
of solutions of QLSFES as h → 0. Then solution sequence (Uh,uh, ph,Zh,Bh) can be divided into
several sub sequences which weakly convergence to different solutions of the first-order system (
1.1 )-( 1.6 ). In particular, components uh,Bh of these weakly convergent sub sequences strongly
convergence to the corresponding limit components in [Hs(Ω)d]×Hs(Ω) for 0 ≤ s < 1.

Before going to prove theorem 2.1 we need the following lemmas to assist.

Lemma 2.5. Let us consider 0 < δ < 2a0ν. For a given function a ∈ [H1(Ω)]d satisfying ‖
∇·a ‖L2≤ δ and a given vector-valued function f ∈ [L2(Ω)]d. The following boundary value problem

−ν∆u∗ + a · ∇u∗ +∇p = f, in Ω; (2.30)

∇ · u∗ = 0, (2.31)

(p∗, 1) = 0,

u∗ = 0, on ∂Ω;

has one unique solution (u∗, p∗) in H2(Ω)×H1(Ω).

For the proof of lemma 2.5 see [17] appendix 1. Hence we will use the embedding theory between
Sobolev spaces and some results reported in [16, 17] as the following lemmas given bellow.

Lemma 2.6. Let G be a Hilbert space and F be a bounded function set in G, i.e., there exist a
constant K > 0 such that ‖ f ‖G≤ K for each f ∈ F . The function set F is weakly compact in G,
i.e., one weakly convergent sub-sequence {fn}∞n=1 with weak limitation f can be extracted from F in
such a way that

lim
n→∞

〈fn, g〉 = 〈f, g〉, ∀g ∈ G, (2.32)

where 〈·, ·〉 is the inner product in G .

Lemma 2.7. Let F be a bounded function set in H1(Ω), such that there exists a positive constant K
such that ‖ v ‖H1(Ω)≤ K for each v ∈ F . Then the function set F is strongly compact in Hs(Ω) for
each 0 ≤ s < 1, i.e., one sub sequence {fn}∞n=1 , which is strongly convergent in Hs(Ω) as n→∞,
which can be extracted from F.
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Lemma 2.8. There exists a positive constant C such that for 0 ≤ s ≤ 1 and each v ∈ Hs(Ω)

‖ v ‖Lq(Ω)≤ C ‖ v ‖Hs(Ω), ∀ 1 ≤ q ≤ 2d

d− 2s
.

Now we resume theorem 2.2.

Proof. It follows from theorem 2.1 that sequence (Uh,uh, ph,Zh,Bh) of solutions of QLSFE are
bounded in the Hilbert space [17]. As consequence of lemma 3.6 and 3.7, they can be divided
into several sub sequences which are weakly convergent in L2(Ω)×H1(Ω)× L2(Ω)×H1(Ω). For a
weakly convergent sub sequence of solutions of QLSFEM, without loss of generality and for the sake
of simplicity, we still represent it by (Uh,uh, ph,Zh,Bh) and its weak limitation by (U,u, p,Z,B) in
[L2(Ω)×H1(Ω)×L2(Ω)×H1(Ω) ]. Furthermore, by lemma 2.7 we know that components (uh,Bh)
also strongly converges to (u,B) in [Hs(Ω)×Hs(Ω)] for 0 ≤ s < 1.

We shall prove that (U,u, p,Z,B) is one solution of the first order system (1.1)-(1.6). As result,
(u, p,B) is one solution of the model equation. To end this, we introduce auxiliary functions (u∗, p∗)
such that

u · ∇u∗ −∆u∗ +∇p∗ = f− S( B× curl B), in Ω; (2.33a)

∇ · u∗ = 0, in Ω; (2.33b)

u∗ = 0, on ∂Ω; (2.33c)

similarly for B∗

1

µσ
curl (curl B∗)− curl (u×B∗) = 0, in Ω; (2.34a)

∇ ·B∗ = 0, in Ω; (2.34b)

