GROUND STATE AND MULTIPLE SOLUTIONS FOR
SCHRODINGER-BOPP-PODOLSKY SYSTEM WITH CRITICAL
NONLINEARITY

LINTAO LIU AND HAIBO CHEN

ABSTRACT. In this paper, we study the following nonlinear Schrédinger-Bopp-
Podolsky system:

—Au+u+U(x)pu = a(z)|[uP~2u + pb(z)|u|9?u + |ul®, in RS,

—A¢ +a?A%¢ = I(z)u?, in R3,
where p,q € (4,6), u > 0, I(z), a(z) and b(z) are nonnegative continuous
functions. Under some certain assumptions, we prove the above system have
ground state and multiple solutions by using variational.

1. INTRODUCTION

In recent years, the following Schrodinger-Bopp-Podolsky system was first intro-
duced in [I8]

(1.1)

—Au+wu + ¢?¢u = |ulP~%u, in R3,
—A¢ + a?A%¢p = 4mu?, in R3,

where u,¢ : R®> = R, w,a > 0, ¢ # 0. The system is the result of the coupling
of Schrodinger field ¥ = (¢, z) and its electromagnetic field in the Bopp-Podolsky
electromagnetic theory and considers standing wave (¢, ) = e*“!u(z) in the purely
electrostatic case. The Bopp-Podolsky theory is a second order gauge theory for
the electromagnetic field, it was developed by Bopp [2] and then independently by
Podolsky [25] and it was used to solve the ”infinity problem” that appears in the
Maxwell theory, we refer the readers to see [3, 4} [5] [0} [24] and the references therein.

Moreover the Bopp-Podolsky theory also was an effective theory for short dis-
tances and for large distances it is experimentally indistinguishable from the Maxwell
one. For more physical details readers can see [7, [8, @] 10} 13| 14, [19] and the refer-
ences therein. For the operator —A 4 A2, it appears also in different mathematical
and physical domains(see [111, [20] and so on).

In [18], Pietro d’Avenia prove that problem existence and nonexistence
results depending on the parameters p,q. Moreover they also show that, in the
radial case, the solutions we find tend to solutions of the classical Schrodinger-
Poisson system as a — 0. They also showed that, if p is the distribution density of
the given charge, then the electrostatic potential ¢ satisfies the following equation

~Ag=p, (1.2)
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if p = 4md,,, with 2o € R3, the fundamental solution of (1.2) is E(x —zg) = m
and the electrostatic energy is £(E) = 1 [0, |[VE(z)[> = 4+00. Thus, in the Born-
Infeld theory, (1.2)) is replaced by —div((l‘zw

— 2
it is replaced by —A¢ + a?A%¢p = p. Moreover, we know that K(z — ) is the
fundamental solution of the equation

—Ad+ a’A2p = 4nd,,,

) = p; In Bopp-Podolsky theory,

where
_l=l
l—e

K(z)

1
, lim Kz —xo) = —.
|| T—T0 a

Its energy is
1 1
car() =5 [ VKP4 [ 1AKE < o0,
2 R3 2 R3

more details in [I8].
After that, Gaetano and Kaye [2I] study prove, by means of the fibering ap-
proach, that the system has no solutions at all for large values of ¢’s, and has
two radial solutions for small ¢’s. They give also qualitative properties about the
energy level of the solutions and a variational characterization of these extremals
values of q.
In [15], Chen Sitong and Tang Xianhua deals with the following nonlinear Schrédinger-
Bopp-Podolsky system:
—Au+V(z)u+ ¢u = pf(u) +u®, inR3
{ —2A¢ + a’A%¢ = 4u?, in R3,
where a > 0, V(x) € C(R3,[0,0)) with V, = limy| 00 V(y) > sup,egs V(x) > 0,
and f € C(R,R) satisfying fg f(s)ds > tP with p € (4,6) for all t > 0. By using
some new analytic techniques and new inequalities, they prove that the above
system admits ground state solutions for all u > 0 if p € (4,6); for all u > po if
p € (2,4] where pg is a positive constant determined by a, Vi, and p.
In [27], Zhu Yuting, Chen Chunfang and Chen Jianhua study the following non-
linear Schrodinger-Bopp-Podolsky system:
—Au+V(z)u+ qpu = f(u), in R3,
{ —2A¢ + a?A%p = 4mu?, in R3,
where @ > 0, ¢ > 0 and V € C(R3 R). By means of the variational methods,
author prove the existence of infinitely many nontrivial solutions, the existence of a
ground state solution for f(x,u) = |u[P~?u+h(u)u with p € [4,6) and the existence
of at least one positive solution for f(z,u) = p(z)ul® + plu/P~2u with p € (4,6)
under some certain assumptions.
Inspired by [28], in this paper, we consider the following nonlinear Schrédinger-
Bopp-Podolsky system::
—Au+u+U(x)pu = a(x)|[ulP~2u + pb(x)|u|?%u + |ul®, in R3, 13
{ —A¢+a?A% = I(x)u?, in R?, (1.3)
where p,q € (4,6), a > 0 and p > 0 is a parameter, [(x), a(z) and b(x) satisfy the
following conditions:
(1) l(z) € C(R?), I(z) > 0 and | l‘im l(x) =loo > 0;
xT|—0o0
(I5) there exist Cy > 0 and I > 0 such that I(z) < I, — Coe~ !l for all z € R3;



(13) there exist C; > 0 and d > 0 such that I(z) < loo + Cre~ 4| for all z € R?;
(at) a(z) € C(R3), a(x) > 0 and | llim a(x) = s > 0;

xr|—00
(a3) there exist Co > 0 and m > 0 such that a(z) > as — Coe ™%l for all z € R?;
(b%) b(z) € C(R3), b(z) > 0 and ‘ l‘im b(x) = 0;

Tr|—0o0
(b3) there exist C3 > 0 and b > 0 such that b(z) > Csze~"1*l for all z € R3.

