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Abstract. In this paper, we study the following nonlinear Schrödinger-Bopp-
Podolsky system:{

−∆u+ u+ l(x)φu = a(x)|u|p−2u+ µb(x)|u|q−2u+ |u|5, in R3,

−∆φ+ a2∆2φ = l(x)u2, in R3,

where p, q ∈ (4, 6), µ > 0, l(x), a(x) and b(x) are nonnegative continuous

functions. Under some certain assumptions, we prove the above system have

ground state and multiple solutions by using variational.

1. Introduction

In recent years, the following Schrödinger-Bopp-Podolsky system was first intro-
duced in [18] {

−∆u+ ωu+ q2φu = |u|p−2u, in R3,
−∆φ+ a2∆2φ = 4πu2, in R3,

(1.1)

where u, φ : R3 → R, ω, a > 0, q 6= 0. The system is the result of the coupling
of Schrödinger field ψ = ψ(t, x) and its electromagnetic field in the Bopp-Podolsky
electromagnetic theory and considers standing wave ψ(t, x) = eiωtu(x) in the purely
electrostatic case. The Bopp-Podolsky theory is a second order gauge theory for
the electromagnetic field, it was developed by Bopp [2] and then independently by
Podolsky [25] and it was used to solve the ”infinity problem” that appears in the
Maxwell theory, we refer the readers to see [3, 4, 5, 6, 24] and the references therein.

Moreover the Bopp-Podolsky theory also was an effective theory for short dis-
tances and for large distances it is experimentally indistinguishable from the Maxwell
one. For more physical details readers can see [7, 8, 9, 10, 13, 14, 19] and the refer-
ences therein. For the operator −∆ + ∆2, it appears also in different mathematical
and physical domains(see [11, 20] and so on).

In [18], Pietro d’Avenia prove that problem (1.1) existence and nonexistence
results depending on the parameters p, q. Moreover they also show that, in the
radial case, the solutions we find tend to solutions of the classical Schrödinger-
Poisson system as a→ 0. They also showed that, if ρ is the distribution density of
the given charge, then the electrostatic potential φ satisfies the following equation

−∆φ = ρ, (1.2)
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if ρ = 4πδx0
, with x0 ∈ R3, the fundamental solution of (1.2) is E(x−x0) = 1

|x−x0|
and the electrostatic energy is E(E) = 1

2

∫
R3 |∇E(x)|2 = +∞. Thus, in the Born-

Infeld theory, (1.2) is replaced by −div( ∇φ
(1−|∇φ|2)

1
2

) = ρ; In Bopp-Podolsky theory,

it is replaced by −∆φ + a2∆2φ = ρ. Moreover, we know that K(x − x0) is the
fundamental solution of the equation

−∆φ+ a2∆2φ = 4πδx0
,

where

K(x) =
1− e−

|x|
a

|x|
, lim

x→x0

K(x− x0) =
1

a
.

Its energy is

εBP (κ) =
1

2

∫
R3

|∇K|2 +
1

2

∫
R3

|∆K|2 < +∞,

more details in [18].
After that, Gaetano and Kaye [21] study prove, by means of the fibering ap-

proach, that the system (1.1) has no solutions at all for large values of q′s, and has
two radial solutions for small q′s. They give also qualitative properties about the
energy level of the solutions and a variational characterization of these extremals
values of q.

In [15], Chen Sitong and Tang Xianhua deals with the following nonlinear Schrödinger-
Bopp-Podolsky system:{

−∆u+ V (x)u+ φu = µf(u) + u5, in R3,
−2∆φ+ a2∆2φ = 4πu2, in R3,

where a > 0, V (x) ∈ C(R3, [0,∞)) with V∞ = lim|y|→∞ V (y) ≥ supx∈R3 V (x) > 0,

and f ∈ C(R,R) satisfying
∫ t

0
f(s)ds ≥ tp with p ∈ (4, 6) for all t ≥ 0. By using

some new analytic techniques and new inequalities, they prove that the above
system admits ground state solutions for all µ > 0 if p ∈ (4, 6); for all µ > µ0 if
p ∈ (2, 4] where µ0 is a positive constant determined by a, V∞ and p.

In [27], Zhu Yuting, Chen Chunfang and Chen Jianhua study the following non-
linear Schrödinger-Bopp-Podolsky system:{

−∆u+ V (x)u+ qφu = f(u), in R3,
−2∆φ+ a2∆2φ = 4πu2, in R3,

where a > 0, q > 0 and V ∈ C(R3,R). By means of the variational methods,
author prove the existence of infinitely many nontrivial solutions, the existence of a
ground state solution for f(x, u) = |u|p−2u+h(u)u with p ∈ [4, 6) and the existence
of at least one positive solution for f(x, u) = p(x)|u|5 + µ|u|p−2u with p ∈ (4, 6)
under some certain assumptions.

Inspired by [28], in this paper, we consider the following nonlinear Schrödinger-
Bopp-Podolsky system::{

−∆u+ u+ l(x)φu = a(x)|u|p−2u+ µb(x)|u|q−2u+ |u|5, in R3,
−∆φ+ a2∆2φ = l(x)u2, in R3,

(1.3)

where p, q ∈ (4, 6), a > 0 and µ > 0 is a parameter, l(x), a(x) and b(x) satisfy the
following conditions:
(l?1) l(x) ∈ C(R3), l(x) ≥ 0 and lim

|x|→∞
l(x) = l∞ > 0;

(l?2) there exist C0 > 0 and l > 0 such that l(x) ≤ l∞ − C0e
−l|x| for all x ∈ R3;
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(l?3) there exist C1 > 0 and d > 0 such that l(x) ≤ l∞ + C1e
−d|x| for all x ∈ R3;

(a?1) a(x) ∈ C(R3), a(x) ≥ 0 and lim
|x|→∞

a(x) = a∞ > 0;

(a?2) there exist C2 > 0 and m > 0 such that a(x) ≥ a∞ − C2e
−m|x| for all x ∈ R3;

(b?1) b(x) ∈ C(R3), b(x) ≥ 0 and lim
|x|→∞

b(x) = 0;

(b?2) there exist C3 > 0 and b > 0 such that b(x) ≥ C3e
−b|x| for all x ∈ R3.