B∗ = 0, in ∂Ω; (2.34c)

systems (2.33a) and (2.34a) are two independent linear systems. Lemma 3.5 shows that these two
system of equations are uniquely solvable and (u∗, p∗) ∈ [H2(Ω)]d × [H1(Ω)]d. Let U∗ = ∇u∗ and
Z∗ = curlB∗. It is straight-forward that (U,u, p,Z,B) is one solution of the first-order system
(1.1)-(1.6) if (U,u, p,Z,B) = (U∗,u∗, p∗,Z∗,B∗). We shall prove this fact in three steps.
Firstly, we prove that

‖ −ν∇ · (U− U∗)T + (u · ∇)(u− u∗) +∇(p− p∗) ‖L2(Ω) = 0. (2.35a)

Secondly, we prove that

(U− U∗)−∇(u− u∗) = 0, in Ω; (2.36a)

∇ · (u− u∗) = 0, in Ω. (2.36b)

Thirdly, it follows from (2.35a) and (2.36a-2.36b) that

−ν∆(u− u∗) + (u · ∇)(u− u∗) +∇(p− p∗) = 0, in Ω; (2.37a)

∇ · (u− u∗) = 0, in Ω. (2.37b)

u− u∗ = 0, on ∂Ω. (2.37c)
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The system (2.37a) implies that (U,u, p) = (U∗,u∗, p∗) because the system (2.37a) is of unique
trivial solution. Similarly, we can prove (Z,B) = (Z∗,B∗) �

The proof of (2.35a) is as follows. It is clear that (2.35a) is equivalent to

(−ν∇ · (U− U∗)T + (u · ∇)(u− u∗) +∇(p− p∗), ϕ) = 0, ∀ϕ ∈ [C∞0 ]d. (2.38)

For each ϕ ∈ [C∞0 (Ω)]d, we may introduce new functions known as test functions (v,q) as

−ν∆v + (u · ∇)v +∇q = ϕ, in Ω, (2.39a)

∇ · v = 0, in Ω, (2.39b)

v = 0, on ∂Ω. (2.39c)

From Lemma 2.5, we may have (v, q) ∈ [H2(Ω)]d ×H1(Ω). Letting V = ∇v, we get

(−ν∇ · (U− U∗)T + (u · ∇)(u− u∗) +∇(p− p∗), ϕ)

=

[(
− ν∇ · (U− Uh)T + (u · ∇)(u− uh) +∇(p− ph) + S B× curl B−Bh, ϕ

)]
+ ((u− uh · ∇)uh, ϕ)

+

(
− ν∇ · (Uh − U∗)T + (uh · ∇)uh − (u · ∇)u∗ +∇(ph − p∗) + S B× curl(B−Bh), ((u− uh) · ∇)v

)
+

[
(−ν∇ · (Uh − U∗)T + (uh · ∇)uh − (u · ∇)u∗ +∇(ph − p∗) + S B× curl(B−Bh),

ν∇ ·VT + (uh · ∇)v +∇q + (Uh −∇uh,V−∇v) + γ2(∇ · (uh − u∗),∇ · v))

]
. (2.40)

The property of weak convergence of (Uh,uh, ph, τh,Bh) be the one solution of the systems (1.1)-
(1.6). For any positive γ, we may further see that

| (−ν∇·(U− Uh)T + (u · ∇)(u− uh) +∇(p− ph) + S B× curl(B−Bh), ϕ) |
≤| (u · ∇)(u− uh) + S B× curl(B−Bh), ϕ |
+ ν | ∇ · (U− Uh,∇ϕ) | + | (p− ph,∇ · ϕ) |→ 0, as h→ 0 (2.41)

Thus from consequence of the lemma 2.8 and the strong convergence property of (uh,Bh), we have
the following result

‖ u− uh ‖L4 ≤ C ‖ u− uh ‖Hd/4→ 0, as h→ 0,

and

| (((u−uh) · ∇)uh, ϕ) | + | −ν∇ · (Uh − U∗)T + (uh · ∇)uh − (u · ∇)u∗ (2.42)

+∇(ph − p∗) + B× curl(B−Bh), ((u− uh) · ∇v) |
≤ C ‖ u− uh ‖L4 [‖ ∇uh ‖0‖ ϕ ‖L4 + ‖ f ‖0‖ ∇v ‖L4 ].

