REFERENCES
Adams, R.I., Miletto, M., Taylor, J.W., & Bruns, T.D. (2013). Dispersal
in microbes: fungi in indoor air are dominated by outdoor air and show
dispersal limitation at short distances. The ISME Journal , 7,
1262-1273.
Anderson, J.T. (2016). Plant fitness in a rapidly changing world.New Phytologist , 210, 81-87.
Ashworth, A.J., DeBruyn, J.M., Allen, F.L., Radosevich, M., & Owens,
P.R. (2017). Microbial community structure is affected by cropping
sequences and poultry litter under long-term no-tillage.Soil Biology and
Biochemistry , 114, 210-219.
Balkwill, D.L., Fredrickson, J.K., & Romine, M.F.
(2006). Sphingomonas and related
genera. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt
E (Eds.), The Prokaryotes. Springer-Verlag, New York, pp 605-629.
Bender, S.F., Wagg, C., & van der Heijden, M.G.A. (2016).
An underground revolution:
biodiversity and soil ecological engineering for agricultural
sustainability. Trends in
Ecology and Evolution , 31, 440-452.
Berendsen, R.L., Pieterse, C.M., & Bakker, P.A. (2012). The rhizosphere
microbiome and plant health. Trends in Plant Science , 17,
478-486.
Berg, G. (2009).
Plant–microbe
interactions promoting plant growth and health: perspectives for
controlled use of microorganisms in agriculture. Applied
Microbiology and Biotechnology , 84, 11-18.
Beulig, F., Urich, T., Nowak, M., Trumbore, S.E., Gleixner, G.,
Gilfillan, G.D., Fjelland, K.D., & Küsel, K. (2016). Altered carbon
turnover processes and microbiomes in soils under long-term extremely
high CO2 exposure. Nature Microbiology , 1, 15025.
Bolger, A.M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible
trimmer for Illumina sequence data. Bioinformatics , 30,
2114-2120.
Bonanomi, G., Lorito, M., Vinale, F., & Woo, S.L. (2018). Organic
amendments, beneficial microbes, and soil microbiota: toward a unified
framework for disease suppression. Annual Review of
Phytopathology , 56, 1-20.
Bulgarelli, D., Garrido-Oter, R., Münch, P.C., Weiman, A.,
Dröge,
J., Pan, Y., McHardy, A.C., & Schulze-Lefert, P. (2015). Structure and
function of the bacterial root microbiota in wild and domesticated
barley. Cell Host and
Microbe , 17, 392-403.
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman,
F.D., Costello, E.K., … Knight, R. (2010). QIIME allows analysis
of high-throughput community sequencing data. Nature Methods , 7,
335-336.
Carrion, V.J. (2019). Deciphering rhizosphere microbiome assembly of
wild and modern common bean (Phaseolus vulgaris ) in native and
agricultural soils from Colombia. Microbiome , 7, 114.
Cazals, F., Huguenot, D., Crampon, M., Colombano, S., Betelu, S.,
Galopin, N., … Rossano, S. (2019). Production of biosurfactant
using the endemic bacterial community of a PAHs contaminated soil, and
its potential use for PAHs remobilization. Science of the Total
Environment , 709, 136143.
Chaparro, J.M., Badri, D.V., & Vivanco, J.M. (2013). Rhizosphere
microbiome assemblage is affected by plant development. The ISME
Journal , 8, 790-803.
Chen, S., Qi, G., Luo, T., Zhang, H., Jiang, Q., Wang, R., Zhao, X.
(2018). Continuous-cropping tobacco caused variance of chemical
properties and structure of bacterial network in soils. Land
Degradation and Development , 29, 4106-4120.
De Vries, F.T., Manning, P., Tallowin, J.R.B., Mortimer, S.R., Pilgrim,
E.S., Harrison, K.A. … Bardgett, R.D. (2012). Abiotic drivers and
plant traits explain landscape-scale patterns in soil microbial
communities. Ecology Letters , 15, 1230-1239.
Duran, P., Thiergart, T., Garrido-Oter, R., Agler, M., Kemen, E.,
Schulze-Lefert, P., & Hacquard, S. (2018). Microbial interkingdom
interactions in roots promote Arabidopsis survival. Cell ,
175, 973-983.
Edgar, R.C. (2013). UPARSE: highly
accurate OTU sequences from microbial amplicon reads.Nature Methods , 10, 996-998.
Edwards, J., Santos-Medellin, C., Nguyen, B., Kilmer, J., Liechty, Z.,
Veliz, E., Ni, J., Philips, G., & Sundaresan, V. (2019).
