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In this paper, we investigate the dynamics of a fractional Zika virus model (ZIKV)
with Caputo, Caputo-Fabrizio-Caputo (CFC) and Atangana-Baleanu-Caputo (ABC)
derivatives. Firstly the basic properties of the classical integer order model are
furnished followed by the equilibrium points and basic reproduction number. Fur-
thermore, with respect to the Caputo, CFC and ABC derivatives, we establish via
a fixed point technique that under certain conditions the fractional ZIKV model
admits a unique system of solutions. The Adams-Bashforth numerical scheme incor-
porating the fractional order parameter is then used to obtain numerical schemes
for the approximate solutions of the fractional ZIKV model with respect to each of
the considered fractional differential operators. Finally, with a view to visualize the
behaviour of the approximate solutions to fractional ZIKV model with respect to
each of the fractional differential operators, we do some numerical simulations for
distinct values of the fractional order parameter.
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1 INTRODUCTION

Zika virus (ZIKV) is an infectious vector-borne disease belonging to the family of Flaviviridea. Its name comes from the
Zika forest in Uganda, where the virus was first discovered in 1947 and isolated from a Rhesus Macaque population during
a research study on Yellow fever1. Among the human population, ZIKV was first identified in Nigeria in 1954.1,2,3 Its mode
of transmission to humans is via the bites of infected female mosquitoes from the Aedes genus (these include Aedes aegypti,
Aedes africanus, Aedes apicoargenteus, Aedes furcifer, Aedes hensilli, Aedes luteocephalus and Aedes vitattus)2,4 which are
known to be predominant in the tropical and subtropical regions and are also responsible for the transmission of closely related
and well-known notorious pathogen such as Dengue, Japanese encephalitis, Chikungunya, Yellow fever virus and West Nile
virus. It has also been established that unprotected sexual relations, blood transfusions, transplacental transmission during child
delivery are other potential ZIKV transmission routes from already infected individuals.2,5,6,7 In humans, ZIKV infection usually
causes less severe symptoms like mild fever, maculopapular rash, loss of appetite, conjunctivitis, muscle and joint pain and
headache which have very short duration of about 2-7 days. However, some infected individuals do not develop symptoms.
Among infected pregnant women, ZIKV may lead to newly born babies having small heads with abnormal brain development
and muscle weakness which affects the nervous system. Research findings have shown that ZIKV increases the chances of
congenital brain anomalies including microcephaly which occur in fetuses of infected pregnant woman.5,8,9,10 as well as the

0Abbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting cells; IRF, interferon regulatory factor
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Guillain-Barré syndrome (GBS).11,12 Unfortunately, up until now, there is no vaccine, specific treatment, or fast diagnostic test
for the treatment, prevention, or diagnosis of ZIKV infection.
In 1952, sporadic transmission of ZIKV among humans were recorded in many countries in Southeast Asia and Africa.

In April 2007 and October 2013, major outbreaks were also recorded on Yap Island, Federated States of Micronesia, in the
North Pacific7 and in French Polynesia, South Pacific,12,13 respectively. In April 2015, the ZIKV outbreak in Brazil rapidly
spread to many American and Caribbean countries with over 140,000 suspected and confirmed cases by the end of February
2016.2 Between October 2015 and February 2016, nearly 6,000 suspected cases of microcephaly (including 139 deaths) among
newborns with possible links to the ZIKV infections in Brazil was reported. Furthermore, in Colombia (and El Salvador), over
200 ZIKV related GBS cases (and 118 GBS cases) were reported December 2015 (and February 2016). In 2016, the World
Health Organization14 declared ZIKV as a Public Health Emergency of International Concern.
In an attempt to have deeper understanding of the transmission dynamics of a wide range of infectious diseases, a variety

of deterministic mathematical models, based on systems of ordinary differential equations with classical integer-order deriva-
tives have been formulated by different authors over the past decades. These models have not only facilitated the mathematical
studies of infectious diseases from both qualitative and quantitative perspectives, they have also helped in the determination
of adequate control mechanisms to curtail the spread of these diseases as well as to eradicate them from the community. On
the mathematical perspectives of the transmission dynamics of ZIKV we refer to the works2,4,15,16,17,18,19,20 where the various
authors studied different mathematical models describing ZIKV in the framework of classical systems of integer-order ordinary
differential equations. However, models with integer-order derivatives do not adequately account for hereditary and memory
effects associated with many biological processes. Advances in the field in recent times have yielded mathematical models with
fractional (or arbitrary or non-integer) order differential operators which have became a central area of study as they effectively
and adequately incorporate the evolution-related realities and evidences of the systems they model.
As a generalization of the classical integer calculus, fractional calculus encompass the notions, properties and applications

of fractional order differential and integral operators.21,22,23,24,25 It provides a mathematical framework in the form of fractional
differential or integral equations for modeling and exploring the complex dynamics associated with real phenomena. Among the
several advantages over the integer order operators, the fractional order operators incorporate hereditary properties and provides
good description of the memory effects associated with many physical systems. In literature, a variety of fractional order models,
with different types of fractional operators (Caputo21,22,23, Caputo-Fabrizio-Caputo (CFC)24 and Atangana-Baleanu-Caputo
(ABC)25) have been used to explore infectious disease dynamics. Unlike the Caputo fractional derivative, the kernels of the CFC
andABC derivatives do not have singularities. The CFC derivative uses the exponential law as nonsingular kernel while the ABC
derivative use theMittag-Leffler law as nonlocal and non-singilular kernel.We refer the reader to the works26,27,28,29,30,31,32,33,34,35
and the references therein, where a variety of fractional order models arising in mathematical biology have been investigated by
different authors.
In this paper, we study a fractional mathematical model for ZIKV. The fractional derivatives for the proposed model are taken

in the Caputo, CFC, and ABC sense. The ZIKV model considered divides the human population into four sub-classes, namely,
Sℎ(t), Eℎ(t), Iℎ(t), Rℎ(t) while the vector (mosquitoes) population is divided into three sub-classes, namely, Sv(t), Ev(t), Iv(t).
For each type of the mentioned fractional derivatives, we investigate questions on existence and uniqueness of solutions via
fixed point technique. Furthermore, motivated by the two-step fractional Adams-Bashforth (FAB) numerical scheme,36 we
investigate the behaviour of solutions to the proposed fractional ZIKVmodel with respect to the Caputo, CFC andABC fractional
derivatives, respectively.
The organization of this is paper is as follows: In Section 2, we collect some important information about the fractional differ-

ential and integral operators related to those of Caputo, Caputo-Fabrizio and Atangana-Baleanu types. In Section 3, we formulate
an integer order mathematical model for ZIKV. The basic solution properties of the constructed model are also investigated.
Basic system properties such as non-negativity of of solutions, invariant region and system equilibrium points are also discussed
in this section. In Section 4, we introduce the corresponding fractional ZIKV model in Caputo, Caputo-Fabrizio and Atangana-
Baleanu derivatives. In Section 5, the existence and uniqueness of solutions to the fractional ZIKV model in the Caputo, CFC
and ABC derivatives are investigated. In Section 6, we employ the two-step fractional Adams-Bashforth method to investigate
the behaviour of solutions to the model with respect to each type of the considered fractional differential operator while the
conclusion is presented in Section 7.
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2 PRELIMINARIES

In the present section, we present some fundamental definitions and properties on fractional differential and integral operators
related to those of Caputo, Caputo-Fabrizio and Atangana-Baleanu types. In the sequel, we denote by � > 0 the fractional order
parameter, Γ(⋅) the gamma function and E�(⋅) the Mittag-Leffler function37.

Definition 1. A real valued function g(t), t > 0 is said to be in the space C�, � ∈ ℝ if there exist a real number �(> �) such
that g(t) = t�g1(t), where g1 ∈ C[0,∞), and is said to be in the space Cm

� if gm ∈ C�, m ∈ ℕ ∪ {0}.

Definition 2. 23,21,22 The Riemann-Liouville fractional integral of order � of a function g ∈ C�, � ≥ −1 is defined as

I�t [g(t)] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

g(t), � = 0, t > 0,

1
Γ(�)

t

∫
0

(t − �)�−1g(�)d�, � > 0, t > 0,
(1)

where 0 < � < 1.