The following is the main result of problem (1.3).

Theorem 1.1. (A) Assume that I(z), a(z) and b(x) satisfy (I7), (15), (aT), (a})
and (b}) with 0 < k < m < p. Then problem admits a positive ground state
solution.

(B) Let m < p and d < 2. Assume that l(x), a(z) and b(x) satisfy (I7), (15), (at)-
(a3) and (b7)-(b3) hold with b < min{m,d}. Then problem admits a positive
ground state solution.

Theorem 1.2. Assume the assumptions of Theorem [I.1}(2) hold with l(z) > ls,
a(z) < as and meas{z € R3 : I(x) > loo} > 0. Then there exists po > 0 such that
for any p € (0, uo), problem (1.3) admits at least two nontrivial solutions.

Remark 1.3. e To obtain the existence of ground state solutions of , there
will be several difficulties at present. On the one hand, because of the presence of
the nonlocal term, we have to need analyze the influence of ¢ and a(x)|u|P~2u +
ub(2)|u|?%u + |ul®. On the other hand, it should be pointed out that the Sobolev
embedding H*(R?) — L"(R3) 2 < r < 6(see Section 2) is not compact.

e To the best of our knowledge, there are few papers on the multiplicity solutions
for system . Inspired by [1], we construct two mappings:

Fr:S2={yeR3:|y=1} > {ue M:I(u) <mw —e(R)},
G:{ueM:I(u)<ms}—S?

where more precisely see Section 5. So that Go Fr homotopic to the identity. Using
the theory of Lusternik-Schnirelman category, we will establish the existence of two
nontrivial solutions for system . Using the ideas in reference [1], it is essential
to construct maps Fr and G using the definitions and properties of barycenter map
in [I6]. However, the barycenter map in [16] cannot be applied directly here because
s a different problem. In this paper, the use of the barycenter map is related
with the critical term, therefore, the multiple solutions obtained of system are
different from those obtained by barycenter map in reference [17].

For simplicity, we give the following notations.

Remark 1.4. o [[ul|s := ([ |ul®dz)?, 1 < s < +oo.
o H~1(R3) denotes the dual space of H'(R?).
e C and C; denotes universal positive constant. (possibly different)
e B,(x) denotes the ball of radius p center at x.
e S denotes the best Sobolev constant:
Vu|?dx
inf —fR3 [Vl T

u€DP2RIN(0} ([os [u(z)|0dx)s

The paper is organized as follows. In Section 2, we’re going to introduce the
workspace and present some preliminaries results. In Section 3, We will establish

the variational framework and consider the limit problem. In Section 4, we will
prove Theorem In Section 5, we will prove Theorem
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2. PRELIMINARY LEMMAS
Let
H'(R?) = {u € L2(R%) : Vu € L2(R3)},

in this case, the inner product and norm are defined as

(u,v) = /3 (Vqu + uv)alyc7
-

] = (/]R (1vu? + u2>dx>%,

HY(R3) is a Hilbert space and H'(R3) — LP(R3) (p € [2,6]), H'(R3) ——
L1 (R3) (g € [1,6))(see Theorem 1.8 and Theorem 1.9 of [26])

loc

And denotes the Sobolev space

D'2(R?) = {u € LS(R®) : Vu € L2(R3)},

with the corresponding norm

1
lullpre = (/ Vuldr)”
RS
is a Hilbert space.

Let D be the completion of C°(R3) with respect to the norm || - ||p induced by
the scalar product

(u,v)D:/ Vquderaz/ AuAvdz,
R3 R3

Clearly, D is a Hilbert space continuously embedded into D*2(R?) and therefore
in LO(R3).
Now we present some preliminary results, they were obtained in [I8].

Lemma 2.1. (see Lemma 3.1 in [I8]) The space D is continuously embedded in
L>(R3).

Lemma 2.2. (see Lemma 3.2 in [I8]) The space C°(R3) is dense in
A:={¢pc D'3(R?): Ap € L*(R?)}
normed by \/ (¢, ¢)p and therefore D = A

Similar to the proof in [I8], it can be proved that for every u € H'(R3) there
is a unique solution ¢, € D of the second equation in the system (1.3]), that is
satisfying

— Ay + a?A%p, = l(z)u?. (2.1)
Moreover it turns out that
lu? 1 1—e™ -
W) =K —=— [ ——— I(y)u’(y)dy, 2.2
oule) =Ko == - [ Ry (22)
where
1— e"'aﬂ
Kz)=——

|]



Lemma 2.3. (see Lemma 3.4 in [18]) For every u € H*(R?), we have:
(i) for every y € R?, Gu(4y) = Gu(- +y);

(#1) ¢u > 0;

(i11) ¢u € D;

(i) [|pulle < Cllull?;

(v) if v, — v in HY(R?), then ¢,, — ¢, in D.

In the next, we give a definition of Lusternik-Schnirelman category.

Definition 2.4. (i) For a topological space X, we say a non-empty,closed subset
A C X is contractible to a point in X if and only if there exist a continuous mapping
n:[0,1] x A — X such that for some g € X,

(a) n(0,2) =z for allz € A,

(b) n(1,z) =z for all x € A.

(i1) We define

cat(X) = min{k € N :there exist closed subsets Ay,...,Ar C X such that

A; is contractible to a point in X for all i and
k

U A =X}

i=1

We say cat(X) = oo if there do not exist finitely many closed subsets Ay, ..., A C
X such that A; is contractible to a point in X for all i and Ule A, =X.

We need the following two important lemmas. See Proposition 2.4 and Lemma
2.5 in [1J.