The following is the main result of problem (1.3).

Theorem 1.1. (A) Assume that l(x), a(x) and b(x) satisfy (l?1), (l?2), (a?1), (a?2)
and (b?1) with 0 < k < m < p. Then problem (1.3) admits a positive ground state
solution.
(B) Let m < p and d < 2. Assume that l(x), a(x) and b(x) satisfy (l?1), (l?3), (a?1)-
(a?2) and (b?1)-(b?2) hold with b < min{m, d}. Then problem (1.3) admits a positive
ground state solution.

Theorem 1.2. Assume the assumptions of Theorem 1.1-(2) hold with l(x) ≥ l∞,
a(x) ≤ a∞ and meas{x ∈ R3 : l(x) ≥ l∞} > 0. Then there exists µ0 > 0 such that
for any µ ∈ (0, µ0), problem (1.3) admits at least two nontrivial solutions.

Remark 1.3. • To obtain the existence of ground state solutions of (1.3), there
will be several difficulties at present. On the one hand, because of the presence of
the nonlocal term, we have to need analyze the influence of φ and a(x)|u|p−2u +
µb(x)|u|q−2u + |u|5. On the other hand, it should be pointed out that the Sobolev
embedding H1(R3) ↪→ Lr(R3) 2 ≤ r ≤ 6(see Section 2) is not compact.
• To the best of our knowledge, there are few papers on the multiplicity solutions
for system (1.3). Inspired by [1], we construct two mappings:{

FR : S2 = {y ∈ R3 : |y| = 1} → {u ∈M : I(u) ≤ m∞ − ε(R)},
G : {u ∈M : I(u) < m∞} → S2,

where more precisely see Section 5. So that G◦FR homotopic to the identity. Using
the theory of Lusternik-Schnirelman category, we will establish the existence of two
nontrivial solutions for system (1.3). Using the ideas in reference [1], it is essential
to construct maps FR and G using the definitions and properties of barycenter map
in [16]. However, the barycenter map in [16] cannot be applied directly here because
(1.3) is a different problem. In this paper, the use of the barycenter map is related
with the critical term, therefore, the multiple solutions obtained of system (1.3) are
different from those obtained by barycenter map in reference [17].

For simplicity, we give the following notations.

Remark 1.4. • ‖u‖s := (
∫
R3 |u|sdx)

1
s , 1 ≤ s ≤ +∞.

• H−1(R3) denotes the dual space of H1(R3).
• C and Ci denotes universal positive constant. (possibly different)
• Bρ(x) denotes the ball of radius ρ center at x.
• S denotes the best Sobolev constant:

S = inf
u∈D1,2(R3)\{0}

∫
R3 |∇u|2dx

(
∫
R3 |u(x)|6dx)

1
3

The paper is organized as follows. In Section 2, we’re going to introduce the
workspace and present some preliminaries results. In Section 3, We will establish
the variational framework and consider the limit problem. In Section 4, we will
prove Theorem 1.1. In Section 5, we will prove Theorem 1.2.
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2. preliminary lemmas

Let

H1(R3) :=
{
u ∈ L2(R3) : ∇u ∈ L2(R3)

}
,

in this case, the inner product and norm are defined as

(u, v) =

∫
R3

(
∇u∇v + uv

)
dx,

‖u‖ =
(∫

R3

(
|∇u|2 + u2

)
dx
) 1

2

,

H1(R3) is a Hilbert space and H1(R3) ↪→ Lp(R3) (p ∈ [2, 6]), H1(R3) ↪→↪→
Lqloc(R3) (q ∈ [1, 6))(see Theorem 1.8 and Theorem 1.9 of [26]).

And denotes the Sobolev space

D1,2(R3) :=
{
u ∈ L6(R3) : ∇u ∈ L2(R3)

}
,

with the corresponding norm

‖u‖D1,2 =
(∫

R3

|∇u|2dx
) 1

2

,

is a Hilbert space.
Let D be the completion of C∞c (R3) with respect to the norm ‖ · ‖D induced by

the scalar product

(u, v)D =

∫
R3

∇u∇vdx+ a2

∫
R3

∆u∆vdx,

Clearly, D is a Hilbert space continuously embedded into D1,2(R3) and therefore
in L6(R3).

Now we present some preliminary results, they were obtained in [18].

Lemma 2.1. (see Lemma 3.1 in [18]) The space D is continuously embedded in
L∞(R3).

Lemma 2.2. (see Lemma 3.2 in [18]) The space C∞c (R3) is dense in

A := {φ ∈ D1,2(R3) : ∆φ ∈ L2(R3)}

normed by
√

(φ, φ)D and therefore D = A

Similar to the proof in [18], it can be proved that for every u ∈ H1(R3) there
is a unique solution φu ∈ D of the second equation in the system (1.3), that is
satisfying

−∆φu + a2∆2φu = l(x)u2. (2.1)

Moreover it turns out that

φu(x) = K ∗ lu
2

4π
=

1

4π

∫
R3

1− e−
|x−y|
a

|x− y|
l(y)u2(y)dy, (2.2)

where

K(x) =
1− e−

|x|
a

|x|
.
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Lemma 2.3. (see Lemma 3.4 in [18]) For every u ∈ H1(R3), we have:
(i) for every y ∈ R3, φu(·+y) = φu(·+ y);
(ii) φu ≥ 0;
(iii) φu ∈ D;
(iv) ‖φu‖6 ≤ C‖u‖2;
(v) if vn ⇀ v in H1(R3), then φvn ⇀ φv in D.