From the system of equations (1.1)-(1.6), we can drive estimate as(
− ν∇·(Uh − U∗)T + (uh · ∇)uh − (u · ∇)u∗ +∇(ph − p∗)

+ B× curl(B−Bh),−ν∇ ·VT + (uh · ∇)v +∇q
)
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+ (Uh −∇uh,V−∇v) + (∇ · (uh − u∗),∇ · v)

= inf
(Vh,vh,qh)∈(zh×Xh×Qh)

[(
− ν∇ · (Uh − U∗)T + (uh · ∇)uh − (u · ∇)u∗ +∇(ph − p∗)

+ B× curl(B−Bh),−ν∇ · (V−Vh)T + (uh · ∇)(v− vh) +∇(q − qh)
)

+ (Uh −∇uh,V−Vh −∇(v− vh)) + γ2(∇(uh − u∗),∇ · (v− vh))

]
(2.43)

→ 0, h→ 0.

We substitute equations (2.41),(2.42),(2.43) into (2.40) yields (2.38). Now we give the proof of
the second step (2.36a)-(2.36b). BY weak convergence of solution sequence and approximation
properties of finite element spaces we see that for each (W,w) ∈ [C∞0 (Ω)]d×d × [C∞0 (Ω)]d

(U− U∗ −∇(u− u∗),W −∇w) + γ2(∇ · (u− u∗),∇ ·w) (2.44)

=
(
− ν∇ · (U− Uh)T + (u · ∇)(u− uh) +∇(p− ph) + B× curl(B−Bh),−ν∇ ·WT + (u · ∇)w

)
+ (U− Uh −∇(u− uh),W −∇w) + γ2(∇ · (u− uh),∇ ·w) + (((u− uh) · ∇)uh,−ν∇ ·WT + (u · ∇)w)

+ (−ν∇ · (Uh − U∗)T + (uh · ∇)uh − (u · ∇)u∗ +∇(ph − p∗) + B× curl(B−Bh), ((u− uh) · ∇)w)

+ inf
(Wh,wh)∈(zh×Xh)

[
(−ν∇ · (Uh − U∗)T + (uh · ∇)uh − (u · ∇)u∗ +∇(ph − p∗) + B× curl(B−Bh),

− ν∇ · (W −Wh)T + (uh · ∇)(w−wh)) + (Uh − U∗ −∇(uh −w∗),W −Wh −∇(w−wh))

+ γ2(∇ · (uh − u∗),∇ · (w−wh))

]
→ 0, as h→ 0.

Now the prove of theorem 2.2 is completed. This theorem 2.2 shows the solutions of QLSFES in
general cases. Near to the singular solution, we only can obtain weak convergence of sub-sequences of
approximate solutions. However, in the next section, we acquire the prove of the strong convergence
of uniformly convergent rate in cases of non-singular solutions of the magnetohydrodynamics system
of equations.

3. Convergent rate of non-singular solution of QLSFES

In this section, we analyze convergent rate of solutions of the non-singular solutions of the system
equations (??)-(??). A solution of the system (??)-(??) is termed as the non-singular solution if
this solution is an isolated solution and the first-order differential approximation of the system is
non-singular at this solution, for more detail we refer reader to (see [17]). We consider for each
(F ∗0 , F

∗
1 , f

∗) ∈ [H−1(Ω)]d × [L2(Ω)]d×d × [L2(Ω)], the linear system

−ν∇ ·WT + (u · ∇)w +∇q + S(B× curl c) = F ∗0 in Ω, (3.1)

W −∇w = F ∗1 in Ω, (3.2)

∇ ·w = f∗ in Ω, (3.3)

w = 0 on ∂Ω, (q, 1) = 0 (3.4)

νm curl τ − S(curl (u× c)) = 0 in Ω, (3.5)