Soil domestication by rice
cultivation results in plant-soil feedback through shifts in soil
microbiota. Genome Biology ,
20, 221.
Erlandson, S., Wei, X., Savage, J., Cavender-Bares, J., & Peay, K.
(2018). Soil abiotic variables are more important than Salicaceae
phylogeny or habitat specialization in determining soil microbial
community structure. Molecular Ecology , 27, 2007-2024.
Gao, Z., Han, M., Hu, Y., Li, Z., Liu, C., Wang, X., … Ma, Z.
(2019). Effects of continuous cropping of sweet potato on the fungal
community structure in rhizospheric soil. Frontiers in
Microbiology , 10, 2269.
Garbeva, P., van Veen, J.A., & van Elsas, J.D. (2004). Microbial
diversity in soil: selection of microbial populations by plant and soil
type and implications for disease suppressiveness. Annual Review
of Phytopathology , 42, 243-270.
Hartman, K., van der Heijden, M.G.A., Wittwer, R.A., Banerjee, S.,
Walser, J.C., & Schlaeppi, K. (2018).
Cropping practices manipulate
abundance patterns of root and soil microbiome members paving the way to
smart farming. Microbiome , 6, 14.
Hartmann, M., Frey, B., Mayer, J., Mäder, P., & Widmer, F. (2014).
Distinct soil microbial diversity under long-term organic and
conventional farming. The ISME Journal , 9, 1177-1194.
Hu, L., Robert, C.A.M., Cadot, S., Zhang, X., Ye, M., Li, B., …
Erb, M. (2018). Root exudate metabolites drive plant-soil feedbacks on
growth and defense by shaping the rhizosphere microbiota. Nature
Communications , 9, 2738.
Jansson, J.K., & Hofmockel, K.S. (2020).
Soil microbiomes and climate
change. Nature Reviews
Microbiology , 18, 35-46.
Krzywinski, M.I., Schein, J.E., Birol, I., Connors, J., Gascoyne, R.,
Horsman, D., Jones, S.J., & Marra, M.A. (2009). Circos: An information
aesthetic for comparative genomics. Genome Research , 19,
1639-1645
Kuypers, M.M.M., Marchant, H.K., & Kartal, B. (2018). The microbial
nitrogen-cycling network. Nature Review Microbiology , 16,
263-276.
Kwak, M.J., Kong, H.G., Choi, K., Kwon, S.K., Song, J.Y., Lee, J.,
… Kim, J.F. (2018). Rhizosphere microbiome structure alters to
enable wilt resistance in tomato. Nature Biotechnology , 36,
1100-1109.
Lau, J.A., & Lennon, J.T. (2012).
Rapid responses of soil
microorganisms improve plant fitness in novel environments.Proceedings
of the National Academy of Sciences of the United States of America ,
109, 14058-14062.
Liu, J., Yao, Q., Li, Y., Zhang, W., Mi, G., Chen, X., Yu, Z., & Wang,
G. (2019). Continuous cropping of soybean alters the bulk and
rhizospheric soil fungal communities in a Mollisol of Northeast PR
China. Land Degradation and
Development , 30, 1725-1738.
Lozano, Y.M., Armas, C., Hortal, S., Casanoves, F., & Pugnaire, F.I.
(2017). Disentangling above- and below-ground facilitation drivers in
arid environments: the role of soil microorganisms, soil properties and
microhabitat. New Phytologist , 216, 1236-1246.
Lundberg, D.S., & Teixeira, P. (2018). Root-exuded coumarin shapes the
root microbiome. Proceedings of the National Academy of Sciences
of the United States of America , 115, 5629-5631.
Luo, S., Schmid, B., De Deyn, G.B., Yu, S., & Field, K. (2018).
Soil microbes promote
complementarity effects among co-existing trees through soil nitrogen
partitioning. Functional
Ecology , 32, 1879-1889.
Magoc, T., & Salzberg, S.L. (2011). FLASH: fast length adjustment of
short reads to improve genome assemblies. Bioinformatics , 27,
2957-2963.
Mapelli, F., Marasco, R., Fusi, M., Scaglia, B., Tsiamis, G., Rolli, E.,
… Daffonchio, D. (2018). The stage of soil development modulates
rhizosphere effect along a High Arctic desert chronosequence. The
ISME Journal , 12, 1188-1198.