In the next, we give a definition of Lusternik-Schnirelman category.

Definition 2.4. (i) For a topological space X, we say a non-empty,closed subset
A ⊂ X is contractible to a point in X if and only if there exist a continuous mapping
η : [0, 1]×A→ X such that for some x0 ∈ X,
(a) η(0, x) = x for all x ∈ A,
(b) η(1, x) = x0 for all x ∈ A.
(ii) We define

cat(X) = min{k ∈ N :there exist closed subsets A1, . . . , Ak ⊂ X such that

Ai is contractible to a point in X for all i and

k⋃
i=1

Ai = X}

We say cat(X) =∞ if there do not exist finitely many closed subsets A1, . . . , Ak ⊂
X such that Ai is contractible to a point in X for all i and

⋃k
i=1Ai = X.

We need the following two important lemmas. See Proposition 2.4 and Lemma
2.5 in [1].

Lemma 2.5. Suppose that M is a Hilbert manifold and Ψ ∈ C1(M,R). Assume
that there exist c0 ∈ R and k ∈ N such that Ψ(u) satisfies the Palais-Smale condition
for c ≤ c0 and cat({u ∈ M : Ψ(u) ≤ c0}) ≥ k. Then Ψ(u) has at least k critical
points in {u ∈M : Ψ(u) ≤ c0}.

Lemma 2.6. Let X be a topological space. Suppose that there exist two continuous
mapping

F : S2 = {y ∈ R3 : |y| = 1} → X, G : X → S2,

such that G◦F is homotopic to identity id : S2 → S2, that is, there is a continuous
mapping ζ : [0, 1] × S2 → S2 such that ζ(0, x) = (G ◦ F )(x) for all x ∈ S2 and
ζ(1, x) = x for all x ∈ S2. Then cat(X) ≥ 2.

3. Functional setting and limit problem

Firstly, in this Section, since lim|x|→∞ l(x) = l∞ > 0, lim|x|→∞ a(x) = a∞ > 0
and lim|x|→∞ b(x) = 0. For simplicity, we assume K∞ = 1 and a∞ = 1. Substitut-
ing (2.2) into the problem (1.3), the first equation in the system (1.3) is reduced to
an equation containing an variable u:

−∆u+ u+ l(x)φuu = a(x)|u|p−2u+ µb(x)|u|p−2u+ u5. (3.1)
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In order to find weak solutions to (3.1), we look for critical points of the functional
I(u) : H1(R3)→ R associated with (3.1) which is defined by

I(u) =
1

2

∫
R3

(|∇u|2 + u2)dx+
1

4

∫
R3

l(x)φuu
2dx

− 1

p

∫
R3

a(x)|u|pdx− µ

q

∫
R3

b(x)|u|qdx− 1

6

∫
R3

|u|6dx.

In order to prove the compactness, we need to consider the following problem at
infinity with (3.1) is:

−∆u+ u+ φ̂uu = |u|p−2u+ |u|5, u > 0, (3.2)

where φ̂u ∈ D is the unique solution to problem

−∆φ+ a2∆2φ = u2.

The functional associated with (3.2) is given by

I∞(u) =
1

2

∫
R3

(|∇u|2 + u2)dx+
1

4

∫
R3

φ̂uu
2dx

− 1

p

∫
R3

|u|pdx− 1

6

∫
R3

|u|6dx.

Let
m = inf

u∈M
I(u), m∞ = inf

u∈M∞
I∞(u),

where

M = {u ∈ H1(R3)\{0} : (I ′(u), u) = 0}, M∞ = {u ∈ H1(R3)\{0} : (I ′∞(u), u) = 0}
are Nehari manifolds correspond to the functional I and I∞, respectively.

Lemma 3.1. m∞ satisfies

m∞ <
1

3
S

3
2 .

Proof. We define

vε(x) =
ψ(x)ε

1
4

(ε+ |x|2)
1
2

,

where ψ ∈ C∞0 (B2r(0)) such that 0 ≤ ψ(x) ≤ 1 and ψ(x) = 1 on Br(0). Then for
ε > 0 small(see [28]), ∫

R3

|∇vε(x)|2dx = K1 +O(ε
1
2 ), (3.3)∫

R3

|vε(x)|6dx = K2 +O(ε
3
2 ), (3.4)

where S = K1

K
1
3
2

.

∫
R3

|vε(x)|pdx =


O(ε

6−p
4 ), p ∈ (3, 6);

O(ε
3
4 | log ε|), p = 3;

O(ε
p
4 ), p ∈ [1, 3).

(3.5)

Moerover, by the Hardy-Littlewood-Sobolev inequality (see [23]) gives∫
R3

φ̂uu
2dx ≤

∫
R3

∫
R3

|u(x)|2|u(y)|2

|x− y|
dxdy ≤ 8 3

√
π

3 3
√
π
‖u‖412

5
. (3.6)
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And similar to Theorems 4.1-4.2 in [26], we can see thatm∞ = c∞ = inf
γ∈Γ

max
t∈[0,1]

I∞(γ(t)),

where Γ = {γ ∈ C([0, 1], H) : γ(0) = 0, I∞(γ(1)) < 0} and

m∞ = c∞ = inf
u∈H\{0}

max
t≥0

I∞(tu). (3.7)

By (3.7), we see that c∞ ≤ sup
t≥0

I∞(tvε). Thus we only need to prove sup
t≥0

I∞(tvε) <

1
3S

3
2 for ε > 0 small.

