Literature cited
Abdi, H. (2007). The bonferroni and Sidak corrections for multiple
comparisons. In N. Salkind (Ed.), Encyclopedia of Measurement and
Statistics .
Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeq–a Python framework
to work with high-throughput sequencing data. Bioinformatics,
31 (2), 166-169. doi:10.1093/bioinformatics/btu638
Catinot, J., Huang, J. B., Huang, P. Y., Tseng, M. Y., Chen, Y. L., Gu,
S. Y., . . . Zimmerli, L. (2015). ETHYLENE RESPONSE FACTOR 96 positively
regulates Arabidopsis resistance to necrotrophic pathogens by direct
binding to GCC elements of jasmonate - and ethylene-responsive defence
genes. Plant Cell Environ, 38 (12), 2721-2734.
doi:10.1111/pce.12583
Chinnusamy, V., Zhu, J., & Zhu, J. K. (2007). Cold stress regulation of
gene expression in plants. Trends Plant Sci, 12 (10), 444-451.
doi:10.1016/j.tplants.2007.07.002
Chujo, T., Miyamoto, K., Shimogawa, T., Shimizu, T., Otake, Y.,
Yokotani, N., . . . Okada, K. (2013). OsWRKY28, a PAMP-responsive
transrepressor, negatively regulates innate immune responses in rice
against rice blast fungus. Plant Mol Biol, 82 (1-2), 23-37.
doi:10.1007/s11103-013-0032-5
Cui, H., Tsuda, K., & Parker, J. E. (2015). Effector-triggered
immunity: from pathogen perception to robust defense. Annu Rev
Plant Biol, 66 , 487-511. doi:10.1146/annurev-arplant-050213-040012
Dagdas, Y. F., Yoshino, K., Dagdas, G., Ryder, L. S., Bielska, E.,
Steinberg, G., & Talbot, N. J. (2012). Septin-mediated plant cell
invasion by the rice blast fungus, Magnaporthe oryzae. Science,
336 (6088), 1590-1595. doi:10.1126/science.1222934
Deng, Y., Zhai, K., Xie, Z., Yang, D., Zhu, X., Liu, J., . . . He, Z.
(2017). Epigenetic regulation of antagonistic receptors confers rice
blast resistance with yield balance. Science, 355 (6328), 962-965.
doi:10.1126/science.aai8898
El-Kereamy, A., Bi, Y. M., Ranathunge, K., Beatty, P. H., Good, A. G.,
& Rothstein, S. J. (2012). The rice R2R3-MYB transcription factor
OsMYB55 is involved in the tolerance to high temperature and modulates
amino acid metabolism. PLoS One, 7 (12), e52030.
doi:10.1371/journal.pone.0052030
Fukuoka, S., Saka, N., Koga, H., Ono, K., Shimizu, T., Ebana, K., . . .
Yano, M. (2009). Loss of function of a proline-containing protein
confers durable disease resistance in rice. Science, 325 (5943),
998-1001. doi:10.1126/science.1175550
Harmer, S. L. (2009). The circadian system in higher plants. Annu
Rev Plant Biol, 60 , 357-377. doi:10.1146/annurev.arplant.043008.092054
Huot, B., Yao, J., Montgomery, B. L., & He, S. Y. (2014).
Growth-defense tradeoffs in plants: a balancing act to optimize fitness.Mol Plant, 7 (8), 1267-1287. doi:10.1093/mp/ssu049
Jewett, M. C., Miller, M. L., Chen, Y., & Swartz, J. R. (2009).
Continued protein synthesis at low [ATP] and [GTP] enables cell
adaptation during energy limitation. J Bacteriol, 191 (3),
1083-1091. doi:10.1128/JB.00852-08
Jones, J. D., & Dangl, J. L. (2006). The plant immune system.Nature, 444 (7117), 323-329. doi:10.1038/nature05286
Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M.,
. . . Yamanishi, Y. (2008). KEGG for linking genomes to life and the
environment. Nucleic Acids Res, 36 (Database issue), D480-484.
doi:10.1093/nar/gkm882
Kankanala, P., Czymmek, K., & Valent, B. (2007). Roles for rice
membrane dynamics and plasmodesmata during biotrophic invasion by the
blast fungus. Plant Cell, 19 (2), 706-724.
doi:10.1105/tpc.106.046300
Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced
aligner with low memory requirements. Nat Methods, 12 (4),
357-360. doi:10.1038/nmeth.3317
Li, W., Chern, M., Yin, J., Wang, J., & Chen, X. (2019). Recent
advances in broad-spectrum resistance to the rice blast disease.Curr Opin Plant Biol, 50 , 114-120. doi:10.1016/j.pbi.2019.03.015
Li, W., Wang, K., Chern, M., Liu, Y., Zhu, Z., Liu, J., . . . Chen, X.
(2020). Sclerenchyma cell thickening through enhanced lignification
induced by OsMYB30 prevents fungal penetration of rice leaves. New
Phytol, 226 (6), 1850-1863. doi:10.1111/nph.16505
Li, W., Zhu, Z., Chern, M., Yin, J., Yang, C., Ran, L., . . . Chen, X.