Lemma 2.5. Suppose that M is a Hilbert manifold and ¥ € C*(M,R). Assume
that there exist co € R and k € N such that ¥ (u) satisfies the Palais-Smale condition
for ¢ < co and cat({u € M : ¥(u) < ¢o}) > k. Then ¥(u) has at least k critical
points in {u € M : ¥(u) < co}.

Lemma 2.6. Let X be a topological space. Suppose that there exist two continuous
mapping

F:$P={yeR: |y =11—-X, G:X—S5%

such that G o F is homotopic to identity id : S* — S2, that is, there is a continuous
mapping ¢ : [0,1] x S? — 5% such that ((0,2) = (G o F)(x) for all x € S* and
((1,2) =z for all x € S?. Then cat(X) > 2.

3. FUNCTIONAL SETTING AND LIMIT PROBLEM

Firstly, in this Section, since lim|;|_ o0 [(Z) = looc > 0, lim|3| 00 a(7) = G0 > 0
and lim;|_,oc b(2) = 0. For simplicity, we assume Ko, = 1 and as, = 1. Substitut-

ing ([2.2)) into the problem (|1.3)), the first equation in the system (1.3)) is reduced to
an equation containing an variable w:

— Au+u+ U(x)pyu = a(z)|ulP~?u + pb(x)|ulP~u + u®. (3.1)
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In order to find weak solutions to (3.1]), we look for critical points of the functional
I(u) : H'(R?) — R associated with (3.1)) which is defined by

I(u) = %/Ra(‘qu + u?)dx + E/RS I(x)puu’de

1 1
_7/ a(x)|u|de_ﬁ/ b(z)|u|?dx — f/ |u[8dz.
P Jr3 q JRrs3 6 R3

In order to prove the compactness, we need to consider the following problem at
infinity with is:
— Au+u+ dyu = |ulP2u+ |u)®, u>0, (3.2)
where g?)u € D is the unique solution to problem
—A¢+a’A%p = .
The functional associated with is given by

1 1 N
Io(u) = 3 /111{3<|VU|2 + u?)dx + 1 /R3 dyu’da

1 1
77/ |u|pdx77/ |u|®dz.
D Jrs 6 R3

™= ) e = B Tt

Let

where

M = {ue H' R)\{0} : (I'(u),u) =0}, Mo ={ue€ H (R*)\{0} : (I\(u),u) = 0}

are Nehari manifolds correspond to the functional I and I, respectively.

Lemma 3.1. m, satisfies
1

o < =S%.
m 3 2
Proof. We define
1
UE(x) = ¢<x)€4 19
(e +1[x?)2

where 9 € C§°(Ba,(0)) such that 0 < ¢(x) <1 and ¢(z) = 1 on B,(0). Then for
e > 0 small(see [28]),

/ Voo (2)2dz = Ky + O(e}), (3.3)
/ (v (2)[0dz = Ky + O(e), (3.4)
where § = £+
K3
O(E),  pe(3,6);
[ be@)rds =S ot togel), p=3 (3.5)
e O(e), p € [1,3).

Moerover, by the Hardy-Littlewood-Sobolev inequality (see [23]) gives

u2d<//|“‘|“ dedy < VT 3.6
[Gwcass [ [ MOEOE Gy < ST o)
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And similar to Theorems 4.1-4.2 in [26], we can see that me = oo = 1r€1£ m[aa)i] Io(y(1)),
vel te|0,
where I' = {v € C([0,1], H) : v(0) = 0, Io(v(1)) < 0} and

Moo = Cop = ue}?\f{o} r{lzaéq I (tu). (3.7

By (3.7), we see that co < sup I (tve). Thus we only need to prove sup I (tve) <
>0 >0
%S% for £ > 0 small.
By (3.6) and H*(R?) < LP(R3) (p € [2,6]), we obtain that

1o 2 1y > 9 P 0 6
Io(tve) = =t*||ve||* + =t ¢y vodr — — |ve[Pdax — — |ve|°dx

2 4 R3 N P Jrs 6 R3 (38)
1 1

< SPIe]” + O floe | - gt6l|ve|\2-

Form ([3.3)-(3.5)), there exists €1 > 0 small enough such that
3
Joel = [ (Vo +o2)do < K4 OEH + O < Ko, (39)
R3
1
[vel|§ = K2 + O(e?) > 5 K2, (3.10)

for e € (0,e1). Thus, there exist a small t; > 0 and a large t5 > 0 independent of
¢ € (0,&1) such that

—_

sup I (tve) ~83. (3.11)
tG[O,tl]U[t27+OO)

w

Form (3.3)-(3.6), we get

1 1
sup Io(tv.) < sup[=t? |Vv.|2de — ftﬁ/ |ve (2)|®da]
tE[t1,to] t>0 R3 6 Jgps

+Cllvell3 + Cllve 22 = Cllee |l (3.12)

6P

1 _: 1
:§S%+O(e§)—05 T

In view of p € (4,6), so we see that % < 1. By choosing ¢ € (0,e1) small, we get

1
sup Ioo(tve) < -83. (3.13)
tE(t,t2] 3
By (3.11) and (3.13]), we have
1
Moo < 55% (3.14)

O

Lemma 3.2. The problem (3.2) admits a positive ground state solution us, €
H(R3) such that I’ (us) = 0 and ms is attained by us.