Definition 3. 23,21,22 The Caputo fractional derivative of order of order � of a function g ∈ Cm
−1, m ∈ ℕ ∪ {0} is defined as

C
0D

�
t [g(t)] = I

m−�
t Dm

t [g(t)] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

g(m)(t) ∶=
dmg(t)
dtm

, � = m,

1
Γ(m − �)

t

∫
0

g(m)(t)(t − �)m−�−1d�, m − 1 < � < m.
(2)

Definition 4. 24 For a given function g ∈ H1(a, b), b > a, the Caputo-Fabrizio-Caputo (CFC) derivative of order � (0 < � ≤ 1)
is defined as

CFC
a D�

t g(t) =
M[�]
1 − �

t

∫
a

g′(�) exp
[

− �
1 − �

(t − �)
]

d�. (3)

where M[�] is a normalization functions satisfying M(0) = M(1) = 1. If g ∉ H1(a, b) then the CFC derivative (3) can be
expressed as

CFC
a D�

t g(t) =
�M[�]
1 − �

t

∫
a

[

g(t) − g(�)
]

exp
[

−1 − �
�

(t − �)
]

d�. (4)

Remark 1. Suppose � = 1−�
�
∈ [0,∞), � = 1

1+�
∈ [0, 1], then the CFC derivative (4) has the following representation

CFC
a D�

t !(x, t) =
M(�)
�

t

∫
a

!′(x, t) exp
[

− t − �
�

]

d�, with (0) =(∞) = 1. (5)

In addition,

lim
�→0

1
�
exp

[

− t − �
�

]

= �(t − �) (6)

where �(t − �) is the Dirac delta function.

Definition 5. 38 The fractional integral related to the CFC derivative is defined by

CFC
a I�t g(t) =

2(1 − �)
(2 − �)M[�]

g(t) + 2�
(2 − �)M[�]

t

∫
0

g(�)d�, 0 < � < 1, t ≥ 0. (7)

Remark 2. According to Losada and Nieto38, the equality
2(1 − �)

(2 − �)M[�]
+ 2�
(2 − �)M[�]

= 1, (8)
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must hold for the fractional (7). This impliesM[�] = 2
2−�

, 0 < � < 1.

Definition 6. 25 Let u ∈ H1(a, b), b > a be a given function. The Atagana-Baleanu fractional derivative in Caputo sense (ABC)
and in the Riemann-Liouville sense (ABR) ate defined as

ABC
a D�

t g(t) =
B[�]
1 − �

t

∫
a

g′(�)E�
[

− �
1 − �

(t − �)�
]

d�, t > 0, (9)

and

ABR
a D�

t g(t) =
B[�]
1 − �

d
dt

t

∫
a

g(�)E�
[

− �
1 − �

(t − �)�
]

d�, t > 0, (10)

respectively, where B[�] ∶= 1 − � + �
Γ(�)

denotes the normalization functions satisfying B(0) = B(1) = 1.

Definition 7. 25 The fractional integral related to the Atagana-Baleanu derivative is defined as

AB
a I�t [g(t)] =

1 − �
B[�]

g(t) + �
B[�]Γ(�)

t

∫
a

(t − �)�−1g(�)d�. (11)

Remark 3. The CFC derivative uses the exponential law as nonsingular kernel while the ABC derivative use the Mittag-Leffler
law as nonlocal and non-singilular kernel. Unlike the Caputo fractional derivative, the kernels of the CFC and ABC derivatives
do not have singularities at t = �.

3 MATHEMATICAL FORMULATION AND BASIC MODEL ANALYSIS

In formulating the Zika virus dynamics, we take into account the human to human infection as well as the vector (mosquito)
to human transmission. The total human population Nℎ(t) is subdivided into four compartments, namely, susceptible humans
Sℎ(t), exposed humansEℎ(t), infected humans Iℎ(t), and recovered humansRℎ(t), while the entire vector (mosquito) population
Nv(t) is subdivided into three compartments, namely, susceptible vectors Sv(t), exposed vectors Ev(t) and infected mosquito
Iv(t) so that

Nℎ(t) = Sℎ(t) + Eℎ(t) + Iℎ(t) + Rℎ(t) and Nv(t) = Sv(t) + Ev(t) + Iv(t), (12)
respectively. Susceptible humans and mosquitoes are recruited into the susceptible compartments Sℎ and Sv at rates rates Πℎ
and Πv, respectively. We represent by �Sℎ = (�1 + �2)Sℎ the incidence rate of infection in the human population where
�1 = �ℎIv is the rate at which susceptible individuals acquire infection due to effective contact with an infected vector and
�2 = ��ℎIℎ is the rate at which susceptible individuals acquire infection due to sexual interaction with infected individuals. Here,
�ℎ is the effective contact rate between susceptible humans and infected mosquitoes while � is a modification parameter that
accounts for the relative infectiousness of individuals in the Iℎ relative to those in the Iv compartment. Similarly, we represent
by �vIℎSv the incidence rate of the susceptible vector population where �v denotes the transmission rate from infected humans
to susceptible mosquito. The disease induced mortality rate is denoted by �. Natural mortality rates due for the human and vector
subpopulations are denoted by �ℎ and �v respectively. Lastly, 
 and � are the natural and treatment rates.
Following the above description for the interrelationship between compartments, we arrive at the following coupled system

of nonlinear ordinary differential equations describing the Zika virus dynamics:
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

DtSℎ(t) =Πℎ − �ℎSℎ(Iv + �Iℎ) − �ℎSℎ
DtEℎ(t) =�ℎSℎ(Iv + �Iℎ) − (�ℎ + �)Eℎ
DtIℎ(t) =�Eℎ − (�ℎ + 
 + �)Iℎ
DtRℎ(t) =
Iℎ − �ℎRℎ
DtSv(t) =Πv − �vSvIℎ − �vSv
DtEv(t) =�vSvIℎ − (�v + �)Ev
DtIv(t) =�Ev − �vIv.

(13)
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3.1 Basic model analysis
Since the model (13) describes the dynamics of living species (human and vectors), it will be considered biologically meaningful
if all system parameters as well as system variables are non-negative for all time t ≥ 0. In other words, solution with positive
initial data will remain positive for all time. Indeed, let us denote by �(t) = �ℎ(Iv + �Iℎ) the force of infection. By using
exp

{

�ℎt + ∫ t
0 �(�)d�

}

as an integrating factor in the Sℎ−equation of (13), we get

Sℎ(t) = exp

⎧

⎪

⎨

⎪

⎩

−�ℎt −

t

∫
0

�(�)d�

⎫

⎪

⎬

⎪

⎭

Sℎ(0) + Πℎ exp

⎧

⎪

⎨

⎪

⎩

−�ℎt −

t

∫
0

�(�)d�

⎫

⎪

⎬

⎪

⎭

t

∫
0

exp

⎧

⎪

⎨

⎪

⎩

�ℎ# +

#

∫
0

�(�)d�

⎫

⎪

⎬

⎪

⎭

d# > 0,

after some manipulations where Sℎ(0) is the initial condition for Sℎ(t) at t = 0. Since Sℎ(0) > 0 and the exponential function is
always nonnegative for any exponent, the last equation above therefore guarantees the positivity of Sℎ(t). In a similar manner,
it can be shown that Eℎ > 0 ,Iℎ > 0 ,Rℎ > 0 ,Sv > 0 ,Ev > 0 and Iv > 0 for all t > 0.

Lemma 1. Let Ωℎ =
{

(Sℎ(t), Eℎ(t), Iℎ(t), Rℎ(t)) ∈ ℝ4
+ ∶ Nℎ(t) ≤

Πℎ
�ℎ

}

and Ωv =
{

(Sv(t), Ev(t), Iv(t)) ∈ ℝ3
+ ∶ Nv(t) ≤

Πv
�v

}

. Then the closed set Ω = Ωℎ ∪ Ωv ⊂ ℝ4
+ ×ℝ3

+ positively invariant with respect to the model (13).

Proof. In view of both equations in (12) in relation to the system of equations (13), the total human and vector populations
satisfy the following differential equalities

dNℎ

dt
= Πℎ − �ℎNℎ − �Iℎ ⇐⇒

dNℎ

dt
≤ Πℎ − �ℎNℎ, and

dNv

dt
= Πv − �ℎNv, (14)

respectively, and it follows that dNℎ

dt
≤ 0 and dNv

dt
≤ 0 if Nℎ ≥ Πℎ

�ℎ
and Nv ≥

Πv
�v
, respectively. Hence, by standard comparison

theorem, it can be shown Nℎ(t) ≤ Nℎ(0)e−�ℎt +
Πℎ
�ℎ

[

1 − e−�ℎt
]

and Nv(t) ≤ Nv(0)e−�vt +
Πv
�v

[

1 − e−�vt
]

, respectively, where
Nℎ(0) = Sℎ(0) + Eℎ(0) + Iℎ(0) + Rℎ(0) and Nv(0) = Sv(0) + Ev(0) + Iv(0). In particular, Nℎ(t) ≤

Πℎ
�ℎ

and Nv(t) ≤
Πv
�v

if
Nℎ(0) ≤

Πℎ
�ℎ

and Nv(0) ≤
Πv
�v
, respectively. Thus, the closed set Ω = Ωℎ ∪ Ωv ⊂ ℝ4

+ × ℝ3
+ is positively invariant. Furthermore,

if Nℎ(0) >
Πℎ
�ℎ

and Nv(0) >
Πv
�v

then either the solutions of (13) enter the region Ω in finite time or Nℎ(t) approaches
Πℎ
�ℎ

and
Nv(t) approaches

Πv
�v

as t → ∞. The region Ω is therefore an attraction set for all solutions of (13) in ℝ7
+. It follows directly

from Hethcote39 that the model (13) is both epidemiologically well-posed as well as biologically feasible in the invariant region
Ω.Thus a qualitative investigated on the model (13) can be sufficiently initiated in this region as demonstrated in16.

