Literature cited
Abdi, H. (2007). The bonferroni and Sidak corrections for multiple comparisons. In N. Salkind (Ed.), Encyclopedia of Measurement and Statistics .
Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics, 31 (2), 166-169. doi:10.1093/bioinformatics/btu638
Catinot, J., Huang, J. B., Huang, P. Y., Tseng, M. Y., Chen, Y. L., Gu, S. Y., . . . Zimmerli, L. (2015). ETHYLENE RESPONSE FACTOR 96 positively regulates Arabidopsis resistance to necrotrophic pathogens by direct binding to GCC elements of jasmonate - and ethylene-responsive defence genes. Plant Cell Environ, 38 (12), 2721-2734. doi:10.1111/pce.12583
Chinnusamy, V., Zhu, J., & Zhu, J. K. (2007). Cold stress regulation of gene expression in plants. Trends Plant Sci, 12 (10), 444-451. doi:10.1016/j.tplants.2007.07.002
Chujo, T., Miyamoto, K., Shimogawa, T., Shimizu, T., Otake, Y., Yokotani, N., . . . Okada, K. (2013). OsWRKY28, a PAMP-responsive transrepressor, negatively regulates innate immune responses in rice against rice blast fungus. Plant Mol Biol, 82 (1-2), 23-37. doi:10.1007/s11103-013-0032-5
Cui, H., Tsuda, K., & Parker, J. E. (2015). Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol, 66 , 487-511. doi:10.1146/annurev-arplant-050213-040012
Dagdas, Y. F., Yoshino, K., Dagdas, G., Ryder, L. S., Bielska, E., Steinberg, G., & Talbot, N. J. (2012). Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae. Science, 336 (6088), 1590-1595. doi:10.1126/science.1222934
Deng, Y., Zhai, K., Xie, Z., Yang, D., Zhu, X., Liu, J., . . . He, Z. (2017). Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science, 355 (6328), 962-965. doi:10.1126/science.aai8898
El-Kereamy, A., Bi, Y. M., Ranathunge, K., Beatty, P. H., Good, A. G., & Rothstein, S. J. (2012). The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PLoS One, 7 (12), e52030. doi:10.1371/journal.pone.0052030
Fukuoka, S., Saka, N., Koga, H., Ono, K., Shimizu, T., Ebana, K., . . . Yano, M. (2009). Loss of function of a proline-containing protein confers durable disease resistance in rice. Science, 325 (5943), 998-1001. doi:10.1126/science.1175550
Harmer, S. L. (2009). The circadian system in higher plants. Annu Rev Plant Biol, 60 , 357-377. doi:10.1146/annurev.arplant.043008.092054
Huot, B., Yao, J., Montgomery, B. L., & He, S. Y. (2014). Growth-defense tradeoffs in plants: a balancing act to optimize fitness.Mol Plant, 7 (8), 1267-1287. doi:10.1093/mp/ssu049
Jewett, M. C., Miller, M. L., Chen, Y., & Swartz, J. R. (2009). Continued protein synthesis at low [ATP] and [GTP] enables cell adaptation during energy limitation. J Bacteriol, 191 (3), 1083-1091. doi:10.1128/JB.00852-08
Jones, J. D., & Dangl, J. L. (2006). The plant immune system.Nature, 444 (7117), 323-329. doi:10.1038/nature05286
Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., . . . Yamanishi, Y. (2008). KEGG for linking genomes to life and the environment. Nucleic Acids Res, 36 (Database issue), D480-484. doi:10.1093/nar/gkm882
Kankanala, P., Czymmek, K., & Valent, B. (2007). Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell, 19 (2), 706-724. doi:10.1105/tpc.106.046300
Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 12 (4), 357-360. doi:10.1038/nmeth.3317
Li, W., Chern, M., Yin, J., Wang, J., & Chen, X. (2019). Recent advances in broad-spectrum resistance to the rice blast disease.Curr Opin Plant Biol, 50 , 114-120. doi:10.1016/j.pbi.2019.03.015
Li, W., Wang, K., Chern, M., Liu, Y., Zhu, Z., Liu, J., . . . Chen, X. (2020). Sclerenchyma cell thickening through enhanced lignification induced by OsMYB30 prevents fungal penetration of rice leaves. New Phytol, 226 (6), 1850-1863. doi:10.1111/nph.16505