τ − curl c = 0 in Ω, (3.6)

c = 0 on ∂Ω, (3.7)

∇ · c = 0 in Ω, (3.8)
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has unique solution (W,w, q, τ, c) ∈ [L2(Ω)]d×d × [H1
0 (Ω)]d × [L2(Ω)] × [H1

0 (Ω)]. There exists the
positive constant C such that

‖ WT ‖0 + ‖ w ‖1 + ‖ q ‖0 + ‖ c ‖0 + ‖ τ ‖0≤ C ‖ F ∗0 ‖H−1‖ F ∗1 ‖0‖ f∗ ‖0 in Ω. (3.9)

For further analysis, we assume that the following Stokes equations as

−ν∆w +∇q = f in Ω, (3.10)

w = 0 on ∂Ω, (q, 1) = 0, (3.11)

∇ ·w = f∗ in Ω, . (3.12)

(3.13)

and

−ν∆w = g in Ω, (3.14)

w = 0 on ∂Ω. (3.15)

(3.16)

have H2+s regularity for any s ∈ (0, 1] so the solution (w, q, w) ∈ [H2+s(Ω)]d×[H1+s(Ω)]×[H2+s(Ω)]
and

‖ w ‖H2+s + ‖ q ‖H1+s ≤ ‖ f ‖Hs , (3.17)

and

‖ w ‖H2+s≤ C ‖ g ‖Hs . (3.18)

Here, we assume that the finite element spaces zh×Xh×Qh×Yh×Mh possess the approximation
properties such that there exists the approximation order r of the finite element space which is
defined as (r ≥ 1) and C such that

inf
(Wh∈zh)

[‖ W −Wh ‖0 +h ‖ W −Wh ‖1] ≤ Chr+1 ‖ W ‖r+1 ∀W ∈ [Hr+1]d×d; (3.19)

inf
(vh∈Xh)

[‖ v− vh ‖0 +h ‖ v− vh ‖1] ≤ Chr+1 ‖ v ‖r+1 ∀v ∈ [Hr+1]d×d,∀v ∈ X
⋂

[Hr+1]d;

inf
(qh∈Qh)

[‖ q − qh ‖0 +h ‖ q − qh ‖1] ≤ Chr+1 ‖ q ‖r+1 ∀q ∈ [Hr+1]d×d, ∀q ∈ Q
⋂

[Hr+1]d;

inf
(τh∈Mh)

[‖ τ − τh ‖0 +h ‖ τ − τ ‖1] ≤ Chr+1 ‖ τ ‖r+1 ∀τ ∈ [Hr+1]d×d, ∀τ ∈M
⋂

[Hr+1]d.

inf
(ch∈Yh)

[‖ c− ch ‖0 +h ‖ c− ch ‖1] ≤ Chr+1 ‖ c ‖r+1 ∀c ∈ [Hr+1]d×d,∀c ∈ Y
⋂

[Hr+1]d;

where r is the approximation order of the finite element spaces.

Theorem 3.1. Assume that the conditions of theorem 2.2 holds. Let (Uh,uh, ph,Zh,Bh) be the one
approximate solutions of QLSFES which weakly converges to one solution (U,u, p,Z,B) of the first
order system 1.1-1.6. Suppose the solution (U,u, p,Z,B) is non-singular, then the solution sequence
(Uh,uh, ph,Zh,Bh) is strongly convergent in [L2(Ω)]d × [L2(Ω)] × [L2(Ω)]d×d × [H1(Ω)] as h → 0.
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Moreover, the priori error estimate holds

‖ U− Uh ‖0 + ‖ u− uh ‖1 + ‖ p− ph ‖0 + ‖ Z− Zh ‖0 + ‖ B−Bh ‖1 ≤ Chr (3.20)