3.2 Equilibrium points and basic reproduction number
Using standard approach, we obtain the disease free equilibrium as E0 = (S0ℎ, E

0
ℎ, I

0
ℎ , R

0
ℎ, S

0
v , E

0
v , I

0
v ) =

(

Πℎ
�ℎ
, 0, 0, 0, Πv

�v
, 0, 0

)

.
At the disease free equilibrium, the basic reproduction number

0 =
�ℎ�Πℎ�
2�ℎk1k2

+

√

�2Πℎ2�ℎ2�2

4�ℎ2k12k22
+
ΠℎΠv�ℎ�v��
k1k2k3�ℎ�v2

is obtained via the next generation matrix (see. for instance,40). Moreover, by solving the associated steady state problem we
obtain the disease endemic equilibrium E∗ = (S∗ℎ , E

∗
ℎ, I

∗
ℎ , R

∗
ℎ, S

∗
v , E

∗
v , I

∗
v ) as where

S∗ℎ =
Πℎ�v(�vI∗ℎ + �v)(�v + �)

�v(�v + �)(��ℎI∗ℎ + �ℎ)(�vI
∗
ℎ + �v) + �ℎ�vΠv�I

∗
ℎ
, E∗

ℎ =
�ℎΠℎI∗ℎ (�v�Πv + ��v(�v + �)(�vI

∗
ℎ + �v))

�v(�v + �)(�ℎ + �∗)(��ℎI∗ℎ + �ℎ)(�vI
∗
ℎ + �v) + �ℎ�v�ΠvI

∗
ℎ
,

R∗ℎ =

I∗ℎ
�ℎ

, S∗v =
Πv

�vI∗ℎ + �v
, E∗

v =
�vΠvI∗ℎ

(�vIℎ + �v)(�v + �)
, I∗v =

�v�ΠvI∗ℎ
�v(�vI∗ℎ + �v)(�v + �)

,

with I∗ℎ satisfying I∗ℎ (a1I
∗
ℎ
2 + a2I∗ℎ + a3) = 0 where a1 = ��v�ℎ�vk1k2k3, a2 = �ℎ�v

(

Λv�vk1k2 − �Λℎ�ℎ�vk3
)

+
�v

(

� �ℎ�v + �v�ℎ
)

k1k2k3 and a3 = �ℎ�2vk1k2k3
[

2
0 +

� �ℎ�ℎΛℎ
�ℎk1k2

(1 −0)
]

.
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4 FRACTIONAL ZIKA VIRIUS MODEL

In the present section, we redefine the ZIKVmodel (13) by replacing the classical time derivative by the time fractional derivative
in the sense of Caputo, CFC and ABC to obtain

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Ξ(�)
0 D�

t Sℎ(t) =Πℎ − �ℎSℎ(Iv + �Iℎ) − �ℎSℎ,
Ξ(�)
0 D�

t Eℎ(t) =�ℎSℎ(Iv + �Iℎ) − (�ℎ + �)Eℎ,
Ξ(�)
0 D�

t Iℎ(t) =�Eℎ − (�ℎ + 
 + �)Iℎ,
Ξ(�)
0 D�

t Rℎ(t) =
Iℎ − �ℎRℎ,
Ξ(�)
0 D�

t Sv(t) =Πv − �vSvIℎ − �vSv,
Ξ(�)
0 D�

t Ev(t) =�vSvIℎ − (�v + �)Ev,
Ξ(�)
0 D�

t Iv(t) =�Ev − �vIv,

(15)

subject to the initial conditions

Sℎ(0) = Sℎ0, Eℎ(0) = Eℎ0, Iℎ(0) = Iℎ0, , Rℎ(0) = Rℎ0, Sv(0) = Sv0, Ev(0) = Ev0, Iv(0) = Iv0, (16)

where Ξ(�)0 D�
t denotes the fractional differential operator of order 0 < � ≤ 1 either in the Caputo, CFC or ABC sense (we refer

th reader to Table 1 for the definition of Ξ(�)0 D�
t ). For the sake of convenience in subsequent sections, we make the following

notations for the right hand terms appear in (15):

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ℱ1(t, Sℎ(t)) = Πℎ − �ℎSℎ(Iv + �Iℎ) − �ℎSℎ,
ℱ2(t, Eℎ(t)) = �ℎSℎ(Iv + �Iℎ) − (�ℎ + �)Eℎ,
ℱ3(t, Iℎ(t)) = �Eℎ − (�ℎ + 
 + �)Iℎ,
ℱ4(t, Rℎ(t)) = 
Iℎ − �ℎRℎ,
ℱ5(t, Sv(t)) = Πv − �vSvIℎ − �vSv,
ℱ6(t, Ev(t)) = �vSvIℎ − (�v + �)Ev,
ℱ7(t, Iv(t)) = �Ev − �vIv.

(17)

Table 1:Definitions of Ξ(�)0 D�
t , Ξ1(�), Ξ2(�) and H(t, �)

Ξ(�)
0 D�

t Ξ1(�) Ξ2(�) H(t, �)
C
0D

�
t 0 1

Γ(�)
, (t − �)�−1

CFC
0 D�

t
2(1−�)

(2−�)M[�]
2�

(2−�)M[�]
1

ABC
0 D�

t
1−�
B[�]

�
B[�]Γ(�)

(t − �)�−1

5 EXISTENCE AND UNIQUENESS OF SOLUTIONS

There is no existing straightforward procedure for obtaining exact solutions to the nonlinear nonlocal time-fractional system of
equations (15). However, under certain conditions, the existence and uniqueness of solutions to the model with respect to each
type of fractional derivative is assured via a fixed-point technique.
Applying any of the Riemann-Liouville integral operator (see Definition 1) or the Caputo-Fabrizio integral operator (see

Definition 5) or the Atagana-Baleanu integral operator (see Definition 7) on both sides of each equation in (15) yields the
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following equivalent system of Volterra-type fractional integral equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Sℎ(t) − Sℎ(0) = Ξ1(�)ℱ1(t, Sℎ(t)) + Ξ2(�)

t

∫
0

H(t, �)ℱ1(�, Sℎ(�))d�,

Eℎ(t) − Eℎ(0) = Ξ1(�)ℱ2(t, Eℎ(t)) + Ξ2(�)

t

∫
0

H(t, �)ℱ2(�, Eℎ(�))d�,

Iℎ(t) − Iℎ(0) = Ξ1(�)ℱ3(t, Iℎ(t)) + Ξ2(�)

t

∫
0

H(t, �)ℱ3(�, Iℎ(�))d�,

Rℎ(t) − Rℎ(0) = Ξ1(�)ℱ4(t, Rℎ(t)) + Ξ2(�)

t

∫
0

H(t, �)ℱ4(�, Rℎ(�))d�,

Sv(t) − Sv(0) = Ξ1(�)ℱ5(t, Sv(t)) + Ξ2(�)

t

∫
0

H(t, �)ℱ5(�, Sv(�))d�,

Ev(t) − Ev(0) = Ξ1(�)ℱ6(t, Ev(t)) + Ξ2(�)

t

∫
0

H(t, �)ℱ6(�, Ev(�))d�,

Iv(t) − Iv(0) = Ξ1(�)ℱ7(t, Iv(t)) + Ξ2(�)

t

∫
0

H(t, �)ℱ7(�, Iv(�))d�,

(18)

where Ξ1(�), Ξ2(�) and H(t, �) are as defined in Table 1.

Theorem 1. The kernelsℱ1, ℱ2,⋯ , ℱ7 defined in (17) satisfy the Lipschitz condition and contractions provided the inequality
0 ≤ 1, 2, ⋯ , 7 < 1 holds, where 1, 2, ⋯ , 7 are the respective Lipschitz constants for ℱ1, ℱ2,⋯ , ℱ7.

Proof. Firstly, we consider the kernel

ℱ1(t, Sℎ(t)) = Πℎ − �ℎSℎ(t)(Iv(t) + �Iℎ(t)) − �ℎSℎ(t).

Let S∗ℎ(t) and S
∗∗
ℎ (t) be two functions, then by Cauchy’s inequality we have

‖ℱ1(t, S∗ℎ(t)) −ℱ1(t, S
∗∗
ℎ (t))‖ =‖ − �ℎ(Iv(t) + �Iℎ(t))(S

∗
ℎ(t) − S

∗∗
ℎ (t)) − �ℎ(S

∗
ℎ(t) − S

∗∗
ℎ (t))‖

≤
[

�ℎ
(

‖Iv(t)‖ + �‖Iℎ(t)‖
)

+ �ℎ
]

‖S∗ℎ(t) − S
∗∗
ℎ (t)‖

≤
[

�ℎ
(

�2 + ��1
)

+ �ℎ
]

‖S∗ℎ(t) − S
∗∗
ℎ (t)‖.