By (3.6) and H1(R3) ↪→ Lp(R3) (p ∈ [2, 6]), we obtain that

I∞(tvε) =
1

2
t2‖vε‖2 +

1

4
t4
∫
R3

φ̂vεv
2
εdx−

tp

p

∫
R3

|vε|pdx−
t6

6

∫
R3

|vε|6dx

≤ 1

2
t2‖vε‖2 + Ct4‖vε‖4 −

1

6
t6‖vε‖66.

(3.8)

Form (3.3)-(3.5), there exists ε1 > 0 small enough such that

‖vε‖2 :=

∫
R3

(|∇vε|2 + v2
ε)dx ≤ K1 +O(ε

1
2 ) +O(ε

1
2 ) ≤ 3

2
K1, (3.9)

‖vε‖66 = K2 +O(ε
3
2 ) ≥ 1

2
K2, (3.10)

for ε ∈ (0, ε1). Thus, there exist a small t1 > 0 and a large t2 > 0 independent of
ε ∈ (0, ε1) such that

sup
t∈[0,t1]∪[t2,+∞)

I∞(tvε) <
1

3
S

3
2 . (3.11)

Form (3.3)-(3.6), we get

sup
t∈[t1,t2]

I∞(tvε) ≤ sup
t≥0

[
1

2
t2
∫
R3

|∇vε|2dx−
1

6
t6
∫
R3

|vε(x)|6dx]

+ C‖vε‖22 + C‖vε‖412
5
− C‖vε‖pp

=
1

3
S

3
2 +O(ε

1
2 )− Cε

6−P
4 .

(3.12)

In view of p ∈ (4, 6), so we see that 6−p
4 < 1

2 . By choosing ε ∈ (0, ε1) small, we get

sup
t∈[t1,t2]

I∞(tvε) <
1

3
S

3
2 . (3.13)

By (3.11) and (3.13), we have

m∞ <
1

3
S

3
2 . (3.14)

�

Lemma 3.2. The problem (3.2) admits a positive ground state solution u∞ ∈
H1(R3) such that I ′∞(u∞) = 0 and m∞ is attained by u∞.

Proof. Firstly, it is easy check that I∞ possesses a mountain pass geometry. Since
the proof is standard, we omit it here. Applying the mountain pass theorem, there
exists a sequence un ∈ H1(R3) such that

I∞(un)→ m∞ = inf
γ∈Γ

max
t∈[0,1]

I∞(γ(t)), (3.15)

where Γ = {γ ∈ C([0, 1], H) : γ(0) = 0, I∞(γ(1)) < 0}. And

‖I ′∞(un)‖(1 + ‖un‖)→ 0. (3.16)
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Then, we have

I∞(un)− 1

4
(I ′∞(un), un) =

1

4
‖un‖2 + (

1

4
− 1

p
)

∫
R3

|un|pdx+
1

12

∫
R3

|un|6dx

≥ 1

4
‖un‖2 +

1

12
‖un‖66,

(3.17)

which yields the boundedness of {un}. Next, we claim that

lim sup
n→∞

sup
y∈R3

∫
B1(y)

|un|2dx > 0. (3.18)

If not, then Lions’ concentration compactness principle [[26], Lemma 1.21] implies
that un → 0 in Lr(R3) for all r ∈ (2, 6). Thus, by the Hardy-Littlewood-Sobolev
inequality (see [23]) show that∫

R3

φ̂uu
2dx ≤

∫
R3

∫
R3

|u(x)|2|u(y)|2

|x− y|
dxdy ≤ 8 3

√
π

3 3
√
π
‖u‖412

5
= o(1). (3.19)

Then, we have

o(1) = (I ′∞(un), un) = ‖un‖2 − ‖un‖66 + o(1), (3.20)

and

m∞ + o(1) = I∞(un) =
1

2
‖un‖2 −

1

6
‖un‖66 + o(1). (3.21)

Since {un} is bounded in H1(R3) and m∞ > 0, then up to a subsequence, we may
assume that

‖un‖2 → l > 0, ‖un‖66 → l > 0. (3.22)

By (3.22) and the Sobolev inequality, we can see that

l = lim
n→∞

‖un‖2 ≥ lim
n→∞

‖∇un‖22 ≥ lim
n→∞

S‖un‖26 = Sl
1
3 . (3.23)

Then, by Lemma 3.1 and (3.21), we get that

1

3
S

3
2 > m∞ =

1

3
l ≥ 1

3
S

3
2 , (3.24)

which is a contradiction, so (3.18) holds. Thus there exist δ > 0 and a sequence
{yn} ⊂ R3 such that

∫
B1(yn)

|un|2dx > δ. Set ūn(x) = un(x+ yn), then

I∞(ūn)→ m∞, I ′∞(ūn)→ 0. (3.25)

And ∫
B1(0)

|ūn|2dx > δ, (3.26)

for all n ∈ N. Therefore, there exists u∞ ∈ H1(R3)\{0} such that, passing eventu-
ally to a further subsequence,

ūn ⇀ u∞ inH1(R3), (3.27)

ūn → u∞ inLrloc(R3) r ∈ [1, 6), (3.28)

ūn → u∞ a.e.inR3. (3.29)
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A standard argument shows that I ′∞(u∞) = 0 and I∞(u∞) ≥ m∞. Then, by Fatous
lemma, we can see that

m∞ = lim
n→∞

[I∞(ūn)− 1

4
(I ′∞(ūn), ūn)]

= lim
n→∞

{1

4
‖ūn‖2 + (

1

4
− 1

p
)‖ūn‖pp +

1

12
‖ūn‖66}

≥ 1

4
‖u∞‖2 + (

1

4
− 1

p
)‖u∞‖pp +

1

12
‖u∞‖66

= I∞(u∞)− 1

4
(I ′∞(u∞), u∞) = I∞(u∞) ≥ m∞.

