REFERENCES
Adams, R.I., Miletto, M., Taylor, J.W., & Bruns, T.D. (2013). Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. The ISME Journal , 7, 1262-1273.
Anderson, J.T. (2016). Plant fitness in a rapidly changing world.New Phytologist , 210, 81-87.
Ashworth, A.J., DeBruyn, J.M., Allen, F.L., Radosevich, M., & Owens, P.R. (2017). Microbial community structure is affected by cropping sequences and poultry litter under long-term no-tillage.Soil Biology and Biochemistry , 114, 210-219.
Balkwill, D.L., Fredrickson, J.K., & Romine, M.F. (2006). Sphingomonas and related genera. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (Eds.), The Prokaryotes. Springer-Verlag, New York, pp 605-629.
Bender, S.F., Wagg, C., & van der Heijden, M.G.A. (2016). An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology and Evolution , 31, 440-452.
Berendsen, R.L., Pieterse, C.M., & Bakker, P.A. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science , 17, 478-486.
Berg, G. (2009). Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology , 84, 11-18.
Beulig, F., Urich, T., Nowak, M., Trumbore, S.E., Gleixner, G., Gilfillan, G.D., Fjelland, K.D., & Küsel, K. (2016). Altered carbon turnover processes and microbiomes in soils under long-term extremely high CO2 exposure. Nature Microbiology , 1, 15025.
Bolger, A.M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics , 30, 2114-2120.
Bonanomi, G., Lorito, M., Vinale, F., & Woo, S.L. (2018). Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annual Review of Phytopathology , 56, 1-20.
Bulgarelli, D., Garrido-Oter, R., Münch, P.C., Weiman, A., Dröge, J., Pan, Y., McHardy, A.C., & Schulze-Lefert, P. (2015). Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host and Microbe , 17, 392-403.
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods , 7, 335-336.
Carrion, V.J. (2019). Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris ) in native and agricultural soils from Colombia. Microbiome , 7, 114.
Cazals, F., Huguenot, D., Crampon, M., Colombano, S., Betelu, S., Galopin, N., … Rossano, S. (2019). Production of biosurfactant using the endemic bacterial community of a PAHs contaminated soil, and its potential use for PAHs remobilization. Science of the Total Environment , 709, 136143.
Chaparro, J.M., Badri, D.V., & Vivanco, J.M. (2013). Rhizosphere microbiome assemblage is affected by plant development. The ISME Journal , 8, 790-803.
Chen, S., Qi, G., Luo, T., Zhang, H., Jiang, Q., Wang, R., Zhao, X. (2018). Continuous-cropping tobacco caused variance of chemical properties and structure of bacterial network in soils. Land Degradation and Development , 29, 4106-4120.
De Vries, F.T., Manning, P., Tallowin, J.R.B., Mortimer, S.R., Pilgrim, E.S., Harrison, K.A. … Bardgett, R.D. (2012). Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecology Letters , 15, 1230-1239.
Duran, P., Thiergart, T., Garrido-Oter, R., Agler, M., Kemen, E., Schulze-Lefert, P., & Hacquard, S. (2018). Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell , 175, 973-983.
Edgar, R.C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads.Nature Methods , 10, 996-998.
Edwards, J., Santos-Medellin, C., Nguyen, B., Kilmer, J., Liechty, Z., Veliz, E., Ni, J., Philips, G., & Sundaresan, V. (2019). Soil domestication by rice cultivation results in plant-soil feedback through shifts in soil microbiota. Genome Biology , 20, 221.
Erlandson, S., Wei, X., Savage, J., Cavender-Bares, J., & Peay, K. (2018). Soil abiotic variables are more important than Salicaceae phylogeny or habitat specialization in determining soil microbial community structure. Molecular Ecology , 27, 2007-2024.
Gao, Z., Han, M., Hu, Y., Li, Z., Liu, C., Wang, X., … Ma, Z. (2019). Effects of continuous cropping of sweet potato on the fungal community structure in rhizospheric soil. Frontiers in Microbiology , 10, 2269.
Garbeva, P., van Veen, J.A., & van Elsas, J.D. (2004). Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology , 42, 243-270.
Hartman, K., van der Heijden, M.G.A., Wittwer, R.A., Banerjee, S., Walser, J.C., & Schlaeppi, K. (2018). Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome , 6, 14.
Hartmann, M., Frey, B., Mayer, J., Mäder, P., & Widmer, F. (2014). Distinct soil microbial diversity under long-term organic and conventional farming. The ISME Journal , 9, 1177-1194.
Hu, L., Robert, C.A.M., Cadot, S., Zhang, X., Ye, M., Li, B., … Erb, M. (2018). Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications , 9, 2738.
Jansson, J.K., & Hofmockel, K.S. (2020). Soil microbiomes and climate change. Nature Reviews Microbiology , 18, 35-46.
Krzywinski, M.I., Schein, J.E., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S.J., & Marra, M.A. (2009). Circos: An information aesthetic for comparative genomics. Genome Research , 19, 1639-1645
Kuypers, M.M.M., Marchant, H.K., & Kartal, B. (2018). The microbial nitrogen-cycling network. Nature Review Microbiology , 16, 263-276.
Kwak, M.J., Kong, H.G., Choi, K., Kwon, S.K., Song, J.Y., Lee, J., … Kim, J.F. (2018). Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology , 36, 1100-1109.