Taking 1 ∶=
[

�ℎ
(

�2 + ��1
)

+ �ℎ
]

where �1 = maxt∈I ‖Iℎ(t)‖ and �2 = maxt∈I ‖Iv(t)‖ are bounded functions, then we have

‖ℱ1(t, S∗ℎ(t)) −ℱ1(t, S
∗∗
ℎ (t))‖ ≤ 1‖S

∗
ℎ(t) − S

∗∗
ℎ (t)‖.

Similarly, it can be shown that the following inequalities
‖ℱ2(t, E∗

ℎ(t)) −ℱ2(t, E
∗∗
ℎ (t))‖ ≤ 2‖E

∗
ℎ(t) − E

∗∗
ℎ (t)‖,

‖ℱ3(t, I∗ℎ (t)) −ℱ3(t, I
∗∗
ℎ (t))‖ ≤ 3‖I

∗
ℎ (t) − I

∗∗
ℎ (t)‖,

‖ℱ4(t, R∗ℎ(t)) −ℱ4(t, R
∗∗
ℎ (t))‖ ≤ 4‖R

∗
ℎ(t) − R

∗∗
ℎ (t)‖,

‖ℱ5(t, S∗v (t)) −ℱ5(t, S
∗∗
v (t))‖ ≤ 5‖S

∗
v (t) − S

∗∗
v (t)‖,

‖ℱ6(t, E∗
v (t)) −ℱ6(t, E

∗∗
v (t))‖ ≤ 6‖E

∗
v (t) − E

∗∗
v (t)‖,

‖ℱ7(t, I∗v (t)) −ℱ7(t, I
∗∗
v (t))‖ ≤ 7‖I

∗
v (t) − I

∗∗
v (t)‖,

also hold. Hence, the Lipschitz condition is satisfied by the each kernel with i (i = 1, 2,⋯ , 7) as Lipschitz constant.
Additionally, contraction is implied if 0 ≤ i < 1 (i = 1, 2,⋯ , 7). This concludes the proof.
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5.1 Existence and uniqueness of solution for model in Caputo derivative
In view of the system of integral equations (18), the fractional Zika virus model (15) with Caputo derivative suggests the
following recursive formulations:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Sℎ,n(t) =
1
Γ(�)

t

∫
0

(t − �)�−1ℱ1(�, Sℎ,n−1(�)),

Eℎ,n(t) =
1
Γ(�)

t

∫
0

(t − �)�−1ℱ2(�, Eℎ,n−1(�)),

Iℎ,n(t) =
1
Γ(�)

t

∫
0

(t − �)�−1ℱ3(�, Iℎ,n−1(�)),

Rℎ,n(t) =
1
Γ(�)

t

∫
0

(t − �)�−1ℱ4(�, Rℎ,n−1(�)),

Sv,n(t) =
1
Γ(�)

t

∫
0

(t − �)�−1ℱ5(�, Sv,n−1(�)),

Ev,n(t) =
1
Γ(�)

t

∫
0

(t − �)�−1ℱ6(�, Ev,n−1(�)),

Iv,n(t) =
1
Γ(�)

t

∫
0

(t − �)�−1ℱ7(�, Iv,n−1(�)),

(19)

with the initial conditions Sℎ,0(t) = Sℎ(0), Eℎ,0(t) = Eℎ(0), Iℎ,0(t) = Iℎ(0), Rℎ,0(t) = Rℎ(0), Sv,0(t) = Sv(0), Ev,0(t) =
Ev(0), Iv,0(t) = Iv(0).
Define

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Υ1,n(t) ∶= Sℎ,n(t) − Sℎ,n−1(t) =
1
Γ(�)

t

∫
0

(t − �)�−1
[

ℱ1(�, Sℎ,n−1(�)) −ℱ1(�, Sℎ,n−2(�))
]

d�,

Υ2,n(t) ∶= Eℎ,n(t) − Eℎ,n−1(t) =
1
Γ(�)

t

∫
0

(t − �)�−1
[

ℱ2(�, Eℎ,n−1(�)) −ℱ2(�, Eℎ,n−2(�))
]

d�,

Υ3,n(t) ∶= Iℎ,n(t) − Iℎ,n−1(t) =
1
Γ(�)

t

∫
0

(t − �)�−1
[

ℱ3(�, Iℎ,n−1(�)) −ℱ3(�, Iℎ,n−2(�))
]

d�,

Υ4,n(t) ∶= Rℎ,n(t) − Rℎ,n−1(t) =
1
Γ(�)

t

∫
0

(t − �)�−1
[

ℱ4(�, Rℎ,n−1(�)) −ℱ4(�, Rℎ,n−2(�))
]

d�,

Υ5,n(t) ∶= Sv,n(t) − Sv,n−1(t) =
1
Γ(�)

t

∫
0

(t − �)�−1
[

ℱ5(�, Sv,n−1(�)) −ℱ5(�, Sv,n−2(�))
]

d�,

Υ6,n(t) ∶= Ev,n(t) − Ev,n−1(t) =
1
Γ(�)

t

∫
0

(t − �)�−1
[

ℱ6(�, Ev,n−1(�)) −ℱ6(�, Ev,n−2(�))
]

d�,

Υ7,n(t) ∶= Iv,n(t) − Iv,n−1(t) =
1
Γ(�)

t

∫
0

(t − �)�−1
[

ℱ7(�, Iv,n−1(�)) −ℱ7(�, Iv,n−2(�))
]

d�,

(20)
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as the difference between successive terms of each equation in (19). Then, it is easy to see that
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Sℎ,n(t) =
n
∑

k=1
Υ1(k)(t),

Eℎ,n(t) =
n
∑

k=1
Υ2(k)(t),

Iℎ,n(t) =
n
∑

k=1
Υ3(k)(t),

Rℎ,n(t) =
n
∑

k=1
Υ4(k)(t),

Sv,n(t) =
n
∑

k=1
Υ5(k)(t),

Ev,n(t) =
n
∑

k=1
Υ6(k)(t),

Iv,n(t) =
n
∑

k=1
Υ7(k)(t).

(21)

Taking norm on both sides of (20)1 and using the triangle inequality and the fact that the Lipschitz condition holds for ℱ1 with
Lipschitz constant 1 > 0, we have

‖Υ1,n(t)‖ ≤ 1
Γ(�)

t

∫
0

(t − �)�−1 ‖
‖

ℱ1(�, Sℎ,n−1(�)) −ℱ1(�, Sℎ,n−2(�))‖‖ d� ≤
1

Γ(�)

t

∫
0

(t − �)�−1‖Υ1,n−1(�)‖d�. (22)

Similarly, for the rest equations in (20), one gets
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

‖Υ2,n(t)‖ ≤
2

Γ(�)

t

∫
0

(t − �)�−1Υ2(n−1)(t)‖d�,

‖Υ3,n(t)‖ ≤
3

Γ(�)

t

∫
0

(t − �)�−1‖Υ3(n−1)(t)‖d�,

‖Υ4,n(t)‖ ≤
4

Γ(�)

t

∫
0

(t − �)�−1‖Υ4(n−1)(t)‖d�,

‖Υ5,n(t)‖ ≤
5

Γ(�)

t

∫
0

(t − �)�−1‖Υ5(n−1)(t)‖d�,

‖Υ6,n(t)‖ ≤
6

Γ(�)

t

∫
0

(t − �)�−1‖Υ6(n−1)(t)‖d�,

‖Υ7,n(t)‖ ≤
7

Γ(�)

t

∫
0

(t − �)�−1‖Υ7(n−1)(t)‖d�.

(23)

Consequently, we prove the following result.

Theorem 2. Let the assertions in Theorem 1 be satisfied. Then the fractional Zika virus model (15) in Caputo derivative admits
a unique solution provided that the inequality

(

1 − t�

Γ(�)
i

)

> 0 i = 1, 2,⋯ , 7, (24)
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holds.

Proof. We know that the functions Sℎ(t), Eℎ(t), Iℎ(t),Rℎ(t), Sv(t), Ev(t) and Iv(t) are bounded and we have already established
that their respective kernels satisfy the Lipschitz condition. By considering (22)-(23), the recursive method yield the following
inequalities

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

‖Υ1,n(t)‖ ≤ ‖Sℎ,0(t)‖
[

t�

Γ(�)
1

]n

,

‖Υ2,n(t)‖ ≤ ‖Eℎ,0(t)‖
[

t�

Γ(�)
2

]n

,

‖Υ3,n(t)‖ ≤ ‖Iℎ,0(t)‖
[

t�

Γ(�)
3

]n

,

‖Υ4,n(t)‖ ≤ ‖Rℎ,0(t)}
[

t�

Γ(�)
4

]n

,

‖Υ5,n(t)‖ ≤ ‖Sv,0(t)‖
[

t�

Γ(�)
5

]n

,

‖Υ6,n(t)‖ ≤ ‖Ev,0(t)‖
[

t�

Γ(�)
6

]n

,

‖Υ7,n(t)‖ ≤ ‖Iv,0(t)‖
[

t�

Γ(�)
7

]n

.