(3.30)

Hence, we have I ′∞(u∞) → 0 and I∞(u∞) = m∞. Moreover, If u∞ sign-changing,
then I∞(u∞) ≥ 2m∞, a contradiction. Thus, we may assume u∞ ≥ 0 in H1(R3),
then the maximum principle implies u∞ is positive.

�

Lemma 3.3. For any δ > 0, there exists Cδ > 0 such that

u∞(x) ≤ Cδe−(1−δ)|x|.

Proof. By elliptic estimates(see [22]), we have u∞(x) ∈ L∞(R3) and

u∞(x)→ 0, |x| → ∞,

so, for any δ > 0, there exists Dδ > 0 such that

1− up−2
∞ (x)− u4

∞(x) ≥ (1− δ)2, |x| ≥ Dδ. (3.31)

In addition, u∞(x) satisfies that

−∆u∞(x) + u∞(x) + φ̂u∞(x)u∞(x) = |u∞(x)|p−2u∞(x) + |u∞(x)|5, (3.32)

in view of φ̂u∞(x) ≥ 0, lim|x|→∞ u∞(x) = 0, (3.31) and (3.32), we can see that

−∆u∞(x) + (1− δ)2u∞(x) ≤ 0, |x| ≥ Dδ,

and there exists Rδ > 0 such that

u∞(x) ≤ Rδ, |x| = Dδ.

Let v(x) = Rδe
−(1−δ)(|x|−Dδ), directly computation, we deduce that

−∆v(x) + (1− δ)2v(x) ≥ 0, |x| 6= 0.

Therefore the maximum principle implies that u∞(x) ≤ Rδe−(1−δ)(|x|−Dδ) for |x| ≥
Dδ. Hence u∞(x) ≤ max{Rδ, ‖u∞‖∞}e−(1−δ)(|x|−Dδ) = Cδe

−(1−δ)|x|.
�

Lemma 3.4. Let {un} ⊂ H1(R3) be a bounded sequence such that I(un) → c ∈
(0,m∞) and I ′(un) → 0. If m∞ < 1

3S
3
2 , then {un} admits a strongly convergent

subsequence in H1(R3).

Proof. Since the sequence {un} is bounded, there exists u ∈ H1(R3)\{0} such that

un ⇀ u inH1(R3),

un → u inLsloc(R3) (2 < s < 6),

un → u a.e.inR3.
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Then I ′(u) = 0. Set vn = un − u. By Brezis-Lieb lemma in [12],

‖vn‖2 = ‖un‖2 − ‖u‖2 + o(1), (3.33)

‖vn‖66 = ‖un‖66 − ‖u‖66 + o(1), (3.34)

Similarly, in view of lim|x|→∞ a(x) = 1, lim|x|→∞ b(x) = 0 and vn → 0 in Lsloc(R3)(2¡s¡6),
we have ∫

R3

a(x)|un|pdx−
∫
R3

a(x)|u|pdx =

∫
R3

|vn|pdx+ o(1), (3.35)∫
R3

b(x)|un|qdx−
∫
R3

b(x)|u|qdx = o(1). (3.36)

By Lemma 5.1 in [27], lim|x|→∞ l(x) = 1 and Hölder’s inequality, it is easy to
deduce that ∫

R3

φ̂vnv
2
ndx =

∫
R3

l(x)φunu
2
ndx−

∫
R3

l(x)φuu
2dx+ o(1). (3.37)

In view of (3.33)-(3.37), we have that

c− I(u) = I∞(vn) + o(1). (3.38)

By using Proposition 5.1.1 in [22], we see that u ∈ L∞(R3). Then by Lemma 8.9
and Lemma 8.1 in [26] with lim

|x|→∞
a(x) = 1, lim

|x|→∞
b(x) = 0, we have that

|
∫
R3

(u5
n − u5 − v5

n)ϕdx| = o(1)‖ϕ‖, ∀ϕ ∈ H1(R3),

|
∫
R3

[a(x)(|un|p−2un − |u|p−2u)− |vn|p−2vn]ϕdx| = o(1)‖ϕ‖, ∀ϕ ∈ H1(R3),

|
∫
R3

b(x)(|un|q−2un − |u|q−2u)ϕdx| = o(1) = o(1)‖ϕ‖, ∀ϕ ∈ H1(R3).

(3.39)

By Lemma 5.1 in [27] and similar to the of proof of (3.37), we can see that

|
∫
R3

K(x)(φunun − φuu)ϕdx−
∫
R3

φ̂vnvnϕdx| = o(1)‖ϕ‖, ∀ϕ ∈ H1(R3). (3.40)

Hence, by (3.39)-(3.40), there holds

I ′∞(vn) = o(1). (3.41)

We claim vn → 0 in H1(R3). Two cases occur: either

lim
n→∞

sup
y∈R3

∫
B1(y)

|vn|2dx = 0,

or there exists γ > 0 such that

lim
n→∞

sup
y∈R3

∫
B1(y)

|vn|2dx ≥ γ.