Li, W., Zhu, Z., Chern, M., Yin, J., Yang, C., Ran, L., . . . Chen, X. (2017). A Natural Allele of a Transcription Factor in Rice Confers Broad-Spectrum Blast Resistance. Cell, 170 (1), 114-126 e115. doi:10.1016/j.cell.2017.06.008
Li, Y. B., Xu, R., Liu, C., Shen, N., Han, L. B., & Tang, D. (2020). Magnaporthe oryzae fimbrin organizes actin networks in the hyphal tip during polar growth and pathogenesis. PLoS Pathog, 16 (3), e1008437. doi:10.1371/journal.ppat.1008437
Liu, W., Liu, J., Ning, Y., Ding, B., Wang, X., Wang, Z., & Wang, G. L. (2013). Recent progress in understanding PAMP- and effector-triggered immunity against the rice blast fungus Magnaporthe oryzae. Mol Plant, 6 (3), 605-620. doi:10.1093/mp/sst015
Liu, W., Liu, J., Triplett, L., Leach, J. E., & Wang, G. L. (2014). Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol, 52 , 213-241. doi:10.1146/annurev-phyto-102313-045926
Lu, C. H., Lin, Y. F., Lin, J. J., & Yu, C. S. (2012). Prediction of metal ion-binding sites in proteins using the fragment transformation method. PLoS One, 7 (6), e39252. doi:10.1371/journal.pone.0039252
Lv, Y., Yang, M., Hu, D., Yang, Z., Ma, S., Li, X., & Xiong, L. (2017). The OsMYB30 Transcription Factor Suppresses Cold Tolerance by Interacting with a JAZ Protein and Suppressing beta-Amylase Expression.Plant Physiol, 173 (2), 1475-1491. doi:10.1104/pp.16.01725
Mine, A., Seyfferth, C., Kracher, B., Berens, M. L., Becker, D., & Tsuda, K. (2018). The Defense Phytohormone Signaling Network Enables Rapid, High-Amplitude Transcriptional Reprogramming during Effector-Triggered Immunity. Plant Cell, 30 (6), 1199-1219. doi:10.1105/tpc.17.00970
Mizoi, J., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2012). AP2/ERF family transcription factors in plant abiotic stress responses.Biochim Biophys Acta, 1819 (2), 86-96. doi:10.1016/j.bbagrm.2011.08.004
Navarro, L., Zipfel, C., Rowland, O., Keller, I., Robatzek, S., Boller, T., & Jones, J. D. (2004). The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol, 135 (2), 1113-1128. doi:10.1104/pp.103.036749
Qi, J., Wang, J., Gong, Z., & Zhou, J. M. (2017). Apoplastic ROS signaling in plant immunity. Curr Opin Plant Biol, 38 , 92-100. doi:10.1016/j.pbi.2017.04.022
Ran, X., Zhao, F., Wang, Y., Liu, J., Zhuang, Y., Ye, L., . . . Zhang, Y. (2020). Plant Regulomics: a data-driven interface for retrieving upstream regulators from plant multi-omics data. Plant J, 101 (1), 237-248. doi:10.1111/tpj.14526
Rashid, M., Guangyuan, H., Guangxiao, Y., Hussain, J., & Xu, Y. (2012). AP2/ERF Transcription Factor in Rice: Genome-Wide Canvas and Syntenic Relationships between Monocots and Eudicots. Evol Bioinform Online, 8 , 321-355. doi:10.4137/EBO.S9369
Shimono, M., Koga, H., Akagi, A., Hayashi, N., Goto, S., Sawada, M., . . . Takatsuji, H. (2012). Rice WRKY45 plays important roles in fungal and bacterial disease resistance. Mol Plant Pathol, 13 (1), 83-94. doi:10.1111/j.1364-3703.2011.00732.x
Singh, P., Chien, C. C., Mishra, S., Tsai, C. H., & Zimmerli, L. (2013). The Arabidopsis LECTIN RECEPTOR KINASE-VI.2 is a functional protein kinase and is dispensable for basal resistance to Botrytis cinerea. Plant Signal Behav, 8 (1), e22611. doi:10.4161/psb.22611
Singh, P., & Zimmerli, L. (2013). Lectin receptor kinases in plant innate immunity. Front Plant Sci, 4 , 124. doi:10.3389/fpls.2013.00124
Smakowska, E., Kong, J., Busch, W., & Belkhadir, Y. (2016). Organ-specific regulation of growth-defense tradeoffs by plants.Curr Opin Plant Biol, 29 , 129-137. doi:10.1016/j.pbi.2015.12.005