(25)

which proves the existence and smoothness of the functions in (21). To establish that these functions are indeed a system of
solutions to (15), we assume that

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Sℎ(t) − Sℎ,0 = Sℎ,n(t) −H1,n(t),
Eℎ(t) − Eℎ,0 = Eℎ,n(t) − Θ2,n(t),
Iℎ(t) − Iℎ,0 = Iℎ,n(t) − Θ3,n(t),
Rℎ(t) − Rℎ,0 = Rℎ,n(t) − Θ4,n(t),
Sv(t) − Sv,0 = Sv,n(t) − Θ5,n(t),
Ev(t) − Ev,0 = Ev,n(t) − Θ6,n(t),
Iv(t) − Iv,0 = Iv,n(t) − Θ7,n(t),

where Θk,n(x, t) (k = 1,⋯ , 7) are the remainder terms of the series solution. The aim is to show that ‖Hk(n)(t)‖ → 0 as
n→∞, n = 1, 2,⋯ , 7. We have

‖H1,n(t)‖ ≤ 1
Γ(�)

t

∫
0

(t − �)�−1‖ℱ1(�, Sℎ(�)) −ℱ1(�, Sℎ,n−1(�))‖d� ≤
t�

Γ(�)
1‖Sℎ(t) − Sℎ,n−1(t)‖,

and a recursive repetition of the same procedure gives

‖H1,n(t)‖ ≤ ‖Sℎ,0‖
[

t�

Γ(�)

]n+1

n+1
1 M.

Applying limit, we have ‖H1,n(t)‖ → 0 as n → ∞. Similarly, we have ‖Θ2,n(t)‖ → 0, ‖Θ3,n(t)‖ → 0, ‖Θ4,n(t)‖ → 0,
‖Θ5,n(t)‖ → 0, ‖Θ6,n(t)‖ → 0, and ‖Θ7,n(t)‖ → 0 as n→∞. Hence, the existence of solution is proved.
Next, to establish uniqueness of solutions to the model (15), we assume the existence another set of solutions

S∗ℎ(t), E
∗
ℎ(t), I

∗
ℎ (t), R

∗
ℎ(t), S

∗
v (t), E

∗
v (t), I

∗
v (t). Then By using the Lipschitz condition property satisfied by the kernel ℱ1, we

have

‖Sℎ(t) − S∗ℎ(t)‖ ≤ t�

Γ(�)
1‖Sℎ(�)) − S∗ℎ(�))‖ ⇐⇒ ‖Sℎ(t) − S∗ℎ(t)‖

(

1 − t�

Γ(�)
1

)

≤ 0. (26)

With respect to (24), we have that (26) implies ‖Sℎ(t) − S∗ℎ(t)‖ = 0. Hence Sℎ(t) = S∗ℎ(t). A similar argument also yield
Eℎ(t) = E∗

ℎ(t), Iℎ(t) = I
∗
ℎ (t), Rℎ(t) = R

∗
ℎ(t), Sv(t) = S

∗
v (t), Ev(t) = E

∗
v (t), Iv(t) = I

∗
v (t). and the uniqueness of the system

of solutions is thus established. This proves the theorem.
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5.2 Existence and uniqueness of solutions for model in CFC derivative
Now, consider the fractional Zika virus model (15)with CFC derivative, i.e., Ξ(�)0 D�

t =
CFC
0 D�

t . Then the system of integral
equations (18) suggest the following system of recursive formula:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Sℎ,n(t) =
2(1 − �)

(2 − �)M[�]
ℱ1(t, Sℎ,n−1(t)) +

2�
(2 − �)M[�]

t

∫
0

ℱ1(�, Sℎ,n−1(�)),

Eℎ,n(t) =
2(1 − �)

(2 − �)M[�]
ℱ2(t, Eℎ,n−1(t)) +

2�
(2 − �)M[�]

t

∫
0

ℱ2(�, Eℎ,n−1(�)),

Iℎ,n(t) =
2(1 − �)

(2 − �)M[�]
ℱ3(t, Iℎ,n−1(t)) +

2�
(2 − �)M[�]

t

∫
0

ℱ3(�, Iℎ,n−1(�)),

Rℎ,n(t) =
2(1 − �)

(2 − �)M[�]
ℱ4(t, Rℎ,n−1(t)) +

2�
(2 − �)M[�]

t

∫
0

ℱ4(�, Rℎ,n−1(�)),

Sv,n(t) =
2(1 − �)

(2 − �)M[�]
ℱ5(t, Sv,n−1(t)) +

2�
(2 − �)M[�]

t

∫
0

ℱ5(�, Sv,n−1(�)),

Ev,n(t) =
2(1 − �)

(2 − �)M[�]
ℱ6(t, Ev,n−1(t)) +

2�
(2 − �)M[�]

t

∫
0

ℱ6(�, Ev,n−1(�)),

Iv,n(t) =
2(1 − �)

(2 − �)M[�]
ℱ7(t, Iv,n−1(t)) +

2�
(2 − �)M[�]

t

∫
0

ℱ7(�, Iv,n−1(�)).

(27)

Using the same notations in (20), we obtain a corresponding system of equations for the difference between successive terms of
each equation in (27). Furthermore, in view of the fact that the Lipschitz condition hold for the kernels ℱi (i = 1, 2,⋯ , 7), we
apply triangular inequality to the obtained system of differences between successive terms as was done in (22) to get

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

‖Υ1,n(t)‖ ≤ 2(1 − �)
(2 − �)M[�]

2‖Υ2(n−1)(t)‖ +
2�

(2 − �)M[�]
2

t

∫
0

‖Υ2(n−1)(t)‖d�,

‖Υ3,n(t)‖ ≤ 2(1 − �)
(2 − �)M[�]

3‖Υ3(n−1)(t)‖ +
2�

(2 − �)M[�]
3

t

∫
0

‖Υ3(n−1)(t)‖d�,

‖Υ4,n(t)‖ ≤ 2(1 − �)
(2 − �)M[�]

4‖Υ4(n−1)(t)‖ +
2�

(2 − �)M[�]
4

t

∫
0

‖Υ4(n−1)(t)‖d�,

‖Υ5,n(t)‖ ≤ 2(1 − �)
(2 − �)M[�]

5‖Υ5(n−1)(t)‖ +
2�

(2 − �)M[�]
5

t

∫
0

‖Υ5(n−1)(t)‖d�,

‖Υ6,n(t)‖ ≤ 2(1 − �)
(2 − �)M[�]

6‖Υ6(n−1)(t)‖ +
2�

(2 − �)M[�]
6

t

∫
0

‖Υ6(n−1)(t)‖d�,

‖Υ7,n(t)‖ ≤ 2(1 − �)
(2 − �)M[�]

7‖Υ7(n−1)(t)‖ +
2�

(2 − �)M[�]
7

t

∫
0

‖Υ7(n−1)(t)‖d�,

(28)

with the relations in (21) equally holding. Consequently, the following result is immediate:
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Theorem 3. The Zika virus model (15) with fractional derivative in the CFC scene admits a system of solutions. Moreover this
system of solutions is unique if

[

1 −
2(1 − �)

(2 − �)M[�]
i −

2�
(2 − �)M[�]

it
]

≥ 0 i = 1, 2,⋯ , 7. (29)

Proof. Recall that the functions Sℎ(t), Eℎ(t), Iℎ(t), Rℎ(t), Sv(t), Ev(t) and Iv(t) are bounded and we have earlier established
that their kernels satisfy the Lipschitz condition. By considering (28), the recursive method yield the following inequalities

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

‖Υ1,n(t)‖ ≤ ‖Sℎ(0)‖ +
[

2(1 − �)
(2 − �)M[�]

1 +
2�

(2 − �)M[�]
1

]n

,

‖Υ2,n(t)‖ ≤ ‖Eℎ(0)‖ +
[

2(1 − �)
(2 − �)M[�]

2 +
2�

(2 − �)M[�]
2

]n

,

‖Υ3,n(t)‖ ≤ ‖Iℎ(0)‖ +
[

2(1 − �)
(2 − �)M[�]

3 +
2�

(2 − �)M[�]
3

]n

,

‖Υ4,n(t)‖ ≤ ‖Rℎ(0)} +
[

2(1 − �)
(2 − �)M[�]

4 +
2�

(2 − �)M[�]
4

]n

,

‖Υ5,n(t)‖ ≤ ‖Sv(0)‖ +
[

2(1 − �)
(2 − �)M[�]

5 +
2�

(2 − �)M[�]
5

]n

,

‖Υ6,n(t)‖ ≤ ‖Ev(0)‖ +
[

2(1 − �)
(2 − �)M[�]

6 +
2�

(2 − �)M[�]
6

]n

,

‖Υ7,n(t)‖ ≤ ‖Iv(0)‖ +
[

2(1 − �)
(2 − �)M[�]

7 +
2�

(2 − �)M[�]
7

]n

.