Thus, either ‖vn‖r → 0 for any r ∈ (2, 6) through using vanishing Lemma, or
there yn ∈ R3 with |yn| → ∞ such that vn(. + yn) ⇀ v 6= 0 weakly in H1(R3).
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If vn(. + yn) ⇀ v 6= 0 weakly in H1(R3), from (3.38) and (3.41), it follows that
c− I(u) = I∞(vn(.+ yn)) + o(1) and I ′∞(vn(.+ yn)) = o(1). Thus I ′∞(v) = 0 and

c− I(u) = I∞(vn(.+ yn))− 1

4
[I ′∞(vn(.+ yn)), vn(.+ yn)]

=
1

4
‖(vn(.+ yn)‖2 + (

1

4
− 1

p
)

∫
R3

|(vn(.+ yn)|pdx

+
1

12

∫
R3

|(vn(.+ yn)|6dx+ o(1),

form which we get

c ≥I(u) +
1

4
‖v‖2 + (

1

4
− 1

p
)

∫
R3

|v|pdx+
1

12

∫
R3

|v|6dx

= I(u) + I∞(v)− 1

4
(I ′∞(v), v)) = I(u) + I∞(v).

By the definition of m∞, we have I∞(v) ≥ m∞. Since I ′(u) = 0, we have

I(u) = I(u)− 1

4
(I ′(u), u)

=
1

4
‖u‖2 + (

1

4
− 1

p
)

∫
R3

a(x)|u|pdx

+ (
1

4
− 1

q
)µ

∫
R3

b(x)|u|qdx+
1

12

∫
R3

|u|6dx ≥ 0

which leads to a contradiction with c < m∞. Thus ‖vn‖Lr → 0 for any r ∈ (2, 6).
By (3.38) and (3.41), we have

c− I(u) =
1

2
‖vn‖2 −

1

6
‖vn‖66 + o(1),

‖vn‖2 − ‖vn‖66 = o(1).

Up to a subsequence, we may assume that ‖vn‖2 → l. Thus ‖vn‖66 → l. If l > 0,

by the definition of S, we get l ≥ S 3
2 . Hence,

c = I(u) +
1

2
‖vn‖2 −

1

6
‖vn‖66 = I(u) +

1

3
l ≥ s

3
S

3
2 ,

which contradicts with c < m∞ < 1
3S

3
2 . Thus l = 0 and we complete the proof.

�

4. Proof of Theorem 1.1

Proof of Theorem 1.1-(A). Let {un} ⊂M be a minimizing sequence for func-
tional I, that is, {un} ⊂M and I(un)→ m, where

M = {u ∈ H\{0} : G(u) = (I ′(u), u) = 0}.

We claim I ′(un) → 0. By the Lagrange multiplier Theorem, there exists λn ∈ R
such that

I ′(un)− λnG′(un)→ 0.

Since un ⊂M , we have that

m+ o(1) = I(un)− 1

4
(I ′(un), un) ≥ 1

4
‖un‖2,
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which implies that {un} is bounded in H1(R3. Hence

λn(G′(un), un)→ 0. (4.1)

By (a?1) and (b?1), for any ε > 0, there exists Cε > 0 such that

a(x)|u|p + b(x)|u|q + |u|6 ≤ ε|u|2 + Cε|u|6.

Taking ε = 1
2 and recalling the definition of S, we have that

‖un‖2 ≤
∫
R3

a(x)|un|pdx+

∫
R3

µb(x)|un|qdx+

∫
R3

|un|6dx

≤ 1

2

∫
R3

|un|2dx+ C 1
2

∫
R3

|un|6dx

≤ 1

2

∫
R3

|un|2dx+ C 1
2

‖un‖6

S3
,

which implies that

‖un‖2 ≥
S

3
2

(2C 1
2
)

1
2

. (4.2)

By (4.2), we get

(G′(un), un) = (G′(un), un)− 4(I ′(un), un)

= 2‖un‖2 + 4

∫
R3

l(x)φunu
2
ndx− p

∫
R3

a(x)|un|pdx− q
∫
R3

µb(x)|un|qdx

− 6

∫
R3

|un|6dx− 4[‖un‖2 +

∫
R3

l(x)φunu
2
ndx−

∫
R3

a(x)|un|pdx

−
∫
R3

µb(x)|un|qdx−
∫
R3

|un|6dx] = −2‖un‖2 + (4− p)
∫
R3

a(x)|un|pdx

(4− q)
∫
R3

µb(x)|un|qdx+ (−2)

∫
R3

|un|6dx ≤ −2‖un‖2 ≤ −2
S

3
2

(2C 1
2
)

1
2

.

From (4.1), we have λn → 0. Thus I ′(un)→ 0. This means that {un} is a (PS)m
sequence for I, that is, I(un)→ m and I ′(un)→ 0. By Lemma 3.4, if m ∈ (0,m∞),
then un → u in H1(R3) and thus I(u) = m and I ′(u) = 0. Hence, m is attained by
u ∈ H1(R3)\{0}. For this purpose, it is sufficient to prove m < m∞.

Similar argument as (3.7), we can obtain the equivalent characterization of the
least energy m:

m = inf
u∈H\{0}

max
t≥0

I(tu). (4.3)

Let R > 0 and γ ∈ R3 with |γ| = 1. By (4.3), clearly, we have

m ≤ sup
t≥0

I(tu∞(x−Rγ)),

where u∞ is a positive ground state solution for limit problem (3.2). Since

I(tu∞(x−Rγ)) ≤ t2

2
‖u∞(x−Rγ)‖2 + Ct4‖u∞(x−Rγ)‖4 − t6

6
‖u∞(x−Rγ)‖66

=
t2

2
‖u∞‖2 + Ct4‖u∞‖4 −

t6

6
‖u∞‖66,
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there exist a small t′ > 0 and a large t′′ > 0 independent of R and γ such that

sup
t∈[0,t′]∪[t′′,+∞)

I(tu∞(x−Rγ)) < m∞. (4.4)

On the other hand, by (b?1), for any u ∈ H1(R3), we have

I(tu) ≤ I∞(tu) +
t4

4

∫
R3

(l(x)− 1)φuu
2dx− 1

p
tp
∫
R3

(a(x)− 1)|u|pdx

+
t4

4

∫
R3

(φu − φ̂u)u2 dx

= I∞(tu) +
t4

4

∫
R3

(l(x)− 1)φuu
2dx+

t4

4

∫
R3

(l(x)− 1)φ̂uu
2 dx

− 1

p
tp
∫
R3

(a(x)− 1)|u|pdx.