Lau, J.A., & Lennon, J.T. (2012). Rapid responses of soil microorganisms improve plant fitness in novel environments.Proceedings of the National Academy of Sciences of the United States of America , 109, 14058-14062.
Liu, J., Yao, Q., Li, Y., Zhang, W., Mi, G., Chen, X., Yu, Z., & Wang, G. (2019). Continuous cropping of soybean alters the bulk and rhizospheric soil fungal communities in a Mollisol of Northeast PR China. Land Degradation and Development , 30, 1725-1738.
Lozano, Y.M., Armas, C., Hortal, S., Casanoves, F., & Pugnaire, F.I. (2017). Disentangling above- and below-ground facilitation drivers in arid environments: the role of soil microorganisms, soil properties and microhabitat. New Phytologist , 216, 1236-1246.
Lundberg, D.S., & Teixeira, P. (2018). Root-exuded coumarin shapes the root microbiome. Proceedings of the National Academy of Sciences of the United States of America , 115, 5629-5631.
Luo, S., Schmid, B., De Deyn, G.B., Yu, S., & Field, K. (2018). Soil microbes promote complementarity effects among co-existing trees through soil nitrogen partitioning. Functional Ecology , 32, 1879-1889.
Magoc, T., & Salzberg, S.L. (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics , 27, 2957-2963.
Mapelli, F., Marasco, R., Fusi, M., Scaglia, B., Tsiamis, G., Rolli, E., … Daffonchio, D. (2018). The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence. The ISME Journal , 12, 1188-1198.
Mori, H., Maruyama, F., Kato, H., Toyoda, A., Dozono, A., Ohtsubo, Y., … Kurokawa, K. (2014). Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA Genes.DNA Research , 21, 217-227.
Naylor, D., DeGraaf, S., Purdom, E., & Coleman-Derr, D. (2017). Drought and host selection influence bacterial community dynamics in the grass root microbiome. The ISME Journal , 11, 2691-2704.
Ortas, I. (1997). Determination of the extent of rhizosphere soil. Communications in Soil Science and Plant Analysis , 28, 1767-1776.
Poorter, H., Niinemets, Ü., Poorter, L., Wright, I.J., & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist , 182, 565-588.
Poorter, H., Niklas, K.J., Reich, P.B., Oleksyn, J., Poot, P., & Mommer, L. (2012). Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control.New Phytologist , 193, 30-50.
Quast, D., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P. Peplies, J., & Glöckner, F.O. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.Nucleic Acids Research , 41, D590-D596.
Reganold, J.P., & Wachter, J.M. (2016). Organic agriculture in the twenty-first century. Nature Plants , 2, 15221.
Rice, A.V., Tsuneda, A., & Currah, R.S. (2006). In vitro decomposition ofSphagnum by some microfungi resembles white rot of wood.FEMS Microbiology Ecology , 56, 372-382.
Sasse, J., Martinoia, E., & Northen, T. (2018). Feed your friends: do plant exudates shape the root microbiome? Trends in Plant Science , 23, 25-41.
Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology , 12, R60.
Teste, F.P., Kardol, P., Turner, B.L., Wardle, D.A., Zemunik, G., Renton, M., & Laliberté, E. (2017). Plant–soil feedback and the maintenance of diversity in Mediterranean-climate shrublands.Science , 355, 173-176.
Vaz-Moreira, I., Nunes, O.C., & Manaia, C.M. (2011). Diversity and antibiotic resistance patterns of Sphingomonadaceae isolates from drinking water. Applied and Environmental Microbiology , 77, 5697-5706.
Venkatachalam, L., Gopinath, S., & Bais, H.P. (2014). Functional soil microbiome: belowground solutions to an aboveground problem.Plant Physiology , 166, 689-700.
Wang, Y., Li, C., Tu, C., Hoyt, G., DeForest, J., & Hu, S. (2017). Long-term no-tillage and organic input management enhanced the diversity and stability of soil microbial community. Science of the Total Environment , 609, 341-347.
Xun, W., Yan, R., Ren, Y., Jin, D., Xiong, W., Zhang, G., … Zhang, R. (2018). Grazing-induced microbiome alterations drive soil organic carbon turnover and productivity in meadow steppe.Microbiome , 6, 170.
Zhalnina, K., Louie, K.B., Hao, Z., Mansoori, N., da Rocha, U.N., Shi, S., …Brodie, E.L. (2018). Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology , 3, 470-480.
Zhou, J.Z., Xue, K., Xie, J.P., Deng, Y., & Luo, Y. (2012). Microbial mediation of carbon-cycle feedbacks to climate warming. Nature Climate Change , 2, 106-110.
Zhou, X., Gao, D., Liu, J., Qiao, P., Zhou, X., Lu, H., … Wu, F. (2014). Changes in rhizosphere soil microbial communities in a continuously monocropped cucumber (Cucumis sativus L.) system.European Journal of Soil Biology , 60, 1-8.
Zhu, B.K., Fang, Y.M., Zhu, D., Christie, P., Ke, X., & Zhu, Y.G. (2018). Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus . Environmental Pollution , 239, 408-415.
TABLE 1 Linear discriminant analysis (LDA score > 4.0, p < 0.05) effect size (LEfSe) of bacterial species in bulk soil and rhizosphere of CCS and FS.