(30)

This proves the existence and smoothness of the functions in (21) with respect to the fractional model with CFC derivative. To
establish that these functions are indeed a system of solutions to the fractional model (15), we first assume that

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Sℎ(t) − Sℎ(0) = Sℎ,n(t) −H1,n(t),
Eℎ(t) − Eℎ(0) = Eℎ,n(t) − Θ2,n(t),
Iℎ(t) − Iℎ(0) = Iℎ,n(t) − Θ3,n(t),
Rℎ(t) − Rℎ(0) = Rℎ,n(t) − Θ4,n(t),
Sv(t) − Sv(0) = Sv,n(t) − Θ5,n(t),
Ev(t) − Ev(0) = Ev,n(t) − Θ6,n(t),
Iv(t) − Iv(0) = Iv,n(t) − Θ7,n(t),

(31)

where Θk,n(x, t) (k = 1,⋯ , 7) are the remainder terms of the series solution. Then for (31) we have

‖Θ1,n(t)‖ =
‖

‖

‖

‖

‖

‖

‖

2(1 − �)
(2 − �)M[�]

[

ℱ1(t, Sℎ(t)) −ℱ1(t, Sℎ,n−1(t))
]

+ 2�
(2 − �)M[�]

t

∫
0

[

ℱ1(�, Sℎ(�)) −ℱ1(�, Sℎ,n−1(�))
]

d�

‖

‖

‖

‖

‖

‖

‖

≤ 2(1 − �)
(2 − �)M[�]

‖ℱ1(t, Sℎ(t)) −ℱ1(t, Sℎ,n−1(t))‖ +
2�

(2 − �)M[�]

t

∫
0

‖ℱ1(�, Sℎ(�)) −ℱ1(�, Sℎ,n−1(�))‖d�

≤ 2(1 − �)
(2 − �)M[�]

1‖Sℎ(t) − Sℎ,n−1(t)‖ +
2�

(2 − �)M[�]
1‖Sℎ(t) − Sℎ,n−1(t)‖t.

A recursive repetition of the same procedure gives

‖Θ1,n(t)‖ ≤
[

2(1 − �)
(2 − �)M[�]

+ 2�
(2 − �)M[�]

t
]n+1

n+1
1 a,

and at t = t0 we have

‖Θ1,n(t)‖ ≤
[

2(1 − �)
(2 − �)M[�]

+ 2�
(2 − �)M[�]

t0

]n+1

n+1
1 a.
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Applying limit, we have ‖Θ1,n(t)‖ → 0 as n → ∞. Similarly, we have ‖Θ2,n(t)‖ → 0, ‖Θ3,n(t)‖ → 0, ‖Θ4,n(t)‖ → 0,
‖Θ5,n(t)‖ → 0, ‖Θ6,n(t)‖ → 0, and ‖Θ7,n(t)‖ → 0 as n→∞. Hence, the existence of solution is proved.
Next, to establish uniqueness of solution, we assume the existence of another system of solutions, namely,

(S∗ℎ(t), E
∗
ℎ(t), I

∗
ℎ (t), R

∗
ℎ(t), S

∗
v (t), E

∗
v (t), I

∗
v (t)). Then

Sℎ(t) − S∗ℎ(t) =
2(1 − �)

(2 − �)M[�]
[

ℱ1(t, Sℎ(t)) −ℱ1(t, S∗ℎ(t))
]

+ 2�
(2 − �)M[�]

t

∫
0

[

ℱ1(t, Sℎ(�)) −ℱ1(�, S∗ℎ(�))
]

d�. (32)

Applying norm in (32) together with the fact that ℱ1 satisfies the Lipschitz condition gives

‖Sℎ(t) − S∗ℎ(t)‖ ≤ 2(1 − �)
(2 − �)M[�]

1‖Sℎ(t)) − S∗ℎ(t))‖ +
2�

(2 − �)M[�]
1t‖Sℎ(�)) − S∗ℎ(�))‖,

that is,
‖Sℎ(t) − S∗ℎ(t)‖

(

1 −
2(1 − �)

(2 − �)M[�]
1 −

2�
(2 − �)M[�]

1t
)

≤ 0. (33)

Hence, under the condition (29), we have from (33) that ‖Sℎ(t) −S∗ℎ(t)‖ = 0 ⇐⇒ Sℎ(t) = S∗ℎ(t). A similar argument also yield
Eℎ(t) = E∗

ℎ(t), Iℎ(t) = I
∗
ℎ (t), Rℎ(t) = R

∗
ℎ(t), Sv(t) = S

∗
v (t), Ev(t) = E

∗
v (t), Iv(t) = I

∗
v (t). and the uniqueness of the system

of solutions is thus established. This proves the theorem.

5.3 Existence and uniqueness of solutions for model in ABC derivative
Our task here is to investigate the existence of a unique solution to the fractional Zika virus model (15) with ABC derivative via
a fixed point theory. To this end, we rewrite the fractional model equations (15)in the form

{

ABC
0 D�

t X(t) = (t,X(t)), 0 < t < T < ∞,
X(0) = X0,

(34)

where X(t) = (Sℎ, Eℎ, Iℎ, Rℎ, Sv, Ev, Iv)⊤ denotes the vector consisting of the state variables,  is a real-valued continuous
vector function defined as

(t,X(t)) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ℱ1(t, Sℎ(t))
ℱ2(t, Eℎ(t))
ℱ3(t, Iℎ(t))
ℱ4(t, Rℎ(t))
ℱ5(t, Sv(t))
ℱ6(t, Ev(t))
ℱ7(t, Iv(t))

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Πℎ − �ℎSℎ(Iv + �Iℎ) − �ℎSℎ
�ℎSℎ(Iv + �Iℎ) − (�ℎ + �)Eℎ

�Eℎ − (�ℎ + 
 + �)Iℎ

Iℎ − �ℎRℎ

Πv − �vSvIℎ − �vSv
�vSvIℎ − (�v + �)Ev

�Ev − �vIv

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(35)

and X(0) = (Sℎ(0), Eℎ(0), Iℎ(0), Rℎ(0), Sv(0), Ev(0), Iv(0))⊤ is a vector denoting the initial condition for the state variables.
The existence of positive constants i, i = 1, 2,⋯ , 7, such that each of the functions ℱi in (35) satisfies the Lipschitz con-
dition and contraction has already been shown in Theorem 1. Thus the it follows immediately that there exists a constant
 = max{1,2,⋯ ,7} > 0 such that the function (t,X(t)) in (35) satisfies

‖(t,X1(t)) − (t,X2(2))‖ ≤ ‖X1(t) − X2(2)‖. (36)

Next, we establish the existence and uniqueness of solution to the Zika virus model (15) with fractional derivative i the sense
of ABC. To this end, we prove the following result:

Theorem 4. The fractional Zika virus model (15) with ABC derivative considered in the form (34) admits a unique solution
under the condition we can find Tmax > 0 such that

1 − �
B[�]

 + �
B[�]Γ(�)

T �max < 1. (37)
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Proof. An application of the Atangana-Beleanu fractional integral (11) to both sides of (34) yields the following non-linear
Volterra-type integral equation

X(t) = X(0) + 1 − �
B[�]

(t,X(t)) + �
B[�]Γ(�)

t

∫
0

(t − �)�−1(�,X(�))d�. (38)

Let J = (0, T ) and consider the operator Υ ∶ C(J,ℝ7)→ C(J,ℝ7) defined by

Υ[X(t)] = X(0) + 1 − �
B[�]

(t,X(t)) + �
B[�]Γ(�)

t

∫
0

(t − �)�−1(�,X(�))d�. (39)

Then (38) can be read as

X(t) = Υ[X(t)]. (40)

With respect to the supremum norm ‖X(t)‖J ∶= supt∈J ‖X(t)‖ on J, (J,ℝ7) forms a Banach space. Moreover the following
inequality holds

‖

‖

‖

‖

‖

‖

‖

t

∫
0

(t, �)X(�)d�
‖

‖

‖

‖

‖

‖

‖J

≤ T ‖(t, �)‖J‖X(�)‖J (41)

where (t, �) ∈ (J2,ℝ) such that ‖(t, �)‖J = supt,�∈J |(t, �)| and X(t) ∈ (J,ℝ7). In view of (36), (40), (41) and the
triangle inequality, we have

‖Υ[X1(t)] − Υ[X2(t)]‖J ≤
(

1 − �
B[�]

 + �
B[�]Γ(�)

T �
)

‖X1(t) − X2(t)‖J.

Equivalently, the above last inequality reads

‖Υ[X1(t)] − Υ[X2(t)]‖J ≤ �‖X1(t) − X2(t)‖J,

where
� =

(

1 − �
B[�]

 + �
B[�]Γ(�)

T �
)

.

With respect to the condition given by (37), the operator Υ will be a contraction on (J,ℝ7). Thus, the Banach fixed point
theorem asserts that the fractional Zika virus model (15) in ABC derivative admits a unique solution.