Thus, choosing u = u∞(x− Rγ) in the inequality above and using (K?
2 ), (a?1) and

Lemma 3.3 we get

I(tu∞(x−Rγ)) ≤ I∞(tu∞)− t4

4
C0

∫
R3

e−l|x+Rγ|φu∞ |u∞(x)|2dx

− t4

4
C0

∫
R3

e−l|x+Rγ|φ̂u∞(x)|u∞(x)|2dx

+
1

p
tpC2

∫
R3

e−m|x+Rγ||u∞(x)|pdx

≤ I∞(tu∞)− t4

4
C0

∫
R3

e−l|x+Rγ|φu∞ |u∞(x)|2dx

− t4

4
C0

∫
R3

e−l|x+Rγ|φ̂u∞(x)|u∞(x)|2dx

+
1

p
tpC2C

p
σ

∫
R3

e−mRem|x|−p(1−δ)|x|dx

≤ I∞(tu∞)− t4

4
C0

∫
R3

e−l|x+Rγ|φ̂u∞(x)|u∞(x)|2dx

+
1

p
tpC2C

p
σ

∫
R3

e−mRem|x|−p(1−δ)|x|dx.

Set l(t) = I∞(tu∞), t ∈ (0,∞). It is easy to verify that sup
t≥0

l(t) = I∞(u∞) = m∞.

Let δ0 ∈ (0, 1− m
p ), we have∫

R3

e−mRem|x|−p(1−δ)|x|dx ≤ Ce−mR.

In addition,∫
R3

e−l|x+Rγ|φ̂u∞(x)|u∞(x)|2dx ≥ e−lR
∫
|x|≤1

e−l|x|φ̂u∞(x)|u∞(x)|2dx ≥ Ce−lR.

Hence, we have

sup
t′≤t≤t′′

I(tu∞(x−Rγ)) ≤ m∞ −
(t′)4

4
Ce−lR +

1

p
(t′′)pCe−mR,
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where C represent different constants. Since 0 < l < m, so there exists R̂ > 0 such
that R > R̂, we get

sup
t′≤t≤t′′

I(tu∞(x−Rγ)) < m∞, ∀ |γ| = 1.

which yields m < m∞. Thus, the proof of Theorem 1.1-(A) is completed.
Proof of Theorem 1.1-(B). Similar to the argument of Theorem 1.1-(A), we

only need to prove for R > 0 large, supt≥0 I(tu∞(x − Rγ)) < m∞ uniformly in γ.
Clearly, there exist 0 < t′ < t′′ independent of R and γ such that

sup
t∈[0,t′]∪[t′′,+∞)

I(tu∞(x−Rγ)) < m∞.

On the other hand, by (K3), (a2), (b2), Lemma 3.3 and Hölder’s inequality, we have
for any σ > 0, there exist Cσ > 0 such that

sup
t∈[t′,t′′]

I(tu∞(x−Rγ))

≤ sup
t≥0

I∞(tu∞) +
C1(t′′)4

4

∫
R3

e−d|x+Rγ|φu∞ |u∞(x)|2dx

+
C1(t′′)4

4

∫
R3

e−d|x+Rγ|φ̂u∞ |u∞(x)|2dx

+
1

p
(t′′)pC2

∫
R3

e−m|x+Rγ||u∞(x)|pdx

− µC3(t′)q

q

∫
R3

e−b|x+Rγ||u∞(x)|qdx

≤ sup
t≥0

I∞(tu∞)− µC3(t′)q

q

∫
R3

e−bRe−b|x||u∞(x)|qdx

+
C1C

2
δ (t′′)4

4
(‖φu∞‖6 + ‖φ̂u∞‖6)

∫
R3

e−
6
5dRe

6
5d|x|−

12
5 (1−δ)|x|dx

+
C2C

p
δ (t′′)p

p

∫
R3

e−mRem|x|−p(1−δ)|x|dx.

Let δ ∈ (0,min{1− m
p , 1−

d
2}), then

sup
t′≤t≤t′′

I(tu∞(x−Rγ)) < m∞ − Ce−bR + Ce−dR + Ce−mR,

where C represent different constants. Since b < min{m, d}, so there exists R̂ > 0

such that R > R̂, we get

sup
t′≤t≤t′′

I(tu∞(x−Rγ)) < m∞, ∀ |γ| = 1.

which yields m < m∞. Thus, the proof of Theorem 1.1-(B) is completed.

5. Proof of Theorem 1.2

In the next, we consider the existence of multiple solutions of problem (1.3).
Let h(t) = I(tu∞(x− Rγ)), t ∈ (0,∞), γ ∈ R3 with |γ| = 1. Form the proof of

Theorem 1.1-(B), we know there exists R0 > 0 such that for R > R0, there exists
ε(R) > 0 satisfying

sup
t≥0

h(t) ≤ m∞ − ε(R) < m∞ uniformly in γ.
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For any fixing R and γ, it is easy to check that h(t) attains its maximum at a unique
point t = t∞. Hence, we define a mapping FR : S2 = {γ ∈ R3 : |γ| = 1} →M by

FR(γ) = t∞u∞(x−Rγ).