Proof. Firstly, it is easy check that I, possesses a mountain pass geometry. Since
the proof is standard, we omit it here. Applying the mountain pass theorem, there
exists a sequence u,, € H'(R?) such that

I (u, — inf Io(v(1)), 3.15
o (Un) = Moo inf max o ((1)) (3.15)

where I' = {v € C([0,1], H) : v(0) = 0, Io(7(1)) < 0}. And
1% (un) 11+ fJunll) — 0. (3.16)
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Then, we have
1
Toc(tn) = 7)) = a4 G = ) [ et 35 [ ol

1
*IlunIIQ + 5 lunllé,

(3.17)
which yields the boundedness of {u,}. Next, we claim that
lim sup sup / | |2dz > 0. (3.18)
n—oo yeR3 J By (y)

If not, then Lions’ concentration compactness principle [[26], Lemma 1.21] implies
that u,, — 0 in L"(R3) for all r € (2,6). Thus, by the Hardy-Littlewood-Sobolev
inequality (see [23]) show that

| |u 8T 4
puulde </ / d:rdy < ulllz = o(1 3.19
. o S -y fll | (1). (3.19)

Then, we have
o(1) = (I (un), un) = [lunl® = [lun§ + o(1), (3:20)
and
1 2 1 6
Moo +0(1) = loo(un) = 5 l[unll” = &llunll6 + o(1). (3:21)

Since {uy,} is bounded in H'(R3) and m., > 0, then up to a subsequence, we may
assume that

unl> = 1>0, |unll§ —1>0. (3.22)
By (3.22)) and the Sobolev inequality, we can see that
. . . 1
= lm [luy|* > lm [[Vun[l3 > lim Sfu |5 = SI5. (3.23)
Then, by Lemma and ([3.21)), we get that
1 s 1 1 s
-93 =_-1>=8% 3.24
37" M T3t =g (3:24)

which is a contradiction, so (3.18)) holds. Thus there exist 6 > 0 and a sequence
{yn} C R3 such that fBl(er) |un|?dz > 8. Set @iy (x) = up(x + yy), then

Ino () = Moo, I (Un) — 0. (3.25)
And
/ |, |2dz > 6, (3.26)
B1(0)

for all n € N. Therefore, there exists us, € H'(R?)\{0} such that, passing eventu-
ally to a further subsequence,

Up — Uso  inH(R?), (3.27)
Up — Uso  inLl (R®) 7 €]1,6), (3.28)

Up = Usg  a.€.inR>. (3.29)
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A standard argument shows that I’ (ueo) = 0 and I (Ueo) > M. Then, by Fatous
lemma, we can see that

. 1 oy
Mo = 1im [T (i) — 3 (I (@), )]
1 1 _
= Jim (Gl P+ (G = )l + g5 )
(3.30)
, 11 , 1 6
> el + (G = Dl + g5 el

= Too(ttne) = (Il (o) o) = Toct1) > i

Hence, we have I. (uoo) — 0 and I (teo) = Moo. Moreover, If u, sign-changing,
then I (Uso) > 2Meo, a contradiction. Thus, we may assume uo, > 0 in H!(R3),
then the maximum principle implies u, is positive.

d

Lemma 3.3. For any § > 0, there exists C5 > 0 such that
Uoo () < Cse (170,
Proof. By elliptic estimates(see [22]), we have us () € L°°(R?) and
Uso(x) = 0, |z| = 00,
so, for any § > 0, there exists Ds > 0 such that
1—ul%(x) —ul(2) > (1-0)% |z| > Ds. (3.31)
In addition, ue () satisfies that
— Athoo(8) + thoo(2) + P (1) oo () = 1100 ()P 2t (&) + (@), (3:32)
in view of (ﬁuoo(x) > 0, im0 Uso(x) = 0, (3.31)) and , we can see that
—Atgo () + (1 — 6)?une(x) <0, |z| > Ds,
and there exists Rs > 0 such that
Uoo(z) < Rs, |z| = Ds.
Let v(z) = Rge~(1=9)z1=Ds) " directly computation, we deduce that
—Av(x) + (1 —6)*v(x) >0, |z|#0.

Therefore the maximum principle implies that ue (z) < Rge™(1=9U21=Ds) for x| >
Ds. Hence s (7) < max{Rs, ||too|loo ye~ 1= zI=Ds) = Cse= (=0l
(Il

Lemma 3.4. Let {u,} C H*(R?) be a bounded sequence such that I(u,) — ¢ €
(0,me0) and I'(up) — 0. If mo < %S%, then {u,} admits a strongly convergent
subsequence in H(R?).

Proof. Since the sequence {u,,} is bounded, there exists u € H'(R3)\{0} such that
up —u  inH'(R?),
u, —u inLi (R®) (2<s<6),

U, = u  a.einR3.
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Then I'(u) = 0. Set v, = uy, — u. By Brezis-Lieb lemma in [12],
lvnll* = llun* = [lull* + o(1), (3.33)

lvnllg = llunll§ = Ilull§ + o(1), (3.34)

Similarly, in view of lim|| o0 a(z) = 1, lim || b(2) = 0 and v, — 0in L (R3)(2isi6),
we have

/R () un s - /R afa)fulrds = /R JonlPds -+ o), -

/RS b(x)|up|9dx — /]R3 b(x)|u|?dz = o(1). (3.36)

By Lemma 5.1 in [27], lim;|o I(z) = 1 and Holder’s inequality, it is easy to
deduce that

/ by, V2dx = / 1(2) by, u2 da — / I(z)puudz + o(1). (3.37)
RS RS RS
In view of —, we have that

c—I(u) = Io(vy) + o(1). (3.38)
By using Proposition 5.1.1 in [22], we see that u € L°(R?). Then by Lemma 8.9

and Lemma 8.1 in [26] with lim a(z) =1, | lim b(x) =0, we have that
xT|—0o0

x| =00 \

| Rg(ﬂi —u’ —vp)pdz| = o(1)llell, Ve € H'(R?),

\/R [a(@) (lun P~ un — [ulP"2u) — o[ "2vnleda] = o(D)]lell, Ve € H'(R?),

3
|/Rg b()(Jun|"un — ul*™u)pdz| = o(1) = o) @ll, Ve € H'(R?).
(3.39)
By Lemma 5.1 in [27] and similar to the of proof of (3.37), we can see that

|/ K(x)(¢u, un — duu)pdx —/ év,,Lvnwdx| =o(1)|¢ll, Ve HI(R?’). (3.40)
R3 R3

Hence, by (3.39)-(3.40)), there holds
I (vy) = o(1). (3.41)