6 NUMERICAL SCHEMES AND SIMULATIONS

Motivated by the two-step fractional Adams-Bashforth (FAB) numerical scheme developed by Atangana and Owolabi,36 we
present corresponding FAB schemes for the fractional ZIKV model (15) with fractional derivative in the Caputo, CFC and
ABC sense, respectively. We refer the reader to the work36 where the convergence and stability analysis for aforementioned the
scheme for each of the above mentioned types of fractional derivatives is furnished in detail . Furthermore, we furnish graphical
visualizations for the behaviour of the numerical solutions to the proposed fractional ZIKV model (15) for distinct values of the
fractional order parameter �. The simulation parameter values are taken as Πℎ = 0.8, �ℎ = 0.007, � = 0.05, �ℎ = 0.0028, � =
0.7, 
 = 0.05, � = 0.08, �v = 0.009,Πv = 0.08, �v = 0.071, � = 0.5while the initial values used are Sℎ0 = 100, Eℎ0 = 10, Iℎ0 =
30, Rℎ0 = 20, Sv0 = 10, Ev0 = 50, Iv0 = 10.

6.1 CASE I: Model in Caputo derivative
Using the fundamental theorem of integral calculus, we obtain the following corresponding nonlinear fractional Volterrra-type
integral equation

Sℎ(t) − Sℎ(0) =
1
Γ(�)

t

∫
0

(t − �)�−1ℱ1(�, Sℎ(�))d�. (42)
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for the Sℎ−equation (15) in Caputo derivative. At t = tk+1 and t = tk, k = 0, 1, 2,⋯, (42) can be read as

Sℎ(tk+1) − Sℎ(0) =
�
Γ(�)

tk+1

∫
0

(tk+1 − t)�−1ℱ1(t, Sℎ(t))dt and Sℎ(tk) − Sℎ(0) =
�
Γ(�)

tk

∫
0

(tk − t)�−1ℱ1(t, Sℎ(t))dt,

respectively. We easily see that,

Sℎ(tk+1) − Sℎ(tk) = X�,1 − X�,2 (43)

where

X�,1 =
1
Γ(�)

tk+1

∫
0

(tk+1 − t)�−1ℱ1(t, Sℎ(t))dt and X�,2 =
1
Γ(�)

tk

∫
0

(tk − t)�−1ℱ1(t, Sℎ(t))dt. (44)

Over the interval [tk, tk+1], the function ℱ1(t, Sℎ(t)) can be approximated by the two-point Lagrange interpolation polynomial
of the form

ℱ1(t, Sℎ(t)) ≃
t − tk−1
tk − tk−1

ℱ1(tk, Sℎ(tk)) +
t − tk
tk−1 − tk

ℱ1(tk−1, Sℎ(tk−1))

=
t − tk−1
ℎ

ℱ1(tk, Sℎ(tk)) −
t − tk
ℎ

ℱ1(tk−1, Sℎ(tk−1)), (45)

where ℎ = tk − tk−1 is the step-size. Substituting (45) into the first and second integrals in (44) yield

X�,1 =
ℱ1(tk, Sℎ(tk))

ℎΓ(�)

[

2ℎt�k+1
�

−
t�+1k+1

� + 1

]

−
ℱ1(tk−1, Sℎ(tk−1))

ℎΓ(�)

[

ℎt�k+1
�

−
t�+1k+1

� + 1

]

(46)

and

X�,2 =
ℱ1(tk, Sℎ(tk))

ℎΓ(�)

[

ℎt�k
�
−

t�+1k

� + 1

]

+
ℱ1(tk, Sℎ(tk−1))

ℎΓ(�)
t�+1k

� + 1
, (47)

respectively, after some manipulations. By inserting (46) and (47) into (43), we obtain

Sℎ(tk+1) = Sℎ(tk) +
ℱ1(tk, Sℎ(tk))

ℎΓ(�)

[

2ℎt�k+1
�

−
t�+1k+1

� + 1
−
ℎt�k
�
+

t�+1k

� + 1

]

+
ℱ1(tk−1, Sℎ(tk−1))

ℎΓ(�)

[

−
ℎt�k+1
�

+
t�+1k+1

� + 1
−

t�+1k

� + 1

] (48)

as the final two-step FAB scheme for the Sℎ−equation (15) with Caputo derivative. In the same way, we can obtain a similar
scheme for each of the remaining equations in (15). In general, by setting X(t) = (Sℎ, Eℎ, Iℎ, Rℎ, Sv, Ev, Iv)⊤ and (t,X(t)) as
defined in (35), the two-step FAB scheme for the fractional ZIKV model (15) with Caputo derivative is given as

X(tk+1) = X(tk) +
(tk,X(tk))
ℎΓ(�)

[

2ℎt�k+1
�

−
t�+1k+1

� + 1
−
ℎt�k
�
+

t�+1k

� + 1

]

+
(tk−1,X(tk−1))

ℎΓ(�)

[

−
ℎt�k+1
�

+
t�+1k+1

� + 1
−

t�+1k

� + 1

]

. (49)

6.2 CASE II: Model in CFC derivative
Applying the fundamental theorem of integration on the Sℎ−equation (15) in CFC derivative we obtain the following
corresponding fractional Volterrra-type integral equation

Sℎ(t) − Sℎ(0) =
1 − �
M[�]

ℱ1(t, Sℎ(t)) +
�

M[�]

t

∫
0

ℱ1(�, Sℎ(�))d�. (50)

At t = tk and t = tk+1, n = 0, 1, 2,⋯, we have

Sℎ(tk) − Sℎ(0) =
1 − �
M[�]

ℱ1(tk−1, Sℎ(tk−1)) +
�

M[�]

tk

∫
0

ℱ1(t, Sℎ(t))dt,
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and

Sℎ(tk+1) − Sℎ(0) =
1 − �
M[�]

ℱ1(tk, Sℎ(tk)) +
�

M[�]

tk+1

∫
0

ℱ1(t, Sℎ(t))dt,

respectively. Moreover,

Sℎ(tk+1) − Sℎ(tk) =
1 − �
M[�]

[

ℱ1(tk, Sℎ(tk)) −ℱ1(tk−1, Sℎ(tk−1))
]

+ �
M[�]

tk+1

∫
tk

ℱ1(t, Sℎ(t))dt (51)

Over the interval [tk, tk+1], the functionℱ1(t, Sℎ(t)) can be approximated by the Lagrange polynomial (45) where ℎ = tk − tk−1.
Substituting (45) in the integral on the right hand side of (51) yields

tk+1

∫
tk

ℱ1(t, Sℎ(t))dt =

tk+1

∫
tk

[

t − tk−1
ℎ

ℱ1(tk, Sℎ(tk)) −
t − tk
ℎ

ℱ1(tk−1, Sℎ(tk−1))
]

dt

=3ℎ
2
ℱ1(tk, Sℎ(tk)) −

ℎ
2
ℱ1(tk−1, Sℎ(tk−1)).

(52)

By inserting (52) into (51), we obtain

Sℎ(tk+1) = Sℎ(tk) +
(

1 − �
M[�]

+ 3ℎ
2M[�]

)

ℱ1(tk, Sℎ(tk)) −
(

1 − �
M[�]

+ �ℎ
2M[�]

)

ℱ1(tk−1, Sℎ(tk−1)) (53)

as the final two-step FAB scheme for the Sℎ−equation (15) with CFC derivative. In the same way, we can obtain similar schemes
for the remaining equations in (15). In general, by setting X(t) = (Sℎ, Eℎ, Iℎ, Rℎ, Sv, Ev, Iv)⊤ and  as defined in (35), the
two-step FAB scheme for the fractional ZIKV model (15)with Caputo derivative is given as

X(tk+1) = X(tk) +
(

1 − �
M[�]

+ 3ℎ
2M[�]

)

(tk,X(tk)) −
(

1 − �
M[�]

+ �ℎ
2M[�]

)

(tk−1,X(tk−1)). (54)

6.3 CASE III: Model in ABC derivative
An application of the fundamental theorem of integration, we obtain the following fractional Volterrra-type integral equation
corresponding to the Sℎ−equation of (15) in ABC derivative:

Sℎ(t) − Sℎ(0) =
1 − �
B[�]

ℱ1(t, Sℎ(t)) +
�

B[�]Γ(�)

t

∫
0

(t − �)�−1ℱ1(�, Sℎ(�))d�. (55)

At t = tk+1 and t = tk, k = 0, 1, 2,⋯, we have

Sℎ(tk+1) − Sℎ(0) =
1 − �
B[�]

ℱ1(tk, Sℎ(tk)) +
�

B[�]Γ(�)

tk+1

∫
0

(tk+1 − t)�−1ℱ1(t, Sℎ(t))dt,

and

Sℎ(tk) − Sℎ(0) =
1 − �
B[�]

ℱ1(tk−1, Sℎ(tk−1)) +
�

B[�]Γ(�)

tk

∫
0

(tk − t)�−1ℱ1(t, Sℎ(t))dt,

respectively. Moreover,

Sℎ(tk+1) − Sℎ(tk) =
1 − �
B[�]

[

ℱ1(tk, Sℎ(tk)) −ℱ1(tk−1, Sℎ(tk−1))
]