Proof. Suppose (Uh,uh, ph,Zh,Bh) be a sequence of solutions of discreite QLSFES, which is weakly
converge to one non-singular continuous solution (U,u, p,Z,B) of the lowest order system which is
actually first order linear system (1.1)-(1.6) in [L2(Ω)]d × [L2(Ω)]× [L2(Ω)]d×d × [H1(Ω)] as h→ 0.
By using the curl operator identity and incompressibility conditions we can write

curl(u×B) =
(
(∇ ·B)u + (B · ∇)u

)
−
(
(∇ · u)B + (u · ∇)B

)
= (B · ∇)u− (u · ∇)B

Then, we note that

(a) − ν∇ · (U− Uh)T + (u · ∇)(u− uh) + ((u− uh) · ∇)u +∇(p− ph)

+ S(B× curl(B−Bh))

= −ν∇ · (U− Uh)T + (u · ∇)u− (uh · ∇)uh +∇(p− ph)

+ S(B× curl(B−Bh) + ((u− uh) · ∇)(u− uh), in Ω;

(b) νmcurl (Z− Zh)− curl ((u− uh)× (B−Bh))

= νmcurl (Z− Zh) + {(B · ∇)(u− uh) + (B−Bh) · ∇)u}
+ {(u · ∇)(B−Bh) + (u− uh) · ∇)B}

= νmcurl (Z− Zh) + {(B · ∇)B− (Bh · ∇)uh + (B−Bh) · ∇)(u− uh)}
+ {(u · ∇)u− (uh · ∇)Bh + (u− uh) · ∇)(B−Bh)}+ ((u− uh) · ∇)(u− uh)

((B−Bh) · ∇)(B−Bh)

By using (3.9) we have the following inequality

‖ U− Uh ‖0 + ‖ u− uh ‖1 + ‖ p− ph ‖0 + ‖ Z− Zh ‖0 + ‖ B−Bh ‖1 (3.21)

≤ C{‖ −ν∇ · (U− Uh)T + (u · ∇)u− (uh · ∇)uh +∇(p− ph)

+ SB× curl (B−Bh) ‖20}+ ‖ U− Uh −∇(u− uh) ‖20 +γ2 ‖ ∇ · (u− uh) ‖20
+ ‖ νmcurl (Z− Zh)− {(B · ∇)B− (Bh · ∇)uh − (B−Bh) · ∇)(u− uh)}

− {(u · ∇)u− (uh · ∇)Bh − (u− uh) · ∇)(B−Bh)} ‖21
+ ‖ Z− Zh − curl (B−Bh) ‖20 +η2 ‖ ∇ · (B−Bh) ‖20 + ‖ (u− uh) · ∇)(u− uh) ‖2H−1

+ ‖ (B−Bh) · ∇)(u− uh) ‖H−1 + ‖ (u− uh) · ∇)(B−Bh) ‖H−1

To find the error estimates, we would like to bound terms on the right-hand side of (3.21) as following

‖ (u− uh) · ∇)(u− uh) ‖2H−1 + ‖ (B−Bh) · ∇)(u− uh) ‖H−1 + ‖ (u− uh) · ∇)(B−Bh) ‖H−1

(3.22)

≤ C ‖ (u− uh) ‖2L4 [‖ ∇(u− uh) +∇(B−Bh) ‖20]+ ‖ (B−Bh) · ∇)(u− uh) ‖H−1

It follows from (1.1)-(1.6) and (1.9) we get

‖ −ν∇ · (U− Uh)T + (u · ∇)u− (uh · ∇)uh +∇(p− ph)
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+ SB× curl(B−Bh) ‖20}+ ‖ U−∇u− (Uh −∇uh) ‖20 + ‖ ∇ · (u− uh) ‖20
+ ‖ νmcurl (Z− Zh)− {(B · ∇)B− (Bh · ∇)uh − (B−Bh) · ∇)(u− uh)}

− {(u · ∇)u− (uh · ∇)Bh − (u− uh) · ∇)(B−Bh)} ‖21

= inf
(Wh,wh,qh,τh,ch)∈(zh× Xh×Qh×Yh×Mh)

[(
− ν∇ · (U− Uh)T + (u · ∇)u− (uh · ∇)uh +∇(p− ph)

+ SB× curl(B−Bh),−ν∇ · (U−Wh)T + (uh · ∇(u−wh)) +∇(p− qh) + SB× curl(B− ch))

