Conflict of interest
All the Authors declare no conflict of interest.
References:
Anderson, J. M., Rodriguez, A., & Chang, D. T. (2008). Foreign body reaction to biomaterials. Paper presented at the Seminars in immunology.
Badylak, S. F., Valentin, J. E., Ravindra, A. K., McCabe, G. P., & Stewart-Akers, A. M. (2008). Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Engineering Part A, 14 (11), 1835-1842.
Brown, B. N., Ratner, B. D., Goodman, S. B., Amar, S., & Badylak, S. F. (2012). Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials, 33 (15), 3792-3802.
Carroll-Portillo, A., & Lin, H. C. (2019). Bacteriophage and the Innate Immune System: Access and Signaling. Microorganisms, 7 (12), 625.
Corliss, B. A., Azimi, M. S., Munson, J. M., Peirce, S. M., & Murfee, W. L. (2016). Macrophages: an inflammatory link between angiogenesis and lymphangiogenesis. Microcirculation, 23 (2), 95-121.
Edwards, J. P., Zhang, X., Frauwirth, K. A., & Mosser, D. M. (2006). Biochemical and functional characterization of three activated macrophage populations. Journal of leukocyte biology, 80 (6), 1298-1307.
Eruslanov, E., & Kusmartsev, S. (2010). Identification of ROS using oxidized DCFDA and flow-cytometry. In Advanced protocols in oxidative stress II (pp. 57-72): Springer.
Fernando, M. R., Reyes, J. L., Iannuzzi, J., Leung, G., & McKay, D. M. (2014). The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages. PloS one, 9 (4), e94188.
Foey, A. D., & Crean, S. (2013). Macrophage subset sensitivity to endotoxin tolerisation by Porphyromonas gingivalis. PloS one, 8 (7), e67955.
Gonçalves, R., & Mosser, D. M. (2015). The isolation and characterization of murine macrophages. Current protocols in immunology , 14.11. 11-14.11. 16.
Gurtner, G. C., Werner, S., Barrandon, Y., & Longaker, M. T. (2008). Wound repair and regeneration. Nature, 453 (7193), 314.
Jin, Y., Liu, Y., & Nelin, L. D. (2015). Extracellular signal-regulated kinase mediates expression of arginase II but not inducible nitric-oxide synthase in lipopolysaccharide-stimulated macrophages. J Biol Chem, 290 (4), 2099-2111. doi:10.1074/jbc.M114.599985
Korns, D. R., Frasch, S. C., Fernandez-Boyanapalli, R., Henson, P. M., & Bratton, D. L. (2011). Modulation of macrophage efferocytosis in inflammation. Frontiers in immunology, 2 , 57.
Lee, A. S., Jung, Y. J., Kim, D., Nguyen-Thanh, T., Kang, K. P., Lee, S., . . . Kim, W. (2014). SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages. Biochemical and biophysical research communications, 450 (4), 1363-1369.
Li, X., Dai, Y., Shen, T., & Gao, C. (2017). Induced migration of endothelial cells into 3D scaffolds by chemoattractants secreted by pro-inflammatory macrophages in situ. Regenerative biomaterials, 4 (3), 139-148.
Li, Z., Zhao, Z.-J., Zhu, X.-Q., Ren, Q.-S., Nie, F.-F., Gao, J.-M., . . . Shen, J.-L. (2012). Differences in iNOS and arginase expression and activity in the macrophages of rats are responsible for the resistance against T. gondii infection. PLoS One, 7 (4), e35834.
Makita, N., Hizukuri, Y., Yamashiro, K., Murakawa, M., & Hayashi, Y. (2015). IL-10 enhances the phenotype of M2 macrophages induced by IL-4 and confers the ability to increase eosinophil migration.International Immunology, 27 (3), 131-141. doi:10.1093/intimm/dxu090
McNeill, E., Crabtree, M. J., Sahgal, N., Patel, J., Chuaiphichai, S., Iqbal, A. J., . . . Channon, K. M. (2015). Regulation of iNOS function and cellular redox state by macrophage Gch1 reveals specific requirements for tetrahydrobiopterin in NRF2 activation. Free Radic Biol Med, 79 , 206-216. doi:10.1016/j.freeradbiomed.2014.10.575
Merzlyak, A., Indrakanti, S., & Lee, S.-W. (2009). Genetically engineered nanofiber-like viruses for tissue regenerating materials.Nano letters, 9 (2), 846-852.