+ �
B[�]Γ(�)

(X�,1 − X�,2) (56)

where

X�,1 ∶=

tk+1

∫
0

(tk+1 − t)�−1ℱ1(t, Sℎ(t))dt, and X�,2 ∶=

tk

∫
0

(tk − t)�−1ℱ1(t, Sℎ(t))dt. (57)
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Over the interval [tk, tk+1], the function ℱ1(t, Sℎ(t)) can be approximated by the two-point Lagrange interpolation polynomial
of the form (45) where ℎ = tk − tk−1. Substituting (45) into the first and second integrals in (57) yield

X�,1 =
ℱ1(tk, Sℎ(tk))

ℎ

[

2ℎt�k+1
�

−
t�+1k+1

� + 1

]

−
ℱ1(tk−1, Sℎ(tk−1))

ℎ

[

ℎt�k+1
�

−
t�+1k+1

� + 1

]

. (58)

and

X�,2 =
ℱ1(tk, Sℎ,k)

ℎ

[

ℎt�k
�
−

t�+1k

� + 1

]

+
ℱ1(tk−1, Sℎ,k−1)

ℎ
t�+1k

� + 1
, (59)

respectively, after some manipulations. Then by inserting (58) and (59) into (56), we obtain

Sℎ(tk+1) =Sℎ(tk) +ℱ1(tk, Sℎ(tk))

[

1 − �
B[�]

+ �
ℎB[�]Γ(�)

(

2ℎt�k+1
�

−
t�+1k+1

� + 1
−
ℎt�k
�
+

t�+1k

� + 1

)]

+ℱ1(tk−1, Sℎ(tk−1))

[

� − 1
B[�]

− �
ℎB[�]Γ(�)

(

ℎt�k+1
�

−
t�+1k+1

� + 1
+

t�+1k

� + 1

)] (60)

as the final two-step FAB scheme for the Sℎ−equation (15) with ABC derivative. In the same way, we can obtain a similar
scheme for each of the remaining equations in (15). In general, by setting X(t) = (Sℎ, Eℎ, Iℎ, Rℎ, Sv, Ev, Iv)⊤ and  as defined
in (35), the two-step FAB scheme for the fractional ZIKV model (15)with Caputo derivative is given as

X(tk+1) = X(tk) + (tk,X(tk))
[

1 − �
B[�]

+ �
ℎB[�]Γ(�)

(

2ℎt�k+1
�

−
t�+1k+1

� + 1
−
ℎt�k
�
+

t�+1k

� + 1

)]

+ (tk−1,X(tk−1))
[

� − 1
B[�]

− �
ℎB[�]Γ(�)

(

ℎt�k+1
�

−
t�+1k+1

� + 1
+

t�+1k

� + 1

)]

.

(61)

6.4 Discussion
Using the above two-step FAB schemes (49), (54) and (61) we present graphical visualizations to demonstrate the behaviour
of the approximate solutions to the fractional ZIKV model (15) with Caputo, CFC and ABC derivatives, respectively, for each
system variable. The plots in each of the graphs are with respect to distinct values of the fractional order parameter � with
� = 1.0; 0.9; 0.8; 0.7. The time level up to 100 days and the step size used in evaluating the approximate solutions is ℎ = 0.002.
The graphs for susceptible individuals Sℎ(t), exposed individuals Eℎ(t), infected individuals Iℎ(t), recovered individuals Rℎ(t),
susceptible vectors Sv(t), exposed vectors Ev(t) and infected vectors Iv(t) are presented in Figure 1-7, respectively. In each of
the plots, it is observed that the magnitude of � continuously affect the trend of each state variable for both the human and vector
populations.
In Figure 1(a)-(c) the plots compares the dynamics of the susceptible individuals using the corresponding Sℎ(t)-schemes

in (49), (54) and (61) for the Caputo, CFC and ABC derivatives, respectively. In each case, as the value of � increases from
0.7 to 1, there is a considerable decrease in the number of susceptible individuals and then a gradual increase after some time
until it steadies at equilibrium. In Figure 2(a)-(c) the plots demonstrates the dynamics of the exposed individuals for the case
of the Eℎ(t)-equation of (15) in Caputo, CFC and ABC derivatives, respectively. The plots in each graph are presented for
different values of �. In the graphical representations in Figure 3(a)-(c), we compare the dynamics of Zika infected individuals
by presenting plots for the approximate Iℎ(t)-solution using the corresponding Iℎ(t)-schemes of (49), (54) and (61) for the
Caputo, CFC and ABC derivatives, respectively, for different values of � in each case. In each of the plots, it is observed that
as the fractional order parameter increases from 0.7 to 1 the number of infected individual decreases after some time. Figure
4(a)-(c) shows the behaviour of the recovered individual using the corresponding Rℎ(t)-schemes of (49), (54) and (61) for
the Caputo, CFC and ABC derivatives, respectively, for distinct values of the fractional parameter. Using the corresponding
Sv(t)-schemes in (49), (54) and (61) for the Caputo, CFC and ABC operators, respectively, Figure 5(a)-(c) demonstrate the
dynamics of susceptible vectors. In Figure 6(a)-(c) the plots demonstrates the dynamics of the exposed vectors for the case of the
Ev(t)-equation of (15) using the corresponding Ev(t)-schemes in (49), (54) and (61) for the Caputo, CFC and ABC operators,
respectively. In the graphical representations in Figure 7(a)-(c), we compare the dynamics of Zika infected vectors by presenting
plots for the approximate Iv(t)-solution using the corresponding Iv(t)-schemes of (49), (54) and (61) for the Caputo, CFC and
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(a) Sℎ (t)-Caputo
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(b) Sℎ (t)-CFC
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FIGURE 1 Dynamics of susceptible individuals Sℎ(t) for different values of � (� = 1, � = 0.9, � = 0.8, � = 0.7): (a) Sℎ(t) in
Caputo derivative (b) Sℎ(t) in CFC derivative (c) Sℎ(t) in ABC derivative.
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(a) Eℎ (t)-Caputo
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FIGURE 2 Dynamics of exposed individuals Eℎ(t) for different values of � (� = 1, � = 0.9, � = 0.8, � = 0.7): (a) Eℎ(t) in
Caputo derivative (b) Eℎ(t) in CFC derivative (c) Eℎ(t) in ABC derivative.
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10 20 30 40 50 60 70 80 90 100

Time (days)

5

10

15

20

25

30

Ih
(t

)

=1

=0.9

=0.8

=0.7

(c) Iℎ (t)-ABC

FIGURE 3 Dynamics of infected individuals Iℎ(t) for different values of � (� = 1, � = 0.9, � = 0.8, � = 0.7): (a) Iℎ(t) in
Caputo derivative (b) Iℎ(t) in CFC derivative (c) Iℎ(t) in ABC derivative.

ABC derivatives, respectively, for different values of �. In each of the plots, it is observed that as the fractional order parameter
increases from 0.7 to 1 the population of infected vectors decreases after some time.

7 CONCLUSION

In this work, we analyzed a fractional mathematical model for the transmission dynamics of ZIKV under the framework of
singular and nonsingular kernels. Firstly, the solution set of classical model is shown to be non-negative and positively invariant.
Next we determine the equilibrium points of the model and the basic reproduction number is determined via the next generation
matrix technique. Existence and uniqueness of solutions to the fractional model with respect to Caputo, CFC and ABC fractional
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FIGURE 4 Dynamics of recovered individuals Rℎ(t) for different values of � (� = 1, � = 0.9, � = 0.8, � = 0.7): (a) Rℎ(t) in
Caputo derivative (b) Rℎ(t) in CFC derivative (c) Rℎ(t) in ABC derivative.
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(a) Sv(t)-Caputo
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(b) Sv(t)-CFC
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FIGURE 5 Dynamics of susceptible vectors Sv(t) for different values of � (� = 1, � = 0.9, � = 0.8, � = 0.7): (a) Sv(t) in
Caputo derivative (b) Sv(t) in CFC derivative (c) Sv(t) in ABC derivative.
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FIGURE 6 Dynamics of susceptible vectors Ev(t) for different values of � (� = 1, � = 0.9, � = 0.8, � = 0.7): (a) Ev(t) in
Caputo derivative (b) Ev(t) in CFC derivative (c) Ev(t) in ABC derivative.
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FIGURE 7 Dynamics of susceptible vectors Iv(t) for different values of � (� = 1, � = 0.9, � = 0.8, � = 0.7): (a) Iv(t) in
Caputo derivative (b) Iv(t) in CFC derivative (c) Iv(t) in ABC derivative.
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derivatives are established via a fixed point technique. Numerical investigations using the two-step Adams-Bashforth method
for the fractional ZIKV model with respect to the three considered fractional differential operators are then carried out with a
view to demonstrate the dynamics of each of the system variables for different values of the fractional order parameter. In light
of the above last statement, we made comparisons on the obtained results for each system variables with respect to the Caputo,
CFC and ABC fractional derivatives
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