We claim v,, — 0 in H'(R?®). Two cases occur: either

lim sup/ v, |2dz = 0,
B1(y)

n—oo yERa

or there exists v > 0 such that

lim sup / |vp|2dz > .
Bi(y)

n—oo yeRS

Thus, either ||v,|l, — 0 for any r € (2,6) through using vanishing Lemma, or
there y,, € R3 with |y,| — oo such that v, (. + y,) — v # 0 weakly in H!(R3).
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If v,(. + yn) — v # 0 weakly in H}(R3), from (8.38)) and (3.41), it follows that
¢ —I(u) = Ioo(Vn(- + yn)) +o(1) and I (v, (. + yn)) = o(1). Thus I’ (v) = 0 and

c—1(u) = Io(vn(- + yn)) — i[léo(vn( +Yn))s Un(- + yn)]

= )P+ G =) [ 1l

1
415 1ot )P+ o),
12 Jgs

form which we get
1 1 1 1
>1 —ol*+ (= - = Pdr + — bd
e21(w)+ gl + (G =) [ oPdes 5 [ o

= )+ Lo(v) — (I (0),)) = T(w) + Loc(0).

By the definition of mq, we have I (v) > moo. Since I'(u) = 0, we have

I(w) = ()~ ("), w)
1, o, 1 1 .
= Jl+ G =2 [ a@apd

1 1 1
e b(x)|u|?de + — Sdq >
+(G o [ a4 55 [ lbde >0

which leads to a contradiction with ¢ < mes. Thus ||v,||z- — 0 for any r € (2,6).

By (3.38) and (3.41]), we have
1 1
¢ = I(u) = 5 [[vall® = Zllonll§ + o(1),
lvnll® = loall§ = o(1).

Up to a subsequence, we may assume that [|v,||> — I. Thus ||v,|$ — I. If 1 > 0,
by the definition of S, we get [ > S3. Hence,

1>28%,

Wl
[SLRVA

1 1
¢=1(u)+ S llvnll® = Sllvallg = I(w) +

which contradicts with ¢ < my < %S 3. Thus [ = 0 and we complete the proof.
O

4. PROOF OF THEOREM [I.1]

Proof of Theorem [1.1}(A). Let {u,} C M be a minimizing sequence for func-
tional I, that is, {u,} C M and I(u,) — m, where

M = {u € H\{0} : G(u) = (I'(u),u) = 0}.
We claim I'(u,) — 0. By the Lagrange multiplier Theorem, there exists A, € R
such that
I'(up) — MG (uy,) — 0.
Since u,, C M, we have that

Mt 0(1) = I{ug) — 1 (I'(mn), ) >
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which implies that {u,} is bounded in H'(R3. Hence
An (G (up), un) — 0. (4.1)
By (a7) and (b7), for any € > 0, there exists C. > 0 such that
a(@)|ul? + b(z)|ul? + [u|® < elu® + Cclul®.

Taking ¢ = % and recalling the definition of S, we have that

lunl? < [ a@lnPdat [ pbiolunltda+ [ ool

<= / [t | d:r:—l—CH/ |y, S d
6
U e s 0l
*2/]1@3'“' 0T
which implies that
S3
llun|® > T (4.2)
(2C1)z

By ([2), we get

(G"(un),un) = (G'(un), un) — 4(I' (up), un)
— 2||un|\2 —|—4/ l(x)gﬁunuidx —p/ a(z)|u, |Pdx — q/ wb(z) |y, |1dx
R3 R3 R3
—6/ |un|6dx—4[||un||2+/ l(x)qﬁunuidaz—/ a(x)|un|Pdx
R3 R3 RS
= [ w@unftds = [ junlde] = =2l + =) [ alw)lun s
R3 R3

3

Sz
(20%)%

(4-q) / ()9 + (— / i < —2Ju|? <

From (4.1), we have A, — 0. Thus I’(u,) — 0. This means that {u,} is a (PS),
sequence for I, that is, I(u,) — m and I’(u,) — 0. By Lemma[3.4] if m € (0,mo),
then u,, — u in H*(R?) and thus I(u) = m and I'(u) = 0. Hence, m is attained by
u € HY(R3)\{0}. For this purpose, it is sufficient to prove m < me.

Similar argument as (3.7]), we can obtain the equivalent characterization of the
least energy m:

m= inf maxI(tu). (4.3)
weH\{0} >0

Let R > 0 and v € R? with |y| = 1. By (4.3), clearly, we have

m < sup I (tus (x — RY)),
>0
where uo is a positive ground state solution for limit problem (3.2)). Since
t 2 4 g 0 6
I(tuco(z — BY)) < 5 [luco(z = BY)|I” + Ct|luco(z = RY)|" — < lluce(z — By)llg

t2 2 4 4 tG 6
= 5 llusol” + CtJuce|* = = llucclls;,
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there exist a small ¢ > 0 and a large ¢ > 0 independent of R and « such that

sup I(tuso(z — R7)) < Meo. (4.4)
te[0,¢|U[t",400)

On the other hand, by (b7), for any u € H*(R?), we have

I(tu) < Io(tu) + %/Rg(l(a:) — 1)pyu’dr — %t” /]Rg (a(z) — 1)|uPdx

tt AL g
+— | (Pu— Pu)u”da
4 Jgs
4 4
= Io(tu) + %/ (I(z) — 1)pyude + tz/ (I(z) — Dyu® dx
R3 R3
1

— Etp /RS (a(z) — 1)|ulPdz.

