REFERENCES
  1. Rickert CH, Paulus W. Epidemiology of central nervous system tumors in childhood and adolescence based on the new WHO classification.Child’s Nerv Syst. 2014;17(9):503-511.
  2. Maraka S, Janku F. BRAF alterations in primary brain tumors.Discov Med. 2018;26:51-60.
  3. Kurani H, Gurav M, Shetty O, et al. Pilocytic astrocytomas: BRAFV600E and BRAF fusion expression patterns in pediatric and adult age groups.Child’s Nerv Syst. 2019;35(9):1525-1536.
  4. Hargrave DR, Bouffet E, Tabori U, et al. Efficacy and safety of dabrafenib in pediatric patients with BRAF V600 mutation-positive relapsed or refractory low-grade glioma: results from a phase I/IIa study. Clin Cancer Res. 2019;25(24):7303-7311.
  5. Bellón T, Lerma V, González-Valle O, González Herrada C, J de Abajo F. Vemurafenib-induced toxic epidermal necrolysis: possible cross-reactivity with other sulfonamide compounds. Br J Dermatol . 2016;174(3):621-624.
  6. Song H, Zhong CS, Kieran MW, Chi SN, Wright KD, Huang JT. Cutaneous reactions to targeted therapies in children with CNS tumors: A cross-sectional study. Pediatr Blood Cancer . 2019;66(6):e27682.
  7. Marks AM, Bindra RS, DiLuna ML, et al. Response to the BRAF/MEK inhibitors dabrafenib/trametinib in an adolescent with a BRAF V600E mutated anaplastic ganglioglioma intolerant to vemurafenib.Pediatr Blood Cancer. 2017;65(5):e26969.
  8. Jeudy G, Dalac-Rat S, Bonniaud B, et al. Successful switch to dabrafenib after vemurafenib-induced toxic epidermal necrolysis.Br J Dermatol. 2015;172(5):1454-1455.
  9. Bar-Sela G, Abu-Amna M, Hadad S, Naim N, Shahar E. Successful desensitization protocol for hypersensitivity reaction probably caused by dabrafenib in a patient with metastatic melanoma. Jpn J Clin Oncol . 2015;45(9):881-883.
  10. Tahseen AI, Patel NB. Successful dabrafenib transition after vemurafenib-induced toxic epidermal necrolysis in a patient with metastatic melanoma. JAAD Case Reports . 2018;4(9):930-933.
  11. Packer RJ, Ater J, Allen J, Phillips P, Geyer R, Nicholson HS, Jakacki R, Kurczynski E, Needle M, Finlay J, Reaman G, Boyett JM. Carboplatin and vincristine chemotherapy for children with newly diagnosed progressive low-grade gliomas. J Neurosurg. 1997;86(5): 747-54.
  12. Packer, Jakacki R, Horn M, et al. Objective response of multiply recurrent low-grade gliomas to bevacizumab and irinotecan.Pediatr Blood Cancer . 2009;52(7):791-795.
  13. Croce L, Coperchini F, Magri F, Chiovato L, Rotondi M. The multifaceted anti-cancer effects of BRAF-inhibitors.Oncotarget . 2019;10(61):6623-6640.
  14. Upadhyaya SA, Robinson GW, Harreld JH, et al. Marked functional recovery and imaging response of refractory optic pathway glioma to BRAFV600E inhibitor therapy: a report of two cases. Childs Nerv Syst. 2018;34(4):605-610.
  15. Zawodniak A, Lochmatter P, Beeler A, Pichler WJ. Cross-reactivity in drug hypersensitivity reacts to sulfasalazine and sulfamethoxazole.Int Arch Allergy Immunol . 2010;153(2):152-156.
  16. Larkin J, Ascierto PA, Dréno B, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med.2014(20);371:1867-1876.
  17. Long GV, Stroyakovskiy D, Gogas H, et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med. 2014;371(20):1877-1888.
  18. Robert C, Karaszewska B, Schachter J, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med . 2014;(1)372:30-39.
FIGURE LEGEND
FIGURE 1 Fat-saturated axial T2 weighted image (A) showing tortuosity and thickening of the intraorbital portions of the optic nerves (arrows) and a postcontrast axial T1-weighted image (B) demonstrating enhancement in and along the enlarged prechiasmatic optic nerves, optic chiasm, and proximal optic tracts (arrows), consistent with an optic pathway glioma at 5 months of age. Postcontrast T2 FLAIR image (C) before receiving targeted therapy at 7 years of age showing expansile hyperintensity in the bilateral optic tracts (arrows) and an increase in abnormal signal in the region of the hypothalamus and anterior commissure (large arrow) with a postcontrast axial T1-weighted image (D) showing increased enhancement in the bilateral optic tracts and in the optic chiasm (arrows). Postcontrast axial T2 FLAIR image (E) showing decreased expansile hyperintensity in portions of the bilateral optic tracts (arrows) and postcontrast axial T1-weighted image (F) demonstrating near complete to complete resolution of enhancement in the optic tracts and optic chiasm (arrows) after 8 weeks of targeted therapy. Postcontrast axial T2 FLAIR image (G) demonstrating continued decreased expansile hyperintensity in the bilateral optic tracts and in the region of the anterior commissure and hypothalamus (arrows) and a postcontrast axial T1-weighted image (H) showing resolution of enhancement in the optic tracts (arrows) after 18 months of targeted therapy.