)
+ (U−∇u− (Uh − uh),U−Wh −∇(u−wh)) + (∇ · (u− uh),∇ · (u−wh))

+

(
νmcurl(Z− Zh)− {(B · ∇)B− (Bh · ∇)uh − (B−Bh) · ∇)(u− uh)}

− {(u · ∇)u− (uh · ∇)Bh − (u− uh) · ∇)(B−Bh)}),
νmcurl(Z− τh)− {(B · ∇)B− (Bh · ∇)uh − (B− ch) · ∇)(u− uh)}

− {(u · ∇)u− (uh · ∇)Bh − (u−wh) · ∇)(B− ch)}) + (∇ · (B−Bh),∇ · (B− ch))

)]
− ν∇ · (U− Uh)T + (u · ∇)u− (uh · ∇)uh +∇(p− ph) + SB× curl (B−Bh), ((u− uh) · ∇)u)

+ (νmcurl (Z− Zh)− {(B · ∇)B− (Bh · ∇)uh − (B−Bh) · ∇)(u− uh)} − {(u · ∇)u

− (uh · ∇)Bh − (u− uh) · ∇)(B−Bh)), ((u− uh) · ∇)(u− uh) + ((B−Bh) · ∇)(B−Bh)
(3.23)

To control the last terms on the right-hand side of (3.23), we intend to introduce auxiliary
functions (v, q, c) such that

−ν∆v + (u · ∇)v +∇q + SB× curl(c) = ((u− uh) · ∇)u (3.24)

∇ · v = 0, in Ω; (q, 1) = 0; (3.25)

νmcurl curl(c)− (B · ∇)c− (u · ∇)v = ((u− uh) · ∇)u + ((B−Bh) · ∇)B (3.26)

Hence this system (3.24)-(3.26) possesses one unique solution (v, q, c) in [H2(Ω)]d×H1(Ω)×H2(Ω).
Let us consider V = ∇v and τ = curl c, then by auxiliary functions (V,v, q, τ, c) we have the
following inequality(
−ν∇ · (U− Uh)T + (u · ∇)u− (uh · ∇)uh +∇(p− ph) + S(B−Bh)× curlB, ((u− uh) · ∇)u

)
+
(
νmcurl (Z− Zh)− (B · ∇)B− (Bh · ∇)uh − (u · ∇)u− (uh · ∇)Bh,

((u− uh) · ∇)u + ((B−Bh) · ∇)B
)

= inf
(Vh,vh,qh,τh,ch)∈(zh× Xh×Qh×Yh×Mh)

[(
− ν∇ · (U− Uh)T + (u · ∇)u− (uh · ∇)uh +∇(p− ph)

+ S(B−Bh)× curlB,−ν∇ · (V−Vh)T + (uh · ∇(v− vh)) +∇(p− qh) + S(c− ch)× curlB)

)
+ (U− Uh −∇(u− uh),V−Vh −∇(v− vh)) + γ2(∇ · (u− uh),∇ · (v− vh))

(Z− Zh + curl(B−Bh), τ − τh + curl(c− ch)) + νmcurl (Z− Zh)− (B · ∇)B− (Bh · ∇)uh

− (u · ∇)u− (uh · ∇)Bh, νmcurl (τ − τh)− (Bh · ∇)(c− ch)− (u− uh · ∇)(v− vh)

]
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−
(
ν∇ · (U− Uh)T + (u · ∇)u− (uh · ∇)uh +∇(p− ph)

+ S(B−Bh)× curlB, ((u− uh) · ∇)v

)
+

(
νmcurl (τ − τh)− (B · ∇)B− (Bh · ∇)uh

− (u · ∇)u− (uh · ∇)Bh, ((u− uh) · ∇)v + ((B−Bh) · ∇)c

)
≤
[
‖ −ν∇ · (U− Uh)T + (u · ∇)u− (uh · ∇)uh +∇(p− ph) + S(B−Bh)× curlB ‖20

+ ‖ U− Uh −∇(u− uh) ‖20 +γ2 ‖ ∇ · (u− uh) ‖20 + ‖ Z− Zh + curl(B−Bh) ‖20

+ νm ‖ curl (τ − τh)− (B · ∇)B− (Bh · ∇)uh − (u · ∇)u− (uh · ∇)Bh ‖20
]