Mosser, D. M., & Edwards, J. P. (2008). Exploring the full spectrum of macrophage activation. Nature Reviews Immunology, 8 (12), 958-969.
O’Carroll, C., Fagan, A., Shanahan, F., & Carmody, R. J. (2014). Identification of a unique hybrid macrophage-polarization state following recovery from lipopolysaccharide tolerance. The Journal of Immunology, 192 (1), 427-436.
Rath, M., Müller, I., Kropf, P., Closs, E. I., & Munder, M. (2014). Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Frontiers in immunology, 5 , 532.
Reyes, A., Semenkovich, N. P., Whiteson, K., Rohwer, F., & Gordon, J. I. (2012). Going viral: next-generation sequencing applied to phage populations in the human gut. Nature Reviews Microbiology, 10 (9), 607-617.
Richbourg, N. R., Peppas, N. A., & Sikavitsas, V. I. (2019). Tuning the Biomimetic Behavior of Scaffolds for Regenerative Medicine Through Surface Modifications. Journal of tissue engineering and regenerative medicine .
Rőszer, T. (2015). Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators of inflammation, 2015 .
Shapouri‐Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S. A., Mardani, F., . . . Sahebkar, A. (2018). Macrophage plasticity, polarization, and function in health and disease.Journal of cellular physiology, 233 (9), 6425-6440.
Sun, L., Zhou, H., Zhu, Z., Yan, Q., Wang, L., Liang, Q., & Richard, D. Y. (2015). Ex vivo and in vitro effect of serum amyloid a in the induction of macrophage M2 markers and efferocytosis of apoptotic neutrophils. The Journal of Immunology, 194 (10), 4891-4900.
Tan, H.-Y., Wang, N., Li, S., Hong, M., Wang, X., & Feng, Y. (2016). The reactive oxygen species in macrophage polarization: reflecting its dual role in progression and treatment of human diseases.Oxidative medicine and cellular longevity, 2016 , e2795090.
Twort, F. W. (1915). An investigation on the nature of ultra-microscopic viruses. The lancet, 186 (4814), 1241-1243.
Van Belleghem, J. D., Dąbrowska, K., Vaneechoutte, M., Barr, J. J., & Bollyky, P. L. (2019). Interactions between bacteriophage, bacteria, and the mammalian immune system. Viruses, 11 (1), 10.
Wang, J., Wang, L., Li, X., & Mao, C. (2013). Virus activated artificial ECM induces the osteoblastic differentiation of mesenchymal stem cells without osteogenic supplements. Scientific reports, 3 , 1242.
Wang, J., Yang, M., Zhu, Y., Wang, L., Tomsia, A. P., & Mao, C. (2014). Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds. Advanced Materials, 26 (29), 4961-4966.
Wynn, T. A., Chawla, A., & Pollard, J. W. (2013). Macrophage biology in development, homeostasis and disease. Nature, 496 (7446), 445.
Wynn, T. A., & Vannella, K. M. (2016). Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 44 (3), 450-462.
Yang, D., Zhao, Z., Bai, F., Wang, S., Tomsia, A. P., & Bai, H. (2017). Promoting cell migration in tissue engineering scaffolds with graded channels. Advanced healthcare materials, 6 (18), 1700472.
Yu, T., Tutwiler, V. J., & Spiller, K. (2015). The role of macrophages in the foreign body response to implanted biomaterials. InBiomaterials in Regenerative Medicine and the Immune System (pp. 17-34): Springer.
Zhou, G., & Groth, T. (2018). Host Responses to Biomaterials and Anti‐Inflammatory Design—a Brief Review. Macromolecular bioscience, 18 (8), 1800112.