Someya, S., Kakuta, M., Morita, M., Sumikoshi, K., Cao, W., Ge, Z., . . . Shimizu, K. (2010). Prediction of carbohydrate-binding proteins from sequences using support vector machines. Adv Bioinformatics . doi:10.1155/2010/289301
Talbot, N. J. (2003). On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea. Annu Rev Microbiol, 57 , 177-202. doi:10.1146/annurev.micro.57.030502.090957
Tang, D., Wang, G., & Zhou, J. M. (2017). Receptor Kinases in Plant-Pathogen Interactions: More Than Pattern Recognition. Plant Cell, 29 (4), 618-637. doi:10.1105/tpc.16.00891
Vij, S., Giri, J., Dansana, P. K., Kapoor, S., & Tyagi, A. K. (2008). The receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: organization, phylogenetic relationship, and expression during development and stress. Mol Plant, 1 (5), 732-750. doi:10.1093/mp/ssn047
Wang, L., Feng, Z., Wang, X., Wang, X., & Zhang, X. (2010). DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 26 (1), 136-138. doi:10.1093/bioinformatics/btp612
Wang, L., Ma, H., & Lin, J. (2019). Angiosperm-Wide and Family-Level Analyses of AP2/ERF Genes Reveal Differential Retention and Sequence Divergence After Whole-Genome Duplication. Front Plant Sci, 10 , 196. doi:10.3389/fpls.2019.00196
Wang, W., Feng, B., Zhou, J. M., & Tang, D. (2020). Plant immune signaling: Advancing on two frontiers. J Integr Plant Biol, 62 (1), 2-24. doi:10.1111/jipb.12898
Wei, T., Ou, B., Li, J., Zhao, Y., Guo, D., Zhu, Y., . . . Qu, L. J. (2013). Transcriptional profiling of rice early response to Magnaporthe oryzae identified OsWRKYs as important regulators in rice blast resistance. PLoS One, 8 (3), e59720. doi:10.1371/journal.pone.0059720
Wu, H., Qu, X., Dong, Z., Luo, L., Shao, C., Forner, J., . . . Zhao, Z. (2020). WUSCHEL triggers innate antiviral immunity in plant stem cells.Science, 370 (6513), 227-231. doi:10.1126/science.abb7360
Xu, G., Greene, G. H., Yoo, H., Liu, L., Marques, J., Motley, J., & Dong, X. (2017). Global translational reprogramming is a fundamental layer of immune regulation in plants. Nature, 545 (7655), 487-490. doi:10.1038/nature22371
Yang, Z., Wu, Y., Li, Y., Ling, H. Q., & Chu, C. (2009). OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol, 70 (1-2), 219-229. doi:10.1007/s11103-009-9466-1
Zhang, J., Peng, Y., & Guo, Z. (2008). Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Cell Res, 18 (4), 508-521. doi:10.1038/cr.2007.104
Zhang, Y., Zhao, J., Li, Y., Yuan, Z., He, H., Yang, H., . . . Qu, S. (2016). Transcriptome Analysis Highlights Defense and Signaling Pathways Mediated by Rice pi21 Gene with Partial Resistance to Magnaporthe oryzae. Front Plant Sci, 7 , 1834. doi:10.3389/fpls.2016.01834
Zhou, J. M., & Zhang, Y. (2020). Plant Immunity: Danger Perception and Signaling. Cell, 181 (5), 978-989. doi:10.1016/j.cell.2020.04.028
Zhou, T., Wang, Y., Chen, J. Q., Araki, H., Jing, Z., Jiang, K., . . . Tian, D. (2004). Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes.Mol Genet Genomics, 271 (4), 402-415. doi:10.1007/s00438-004-0990-z
Zhu, Z., Yin, J., Chern, M., Zhu, X., Yang, C., He, K., . . . Li, W. (2020). New insights into bsr-d1-mediated broad-spectrum resistance to rice blast. Mol Plant Pathol, 21 (7), 951-960. doi:10.1111/mpp.12941
Zimeri, A. M., Dhankher, O. P., McCaig, B., & Meagher, R. B. (2005). The plant MT1 metallothioneins are stabilized by binding cadmiums and are required for cadmium tolerance and accumulation. Plant Mol Biol, 58 (6), 839-855. doi:10.1007/s11103-005-8268-3