+ C

{
h2r
[
‖ u ‖2Hr+1 + ‖ u ‖2Hr+1 + ‖ p ‖2Hr+1 + ‖ B ‖2Hr+1

]}
+

{
h2s
[
‖ v ‖2Hs+2 + ‖ q ‖2Hs+1

]
+ ‖ u− uh ‖2L4 (‖ v ‖2H2 + ‖ τ ‖2H2)

}
(3.27)

By substituting (3.17)-(3.18),(3.27) into (3.23), we get

‖ −ν∇ · (U− Uh)T + (u · ∇)u− (uh · ∇)uh +∇(p− ph) + S(B−Bh)× curl(B) ‖20
+ ‖ U−∇u− (Uh −∇uh) ‖20 + ‖ ∇ · (u− uh) ‖20
+ ‖ νmcurl (Z− Zh)− {(B · ∇)B− (Bh · ∇)uh − (B−Bh) · ∇)(u− uh)}
− (u · ∇)u− (uh · ∇)Bh − (u− uh) · ∇(B−Bh)} ‖21

≤ C
{
h2r
[
‖ u ‖2Hr+2 + ‖ p ‖2Hr+1 + ‖ B ‖2Hr+2

]
}

+ (h2s+ ‖ u− uh ‖2L4)
[
‖ (u− uh) · ∇u ‖2Hs + ‖ (u− uh) · ∇B ‖2Hs

]}
. (3.28)

Having substitution of equation (3.22) and (3.28) into (3.21), also the value of s = 0 we get

‖ U− Uh ‖0 + ‖ u− uh ‖1 + ‖ p− ph ‖0 + ‖ Z− Zh ‖0 + ‖ B−Bh ‖1

≤ C
{
hr
[
‖ u ‖2Hr+2 + ‖ p ‖2Hr+1 + ‖ B ‖2Hr+2

]
+ (1+ ‖ u− uh ‖2L4) ‖ u− uh ‖2L4)

[
‖ u ‖H2 + ‖ B ‖H2

]}
. (3.29)

and that as 0 < s < 1

‖ U− Uh ‖0 + ‖ u− uh ‖1 + ‖ p− ph ‖0 + ‖ Z− Zh ‖0 + ‖ B−Bh ‖1

≤ C
{
hr
[
‖ u ‖2Hr+2 + ‖ p ‖2Hr+1 + ‖ B ‖2Hr+2

]
+ (hs+ ‖ u− uh ‖2L4) ‖ u− uh ‖2H1)

[
‖ u ‖H3 + ‖ B ‖H3

]}
. (3.30)
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So that if ‖ u− uh ‖L4 is convergence to o as h→ 0, then (3.28) yields

‖ U− Uh ‖0 + ‖ u− uh ‖1 + ‖ p− ph ‖0 + ‖ Z− Zh ‖0 + ‖ B−Bh ‖1→ 0, as h→ 0, (3.31)

if s = 0, then (3.30) leads to (3.20), if 0 < s < 1. This gives a completion of the theorem proof. �

4. Numerical examples

In this section we illustrate several numerical experiments to show effect of the schemes and to
verify theoretical results. We introduce a very simple iterative algorithm to solve nonlinear systems
result from the scheme in section 2. The basic purpose of our experiments is to find optimal
convergence rates of our method. We take initiate by considering with smooth solution and one
problem with a singular solution. Then, we consider the numerical approximations as common in
magnetohydrodynamic research examples known as Hartman channel flow.