Thus, choosing u = us(x — Ry) in the inequality above and using (K3), (ay) and
Lemma [3.9] we get

4
I(tue (. — RY)) < Lo (tuo) — tzco/ e Ut B g Nuoe ()P da
R3

tt 5
G0 [, (@) )P
e, | o
p R3
t4
< Too(tuso) — —C’o/ e~ Uzt Raly |tioo ()] *d:
170 s >~

t .
— ZCO /]R3 e B BNG (2)|uoo () [2da
—l—ltngCf,’/ e~mEemlzl=p=0)z] g,
p R3

t* -
< Too(tuss) = 5 Co e 1ot (@) |too (2) P d
R3

+ ltpc2cg/ e~ mRomlz|—p(1=8)|z| 7,.
b R3
Set 1(t) = Ioo(tteo), t € (0,00). Tt is easy to verify that supl(t) = Iso(Uoo) = Meo-

>0
Let do € (0,1 — ), we have

/ emeem|a:|fp(175)\z|dx < C«eme.
R3 B
In addition,

[ et @ @) P = [ G, (@) ()P > O
R3 |z|<1
Hence, we have

t)* 1
sup I(tuso(z — RY)) < Moo — QCeflR + = (t"yPCe ™,
t<t<t” 4 P
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where C represent different constants. Since 0 < I < m, so there exists R > 0 such
that R > R, we get
sup I(tuco(z — RY)) < Moo, VY |y =1
t<t<t!
which yields m < my,. Thus, the proof of Theorem [I.1}(A) is completed.

Proof of Theorem [1.1+(B). Similar to the argument of Theorem [1.1}(A), we
only need to prove for R > 0 large, sup;>q I (tuc(r — R7Y)) < Mmoo uniformly in +.
Clearly, there exist 0 < ¢’ < t” independent of R and v such that

sup I(tuso (z — RY)) < Moo.
t€[0,¢/]U[t"" ,+00)
On the other hand, by (K3), (a2), (b2), Lemma[3.3]and Holder’s inequality, we have
for any o > 0, there exist C';, > 0 such that

sup I(tuso(z — RY))
telt! ]

C t// 4
< sup Lo (tun) + S / ARGy (o) Pda
>0 4 R3

L (¢ 4 R
+ QL [ etlenlg, Ju o) P

]RS

1
+ —(t"\PC, / ey (2)|Pda

D R3

"\q
_MM/ e‘b“*m‘\um(xﬂqu
R3

q

Cs(t')4

< SU-pIoo(tuoo> Y 3( ) / e_bRe_b‘xuuoo(x)‘qdm
t>0 q R3

Cczt//4 ~ _6 2d|z|—=2(1-9)|z
+ DGO (1o, + o) [ emsimesa—ga-ielgy
R3
D (4l
+CW/ emeem|I|*p(1*5)‘wldx_
p R3

Let 6 € (0,min{l — 7,1 — 2}), then

sup I (tuso(z — RYy)) < Moo — Ce R 4 Ce™ 4  Ce™™E,
v <t<t'

where C' represent different constants. Since b < min{m,d}, so there exists R>0

such that R > R, we get

sup I (tuso(z — RY)) < Moo, VY |y|=1.
t<t<t!

which yields m < mq,. Thus, the proof of Theorem [1.1}(B) is completed.

5. PROOF OF THEOREM

In the next, we consider the existence of multiple solutions of problem .

Let h(t) = I(tus(r — RY)), t € (0,00), v € R? with |y| = 1. Form the proof of
Theorem [1.1}(B), we know there exists Ry > 0 such that for R > Ry, there exists
g(R) > 0 satisfying

sup h(t) < Mmoo — €(R) < Mo uniformly in 7.
>0
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For any fixing R and 7, it is easy to check that h(t) attains its maximum at a unique
point t = t.,. Hence, we define a mapping Fr:S? ={y€R3:|y|=1} - M by
FR(fY) = toouoo(x - R’Y)

Immediately we have the following Lemma.

Lemma 5.1. There exists Ry > 0 such that for R > Ry, there exists ¢(R) > 0
satisfying Fr(S?) C {u € M : I(u) < ms — €(R)} uniformly in v € S>.
For u € H, define a map ® : H*(R?) — HY(R3):
1
D(u)(z) = —— lu(y)|dy, VreR3,

|B1(2)| /B, (2)

where |By(z)| is the Lebesgue measure of By(z). Let
1

i(z) = [®(u)(z) — 5 max &(u) ()],

and (3 : HY(R3)\{0} — R3 given by
1 N
Blu) = Tl /RB xt(z)de.

Obviously, B(u) is well defined for all w € H(R3)\{0} and 3(u) has a compact sup-
port in R3. Moreover, 3(u) is continuous in H'(R3)\{0} and satisfies the following
properties.

Lemma 5.2. (i) For anyt # 0 and u € H'(R3)\{0}, B(tu) = B(u).
(i1) For any z € R® and v € H*(R3)\{0}, B(u(x — 2)) = B(u) + 2.

Define a functional J : H!(R?) — R given as follows

1 1 1 1 -
J(u) = f||u||2+f/ I(x)pyu’dr — f/ a(x)|ulPdz — 7/ lulSdx, e H'(R?).
2 4 R3 D Jrs 6 R3
Lemma 5.3. mg := inf J(u) = me is not attained, where

Mo = {u € H'(R*)\{0} : (J'(u),u) = 0}.