(2017). A Natural Allele of a Transcription Factor in Rice Confers
Broad-Spectrum Blast Resistance. Cell, 170 (1), 114-126 e115.
doi:10.1016/j.cell.2017.06.008
Li, Y. B., Xu, R., Liu, C., Shen, N., Han, L. B., & Tang, D. (2020).
Magnaporthe oryzae fimbrin organizes actin networks in the hyphal tip
during polar growth and pathogenesis. PLoS Pathog, 16 (3),
e1008437. doi:10.1371/journal.ppat.1008437
Liu, W., Liu, J., Ning, Y., Ding, B., Wang, X., Wang, Z., & Wang, G. L.
(2013). Recent progress in understanding PAMP- and effector-triggered
immunity against the rice blast fungus Magnaporthe oryzae. Mol
Plant, 6 (3), 605-620. doi:10.1093/mp/sst015
Liu, W., Liu, J., Triplett, L., Leach, J. E., & Wang, G. L. (2014).
Novel insights into rice innate immunity against bacterial and fungal
pathogens. Annu Rev Phytopathol, 52 , 213-241.
doi:10.1146/annurev-phyto-102313-045926
Lu, C. H., Lin, Y. F., Lin, J. J., & Yu, C. S. (2012). Prediction of
metal ion-binding sites in proteins using the fragment transformation
method. PLoS One, 7 (6), e39252. doi:10.1371/journal.pone.0039252
Lv, Y., Yang, M., Hu, D., Yang, Z., Ma, S., Li, X., & Xiong, L. (2017).
The OsMYB30 Transcription Factor Suppresses Cold Tolerance by
Interacting with a JAZ Protein and Suppressing beta-Amylase Expression.Plant Physiol, 173 (2), 1475-1491. doi:10.1104/pp.16.01725
Mine, A., Seyfferth, C., Kracher, B., Berens, M. L., Becker, D., &
Tsuda, K. (2018). The Defense Phytohormone Signaling Network Enables
Rapid, High-Amplitude Transcriptional Reprogramming during
Effector-Triggered Immunity. Plant Cell, 30 (6), 1199-1219.
doi:10.1105/tpc.17.00970
Mizoi, J., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2012). AP2/ERF
family transcription factors in plant abiotic stress responses.Biochim Biophys Acta, 1819 (2), 86-96.
doi:10.1016/j.bbagrm.2011.08.004
Navarro, L., Zipfel, C., Rowland, O., Keller, I., Robatzek, S., Boller,
T., & Jones, J. D. (2004). The transcriptional innate immune response
to flg22. Interplay and overlap with Avr gene-dependent defense
responses and bacterial pathogenesis. Plant Physiol, 135 (2),
1113-1128. doi:10.1104/pp.103.036749
Qi, J., Wang, J., Gong, Z., & Zhou, J. M. (2017). Apoplastic ROS
signaling in plant immunity. Curr Opin Plant Biol, 38 , 92-100.
doi:10.1016/j.pbi.2017.04.022
Ran, X., Zhao, F., Wang, Y., Liu, J., Zhuang, Y., Ye, L., . . . Zhang,
Y. (2020). Plant Regulomics: a data-driven interface for retrieving
upstream regulators from plant multi-omics data. Plant J, 101 (1),
237-248. doi:10.1111/tpj.14526
Rashid, M., Guangyuan, H., Guangxiao, Y., Hussain, J., & Xu, Y. (2012).
AP2/ERF Transcription Factor in Rice: Genome-Wide Canvas and Syntenic
Relationships between Monocots and Eudicots. Evol Bioinform
Online, 8 , 321-355. doi:10.4137/EBO.S9369
Shimono, M., Koga, H., Akagi, A., Hayashi, N., Goto, S., Sawada, M., . .
. Takatsuji, H. (2012). Rice WRKY45 plays important roles in fungal and
bacterial disease resistance. Mol Plant Pathol, 13 (1), 83-94.
doi:10.1111/j.1364-3703.2011.00732.x
Singh, P., Chien, C. C., Mishra, S., Tsai, C. H., & Zimmerli, L.
(2013). The Arabidopsis LECTIN RECEPTOR KINASE-VI.2 is a functional
protein kinase and is dispensable for basal resistance to Botrytis
cinerea. Plant Signal Behav, 8 (1), e22611. doi:10.4161/psb.22611
Singh, P., & Zimmerli, L. (2013). Lectin receptor kinases in plant
innate immunity. Front Plant Sci, 4 , 124.
doi:10.3389/fpls.2013.00124
Smakowska, E., Kong, J., Busch, W., & Belkhadir, Y. (2016).
Organ-specific regulation of growth-defense tradeoffs by plants.Curr Opin Plant Biol, 29 , 129-137. doi:10.1016/j.pbi.2015.12.005
Someya, S., Kakuta, M., Morita, M., Sumikoshi, K., Cao, W., Ge, Z., . .