4.1. Two-dimensional problem with a smooth solution

First, we verify the teoretical result for a problem with a smooth solution.
We consider the following two dimensional problem. We set Ω = [0, 1] × [0, 1] with a Dirichlet

boundary conditions on all the boundaries. We consider the components of velocity u and magnetic
field B as (u1, u2) and (B1, B2) for convenience. We choose the source term f that the analytical
solution is of the form

u1 = x2(x− 1)2y(y − 1)(2y − 1);

u2 = −x(x− 1)(2x− 1)y2(y − 1)2;

P = (2x− 1)(2y − 1);

B1 = sin(πx)cos(πy);

B2 = −sin(πy)cos(πx).

We construct this example to show the convergence rate concerning the L2-error norm. In Table 1,
we illustrate the convergence of the errors in the approximations of the hydrodynamic and magnetic
variables. We observe that || u − uh ||0, || p − ph ||0,|| B −Bh ||0 converge to zero as the mesh is
refined.

Table 1: The error estimate for MHD with standard FE P1b − P1 − P1 pair.

h ||u− uh||0Rate||p− ph||0Rate||B−Bh||0Rate

1/4 0.22122 - 0.20562 - 0.12221 -

1/8 0.10267 1.10 0.06430 1.6 0.04332 1.4

1/16 0.04883 1.07 0.02187 1.5 0.01579 1.4

1/32 0.02390 1.03 0.00724 1.5 0.00621 1.4

1/64 0.01185 1.01 0.00247 1.5 0.00253 1.4

5. Conclusion

In this article, a quasileast square method for the Magnetohydrodynamic (MHD) model e-
quations is presented. The mixed finite element method needs some stability conditions for the

19



uniqueness and existence known as inf-sup conditions or LBB conditions. These conditions are not
always satisfied with the finite elements, by choosing quasileast square method these conditions are
circumvented and do not need for the stability condition.
References

[1] D. Shi and Z. Yu, nonconforming mixed finite element methods for stationary in-compressible
Magnetohydrodynamics, Int. J. Numer. Anal. Model., (2013) 904-19.

[2] L. Barleon, V. Casal, and L. Lenhart, MHD flow in liquid-metal-cooled blankets, Fusion Engi-
neering and Design, (1991) 401-412.

[3] P. A. Davidson, Magnetohydrodynamics in material processing, Annu. Rev. Fluid Mech. (1999)
273C300.

[4] G. Yuksel and R. Ingram, Numerical analysis of a finite element, Crank-Nicolson discretization
for MHD flow at small magnetic Reynolds number, Tech. report, University of Pittsburgh,
2011.

[5] An introduction to magnetohydrodynamics, Cambridge Texts in Applied Mathematics, Cam-
bridge University Press, Cambridge, 2001.

[6] P. H. Roberts, An introduction to magnetohydrodynamics, Elsevier, USA, 1967.

[7] M.D. Gunzburger, O.A. Ladyzhenskaya and J.S. Peterson, On the global unique solvability of
initial-boundary value problems for the coupled modified Navier-Stokes Maxwell equations. J.
Math. Fluid Mech. (2004) 462-482.

[8] C. Greif, D. Li, D. Schotzau, and X. Wei, A mixed finite element method with exactly
divergence-free velocities for incompressible magnetohydrodynamics, Comput. Methods Ap-
pl. Mech. Engrg. (2010), 2840-2855.

[9] A. Prohl, Convergent finite element discretizations of the nonstationary incompressible Mag-
netohydrodynamics system. ESAIM: M2AN (2008) 1065-1087.

[10] R. Codina and N. Hernadez-Silva, stabilized finite element approximation of the stationary
magneto-hydrodynamics equations, Comput. Mech., (2006) 344-55.

[11] M.D., Gunzburger, A.J., Meir and J.S. Peterson, On the existence and uniqueness and finite
element approximation of solutions of the equations of stationary incompressible magnetohy-
drodynamics. Math. Comp. 523C563 (1991).

[12] W.F. Hughes and F.J. Young, The Electromagneto-Hydrodynamics of Fluids. Wiley, New York
(1966).

[13] R. Codina and N. Hernadez, approximation of the thermally coupled MHD problemusing a
stabilized finite element method, Journal of Computational Physics, (2010) 1-2, .
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