Proof. Firstly we show that for any u € My, there exists a unique 0 < 7 < 1 such
that 7u € M. Indeed, by virtue of v € My and Tu € M, we have

||u||2+/ l(x)éuu2dm:/ a(x)|u|pdx—|—/ |u|Sdz, (5.1)
R3 R3 RS

and then

Tp/ a(a:)\u|pdz+7'6/ |u|®dx
R3 R3

(5.2)
< 'rp/ |u|Pdx + 76/ lulSdx = 72||u|* + 74/ pyulda.
R3 R3 R3
From (I3) and I(z) > 1 for any = € R3, it follows that
buuldr < / I(z)pyulde < / I(x)pyu’de. (5.3)
R3 R3 R3
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If > 1, by (5.1), (5.2) and (5.3), we deduce that
Pl + [ @oaidn) = Al + [ dutdo)
R3 R3
> Tp(/ a(x)|ulPdx —|—/ |u|®dx) = 7P (||u||? —|—/ l(z)pyudr),
R3 R3 R3

which yields 7 < 1, this achieves a contradiction. Hence 7 < 1 and the claim holds

true.
For uw € My, using (|5.3), we have that

R RS ot (A [ e
=GP+ G =) [ tsaide+ =g [l
1 1 1 1 - 1 1
S (2_ 2 2 R 2 1 6
> (= Dlrl + (=0t [ daide s (=g [ il
= Io(Tu) — 1(Iéo(Tu),Tu) = Io(TU) > Moo,
p

which implies that mg > M.

Next we prove mg < Meo. Let w, = oo (. — 2,), where z, € R? with |z,| — oco.
We claim that for w, € M., there exists 7, > 1 such that m,w, € My. In fact,
from w,, € M, and 7, w, € My, there holds

wnl?+ [ bwuwtdo= [ Jwipdot [ jwafd
R3 R3 R3

and then

TTZZ/ \wn|pdx+'rfb/ |wn\6dz
R3 R3

27’5/ a(x)|wn\”d:c+7'5/ |wn|6dx
R3 R3

= 2| |2 + 7 / (@) bu, w2 .
Rl}

If 7, < 1, we have
2 Jwlrde [ Juwnlodn) = ol + [ @60, ukde)
R3 R3 R3
> rillwal? + [ bu,wdde) =i [ waPdot [ JualCdo),
R3 R3 R3

which leads to a contradiction with 7,, < 1. Hence 7,, > 1 and the claim holds true.
By the definition of mq and 7,u,, € My, we have

1 1
mo < J(Tawn) = =72 ||uso||® + 773/ Ux) b, w2 da
2 47" Jos

1 1
— 775/ a(x)|wy,|Pdr — 773/ |uoo(x)|6dx.
p R3 6 R3
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By Lebesgue dominated convergence Theorem, we deduce that

lim 1(2) o, widr = lim l(m + 2) Pu [Uoo () |2 d

n—00 Jp3 n— 00

/ b (@)oo () 2,

lim a(x)|wy,|Pde = lim a(x + zn)|too (z)[Pdx

n—o0 Jps3 n—o0 Jp3

/R oo (@) Pz

If 7, = 1, we get mo < limy,—s 00 J(Enwy) = Ioo(Uno) = Moo, form which we see that
My = Meo. LThus we only need to prove 7, — 1. By m,w, € My, with 7,, > 1, we
have

il + [ 10)0u, whdo)
R3
273||wn||2+7;§/ l(m)¢wnwidx:75/ a(x)\wdeTE/ (P
R3 R3 R3
> TS(/ a(:c)|wn|pd:v—|—/ |wn|6dx).
R3 R3
Thus, by (5.4), we deduce that

1< rP- 4 - ||wnH JFfRs ¢wn Qdm _ ||U00||2+IR3 g?)uoc(x)|uoo(x)|2dz+0(1)
= Jao a@)|wnlPda + fo wal0dz — foy ftee (@)[Pdz + 0(1) + fio [tioo (x)[Fda”

which yields 7,, — 1 by using e € Moo

Next we prove myg is not attained. Assume by contradiction that there exists
uy € My such that mg = J(up). We claim J'(ug) = 0. Set G(u) = (J'(u),u), By
the Lagrange multipliers Theorem, we obtain A € R such that .J’(ug) —AG' (ug) — 0,
similar to the of proof of Theorem (B), we have J'(ug) = 0. Note that if ug
is sing-changing, we see that J(ug) > 2my, a contradiction. Thus we may assume
that ug > 0 in H'(R3) and the maximum principle implies that ug is positive.

From the above proof, we see that for uy € My, there exists a unique 75 < 1 such
that Toug € M. Thus,

Moo S Ioo (TOUO)

1
= IOO(T()Uo) — I;(I(;O(T()’LL()),T()U())

1 1 1 1
=G~ Dol + G = 2 [ duudde+ 6) [, Irowlda
1 1 1 1 1
f<§—f>||uo||2+<i—];>/wu oo+ = o) [ fulds

= J(uo) %(J/(Uo)auo) = J(uo) = mo.
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From mg = my, it follows that

1 1 1 1 - 1 1
(5= Dlrwoll + G =) [ duide +G =9 [ molds
11 , 11 ) 11 .
= (- = o l@)buguide + (= — - da,
= Dol +G =) [ 1o+ =) [ fulde
that is
ol + 7 [ buguido 7§ [ Juolds
R3 R3
= HuOHZ—i—/ l(x)qbuOugda?—&—/ luo|®dax.
R3 R3
Thus
(=l + [ 1) = Douidda + [ (6= bu)uida
# =) [ buuddot (1= [ fuolde = (1= 7)ol
R3 R3
[ @) = D)6y + buguddo + (1) [ duudda
R3 R3
+(1—Tg)/ o6z = 0,
R3
by 790 <1, so

[ 1@ =)0, + i =0,

this is a contradiction with ug is positive, [(z) > 1 and meas{z € R3 : [(z) > 1} >
0. (]

Lemma 5.4. There exists pg > 0 such that for u € My satisfying J(u) < moo + po,
there holds |5(u)| > 0.

Proof. Assume by the contrary that there exists {u,} C My such that J(u,) —
Moo = Mg and |S(u)| = 0. Similar to the proof Theorem [1.1} we can derive by the
Lagrange multipliers Theorem that J'(u,) — 0. We omit the proof here. Similar
to the proof Lemma [3.4] we obtain u, — u weakly in H, J'(u) = 0, and

Moo — J(u) = Io(vy) + 0(1) and I (v,) = o(1), (5.5)

where v, = u,, — u.