Mori, H., Maruyama, F., Kato, H., Toyoda, A., Dozono, A., Ohtsubo, Y.,
… Kurokawa, K. (2014). Design and experimental application of a
novel non-degenerate universal primer set that amplifies prokaryotic 16S
rRNA genes with a low possibility to amplify eukaryotic rRNA Genes.DNA Research , 21, 217-227.
Naylor, D., DeGraaf, S., Purdom, E., & Coleman-Derr, D. (2017). Drought
and host selection influence bacterial community dynamics in the grass
root microbiome. The ISME Journal , 11, 2691-2704.
Ortas, I. (1997). Determination of
the extent of rhizosphere soil. Communications in Soil Science and
Plant Analysis , 28, 1767-1776.
Poorter, H., Niinemets, Ü., Poorter, L., Wright, I.J., & Villar, R.
(2009). Causes and consequences of variation in leaf mass per area
(LMA): a meta-analysis. New Phytologist , 182, 565-588.
Poorter, H., Niklas, K.J., Reich, P.B., Oleksyn, J., Poot, P., &
Mommer, L. (2012). Biomass allocation to leaves, stems and roots:
meta-analyses of interspecific variation and environmental control.New Phytologist , 193, 30-50.
Quast, D., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P.
Peplies, J., & Glöckner, F.O. (2013). The SILVA ribosomal RNA gene
database project: improved data processing and web-based tools.Nucleic Acids Research , 41, D590-D596.
Reganold, J.P., & Wachter, J.M. (2016).
Organic agriculture in the
twenty-first century. Nature Plants , 2, 15221.
Rice, A.V., Tsuneda, A., & Currah, R.S. (2006).
In vitro decomposition ofSphagnum by some microfungi resembles white rot of wood.FEMS Microbiology Ecology , 56, 372-382.
Sasse, J., Martinoia, E., & Northen, T. (2018). Feed your friends: do
plant exudates shape the root microbiome? Trends in Plant
Science , 23, 25-41.
Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett,
W.S., & Huttenhower, C. (2011).
Metagenomic
biomarker discovery and explanation. Genome Biology , 12, R60.
Teste, F.P., Kardol, P., Turner, B.L., Wardle, D.A., Zemunik, G.,
Renton, M., & Laliberté, E.
(2017). Plant–soil feedback and
the maintenance of diversity in Mediterranean-climate shrublands.Science , 355, 173-176.
Vaz-Moreira, I., Nunes, O.C., & Manaia, C.M. (2011). Diversity and
antibiotic resistance patterns of Sphingomonadaceae isolates from
drinking water. Applied and
Environmental Microbiology , 77, 5697-5706.
Venkatachalam, L., Gopinath, S., & Bais, H.P. (2014). Functional soil
microbiome: belowground solutions to an aboveground problem.Plant Physiology , 166,
689-700.
Wang, Y., Li, C., Tu, C., Hoyt, G., DeForest, J., & Hu, S. (2017).
Long-term no-tillage and organic
input management enhanced the diversity and stability of soil microbial
community. Science of the
Total Environment , 609, 341-347.
Xun, W., Yan, R., Ren, Y., Jin, D., Xiong, W., Zhang, G., …
Zhang, R. (2018). Grazing-induced microbiome alterations drive soil
organic carbon turnover and productivity in meadow steppe.Microbiome , 6, 170.
Zhalnina, K., Louie, K.B., Hao, Z., Mansoori, N., da Rocha, U.N., Shi,
S., …Brodie, E.L. (2018). Dynamic root exudate chemistry and
microbial substrate preferences drive patterns in rhizosphere microbial
community assembly. Nature Microbiology , 3, 470-480.
Zhou, J.Z., Xue, K., Xie, J.P., Deng, Y., & Luo, Y. (2012).
Microbial mediation of carbon-cycle
feedbacks to climate warming. Nature Climate Change , 2, 106-110.
Zhou, X., Gao, D., Liu, J., Qiao, P., Zhou, X., Lu, H., … Wu, F.
(2014). Changes in rhizosphere soil microbial communities in a
continuously monocropped cucumber (Cucumis sativus L.) system.European Journal of Soil Biology , 60, 1-8.
Zhu, B.K., Fang, Y.M., Zhu, D., Christie, P., Ke, X., & Zhu, Y.G.
(2018). Exposure to nanoplastics disturbs the gut microbiome in the soil
oligochaete Enchytraeus crypticus . Environmental
Pollution , 239, 408-415.
TABLE 1 Linear discriminant analysis (LDA score >
4.0, p < 0.05) effect size (LEfSe) of bacterial species
in bulk soil and rhizosphere of CCS and FS.