. Shimizu, K. (2010). Prediction of carbohydrate-binding proteins from
sequences using support vector machines. Adv Bioinformatics .
doi:10.1155/2010/289301
Talbot, N. J. (2003). On the trail of a cereal killer: Exploring the
biology of Magnaporthe grisea. Annu Rev Microbiol, 57 , 177-202.
doi:10.1146/annurev.micro.57.030502.090957
Tang, D., Wang, G., & Zhou, J. M. (2017). Receptor Kinases in
Plant-Pathogen Interactions: More Than Pattern Recognition. Plant
Cell, 29 (4), 618-637. doi:10.1105/tpc.16.00891
Vij, S., Giri, J., Dansana, P. K., Kapoor, S., & Tyagi, A. K. (2008).
The receptor-like cytoplasmic kinase (OsRLCK) gene family in rice:
organization, phylogenetic relationship, and expression during
development and stress. Mol Plant, 1 (5), 732-750.
doi:10.1093/mp/ssn047
Wang, L., Feng, Z., Wang, X., Wang, X., & Zhang, X. (2010). DEGseq: an
R package for identifying differentially expressed genes from RNA-seq
data. Bioinformatics, 26 (1), 136-138.
doi:10.1093/bioinformatics/btp612
Wang, L., Ma, H., & Lin, J. (2019). Angiosperm-Wide and Family-Level
Analyses of AP2/ERF Genes Reveal Differential Retention and Sequence
Divergence After Whole-Genome Duplication. Front Plant Sci, 10 ,
196. doi:10.3389/fpls.2019.00196
Wang, W., Feng, B., Zhou, J. M., & Tang, D. (2020). Plant immune
signaling: Advancing on two frontiers. J Integr Plant Biol,
62 (1), 2-24. doi:10.1111/jipb.12898
Wei, T., Ou, B., Li, J., Zhao, Y., Guo, D., Zhu, Y., . . . Qu, L. J.
(2013). Transcriptional profiling of rice early response to Magnaporthe
oryzae identified OsWRKYs as important regulators in rice blast
resistance. PLoS One, 8 (3), e59720.
doi:10.1371/journal.pone.0059720
Wu, H., Qu, X., Dong, Z., Luo, L., Shao, C., Forner, J., . . . Zhao, Z.
(2020). WUSCHEL triggers innate antiviral immunity in plant stem cells.Science, 370 (6513), 227-231. doi:10.1126/science.abb7360
Xu, G., Greene, G. H., Yoo, H., Liu, L., Marques, J., Motley, J., &
Dong, X. (2017). Global translational reprogramming is a fundamental
layer of immune regulation in plants. Nature, 545 (7655), 487-490.
doi:10.1038/nature22371
Yang, Z., Wu, Y., Li, Y., Ling, H. Q., & Chu, C. (2009). OsMT1a, a type
1 metallothionein, plays the pivotal role in zinc homeostasis and
drought tolerance in rice. Plant Mol Biol, 70 (1-2), 219-229.
doi:10.1007/s11103-009-9466-1
Zhang, J., Peng, Y., & Guo, Z. (2008). Constitutive expression of
pathogen-inducible OsWRKY31 enhances disease resistance and affects root
growth and auxin response in transgenic rice plants. Cell Res,
18 (4), 508-521. doi:10.1038/cr.2007.104
Zhang, Y., Zhao, J., Li, Y., Yuan, Z., He, H., Yang, H., . . . Qu, S.
(2016). Transcriptome Analysis Highlights Defense and Signaling Pathways
Mediated by Rice pi21 Gene with Partial Resistance to Magnaporthe
oryzae. Front Plant Sci, 7 , 1834. doi:10.3389/fpls.2016.01834
Zhou, J. M., & Zhang, Y. (2020). Plant Immunity: Danger Perception and
Signaling. Cell, 181 (5), 978-989. doi:10.1016/j.cell.2020.04.028
Zhou, T., Wang, Y., Chen, J. Q., Araki, H., Jing, Z., Jiang, K., . . .
Tian, D. (2004). Genome-wide identification of NBS genes in japonica
rice reveals significant expansion of divergent non-TIR NBS-LRR genes.Mol Genet Genomics, 271 (4), 402-415.
doi:10.1007/s00438-004-0990-z
Zhu, Z., Yin, J., Chern, M., Zhu, X., Yang, C., He, K., . . . Li, W.
(2020). New insights into bsr-d1-mediated broad-spectrum resistance to
rice blast. Mol Plant Pathol, 21 (7), 951-960.
doi:10.1111/mpp.12941
Zimeri, A. M., Dhankher, O. P., McCaig, B., & Meagher, R. B. (2005).
The plant MT1 metallothioneins are stabilized by binding cadmiums and
are required for cadmium tolerance and accumulation. Plant Mol
Biol, 58 (6), 839-855. doi:10.1007/s11103-005-8268-3