For the sequence {v,}, two cases may occur: |lv,|, — 0 for any r € (2,6), or
there y,, € R?® with |y,| — oo such that v, (. + y,) — v # 0 weakly in H'(R3). By
virtue of J'(u) = 0, we can deduce that J(u) > 0. From Lemma we see that
Moo < %S%. Thus me, — J(u) < %S%.

If ||lon |l — O for any r € (2,6), by (3.33), we have mo — J(u) = 3|v,|*> —
Hlvall§ + o(1) and [lv,[|* = [Jva]|§ = o(1). Up to a subsequence, we may assume
that |lv,||*> — [ and then ||v,||¢ — I. If I > 0, by the definition of S, we get
I > S%. S0 me — J(u) = slonll? = gllvall§ = 51 > %537 a contradiction with
Moo — J(u) < %S%. Thus, [ = 0 and then u,, — u in HY(R3), we get mg = J(u),



19
a contradiction with myg is not attained. Therefore, v, (. + y,) — v # 0 weakly in
H(R?). Similar to the proof Lemma we can deduce that
Moo — J (1) = Ino(Vn (- + yn)) + 0o(1),
I (v (- + yn)) = o(1).

Hence, I (v) = 0 and by using Fatou’s Lemma, we have that

Moo — J(u) = Io (Vn (- + Yn)) — E[Iéo(”n( +Yn)), vn(- +yn)] +o(1)

= )P+ G =) [ e+ P

1
+ 7/ |(Un (. + yn)|®dz + o(1)
12 Jas
1 1 1 1
> = 2 - _ P - 6
> 3l + G2 [ Pt g [ pitas
1
= Io(v) — E(I!)o(v)?v)) = I (V) 2 Meo.

Combining with J(u) > 0, we get J(u) = 0 and then v, (. + yn) = Un(. + yn) = v
in H'(R3). By Lemma we have

B(o(@) + 0(1) = Blun(w +9a)) = Blun) — 1 = ~n.
Which yields |5(v(z))| = oo, this leads to a contradiction. 0

Lemma 5.5. There exists g > 0 small such that for p € (0, o), we have |B(u)| > 0
forue{ue M:I(u) <me}.
Proof. Let u € M be such that I(u) < meo, then we have

Moe > 1) = Tu) = 5 (I'(w)0) > (5.6)

Using the conditions (af), (b7) and u € M, we get for any € > 0, there exists Cz > 0
such that

P < [ a@lulds+u [ s@ldvdo+ [ Julds
R3 R3 R3

< (14 p) [5/ \u|2dx+C5/ |u|6dx]
R3 R3

Choose € € (0, 1), we have 3 ||ul[? < (1 + p)Ce [gs |ul®dz for p € (0,1). In fact, if
e€(0,4)and pu € (0,1), we get 0 < (1+p)e < 3, and then 3 — (14 p)e > 0. Thus,
there holds true

(5.7)

1

1
3 [ IvuPde (= o) [ P>
2 ]Rs 2 ]RS

that is
1
Sl < fulP = @+ e [ JuPds
R3

by (5.7)), we have

Hw2—u+m6/'w%xsu+wx%/|m%%
R3 R3
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SO
1
4wﬁsu+wxz/|m%m
P -

Thus, by the definition of S, there exists Ly > 0 independent of u € (0, 1) such that
L
lu|Sde > —=2 . (5.8)
R (L+p)2

Similar to the argument of Lemma [5.3] we can deduce that for any v € M, there
exists a unique 7(u) > 1 such that 7(u)u € My. Then

Pl + [ 1@)onids

> P)ulf + 7 [ 1@)itde = [ a@llPde+ 1) [ s
T6 u u 6 i

> 1) [ fulda,

2 t, 2
which implies that 72(u) < lell ™+ Jes l(?%u de Together with (5.6 and (5.8]), we
fR3 |u|®dx

derive there exists C' > 0 independent of 1 € (0,1) such that
1<72(u) <C(1+p)s. (5.9)
Note that for u € M with I(u) < My, thus

Moo > I(u) = §1>110) I(tw) > I(t(u)u) = J(t(u)u) — utqf]u) /]R3 b(x)|u|?dz.

By (5.6) and (5.9)), there exists a small o € (0,1) such that p € (0, po),

t9(u)
J(t(u)u) < Mmoo + MT b(x)|u|%dz < meo + po-
R3

Form Lemma [5.4] we have |3(¢(u)u)| > 0. Hence, Lemma [5.2] implies that |3(u)| >
0. O

Lemma 5.6. For u € (0,p0), define G : {u € M : I(u) < moo} — S? by G(u) =

‘ggzg‘ Then for R > Ry and p € (0, po), the map

GoFg: 52 — SQ,y — GO(FR(y))
is homotopic to the identity.

Proof. Similar to the argument of Proposition 2.9 in [I], define the map ¢(6,vy) :
[0,1] x S? — S? by

G((1—20)Fr(y) + 20us(z — Ry)), 6€0,3),
C(0,y) = G(uoo(x—ﬂ%e)y% 0€l3,1),
Y, 0=1.

By the definition of G and Lemma it is not difficult to check that ((0,y) €
C([0,1] x S2,5%), €(0,y) = Go (Fr(y)) for y € S? and ((1,y) =y for y € S%. The
proof is completed. [
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Proof of Theorem [1.2l Form Lemma[2.6] Lemmal[5.I]and Lemmal[5.6] we have

that for R > Ry and p € (0, uo), there holds

cat({u € M : I(u) < me —e(R)}) > 2.

Then by Lemma and Lemma [2.5] we see that I admits at least two nontrivial
critical point in {u € M : I(u) < moo}.
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