Immediately we have the following Lemma.

Lemma 5.1. There exists R0 > 0 such that for R > R0, there exists ε(R) > 0
satisfying FR(S2) ⊂ {u ∈M : I(u) ≤ m∞ − ε(R)} uniformly in γ ∈ S2.

For u ∈ H, define a map Φ : H1(R3)→ H1(R3):

Φ(u)(x) :=
1

|B1(x)|

∫
B1(x)

|u(y)|dy, ∀x ∈ R3,

where |B1(x)| is the Lebesgue measure of B1(x). Let

û(x) = [Φ(u)(x)− 1

2
max
x∈R3

Φ(u)(x)]+,

and β : H1(R3)\{0} → R3 given by

β(u) =
1

‖û‖1

∫
R3

xû(x)dx.

Obviously, β(u) is well defined for all u ∈ H1(R3)\{0} and β(u) has a compact sup-
port in R3. Moreover, β(u) is continuous in H1(R3)\{0} and satisfies the following
properties.

Lemma 5.2. (i) For any t 6= 0 and u ∈ H1(R3)\{0}, β(tu) = β(u).
(ii) For any z ∈ R3 and u ∈ H1(R3)\{0}, β(u(x− z)) = β(u) + z.

Define a functional J : H1(R3)→ R given as follows

J(u) =
1

2
‖u‖2 +

1

4

∫
R3

l(x)φuu
2dx− 1

p

∫
R3

a(x)|u|pdx− 1

6

∫
R3

|u|6dx, u ∈ H1(R3).

Lemma 5.3. m0 := inf
u∈M0

J(u) = m∞ is not attained, where

M0 = {u ∈ H1(R3)\{0} : (J ′(u), u) = 0}.

Proof. Firstly we show that for any u ∈ M0, there exists a unique 0 < τ ≤ 1 such
that τu ∈M∞. Indeed, by virtue of u ∈M0 and τu ∈M∞, we have

‖u‖2 +

∫
R3

l(x)φuu
2dx =

∫
R3

a(x)|u|pdx+

∫
R3

|u|6dx, (5.1)

and then

τp
∫
R3

a(x)|u|pdx+ τ6

∫
R3

|u|6dx

≤ τp
∫
R3

|u|pdx+ τ6

∫
R3

|u|6dx = τ2‖u‖2 + τ4

∫
R3

φ̂uu
2dx.

(5.2)

From (l?3) and l(x) ≥ 1 for any x ∈ R3, it follows that∫
R3

φ̂uu
2dx ≤

∫
R3

l(x)φ̂uu
2dx ≤

∫
R3

l(x)φuu
2dx. (5.3)
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If τ > 1, by (5.1), (5.2) and (5.3), we deduce that

τ4(‖u‖2 +

∫
R3

l(x)φuu
2dx) ≥ τ4(‖u‖2 +

∫
R3

φ̂uu
2dx)

≥ τp(
∫
R3

a(x)|u|pdx+

∫
R3

|u|6dx) = τp(‖u‖2 +

∫
R3

l(x)φuu
2dx),

which yields τ ≤ 1, this achieves a contradiction. Hence τ ≤ 1 and the claim holds
true.

For u ∈M0, using (5.3), we have that

J(u) = J(u)− 1

p
(J ′(u), u)

= (
1

2
− 1

p
)‖u‖2 + (

1

4
− 1

p
)

∫
R3

l(x)φuu
2dx+ (

1

p
− 1

6
)

∫
R3

|u|6dx

≥ (
1

2
− 1

p
)‖τu‖2 + (

1

4
− 1

p
)τ4

∫
R3

φ̂uu
2dx+ (

1

p
− 1

6
)

∫
R3

|τu|6dx

= I∞(τu)− 1

p
(I ′∞(τu), τu) = I∞(τu) ≥ m∞,

which implies that m0 ≥ m∞.
Next we prove m0 ≤ m∞. Let wn = u∞(.− zn), where zn ∈ R3 with |zn| → ∞.

We claim that for wn ∈ M∞, there exists τn ≥ 1 such that τnwn ∈ M0. In fact,
from wn ∈M∞ and τnwn ∈M0, there holds

‖wn‖2 +

∫
R3

φ̂wnw
2
ndx =

∫
R3

|wn|pdx+

∫
R3

|wn|6dx,

and then

τpn

∫
R3

|wn|pdx+ τ6
n

∫
R3

|wn|6dx

≥ τpn
∫
R3

a(x)|wn|pdx+ τ6
n

∫
R3

|wn|6dx

= τ2
n‖wn‖2 + τ4

n

∫
R3

l(x)φwnw
2
ndx.

If τn < 1, we have

τpn(

∫
R3

|wn|pdx+

∫
R3

|wn|6dx) ≥ τ4
n(‖wn‖2 +

∫
R3

l(x)φwnw
2
ndx)

≥ τ4
n(‖wn‖2 +

∫
R3

φ̂wnw
2
ndx) = τ4

n(

∫
R3

|wn|pdx+

∫
R3

|wn|6dx),

which leads to a contradiction with τn < 1. Hence τn ≥ 1 and the claim holds true.
By the definition of m0 and τnun ∈M0, we have

m0 ≤ J(τnwn) =
1

2
τ2
n‖u∞‖2 +

1

4
τ4
n

∫
R3

l(x)φwnw
2
ndx

− 1

p
τpn

∫
R3

a(x)|wn|pdx−
1

6
τ6
n

∫
R3

|u∞(x)|6dx.
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By Lebesgue dominated convergence Theorem, we deduce that

lim
n→∞

∫
R3

l(x)φwnw
2
ndx = lim

n→∞

∫
R3

l(x+ zn)φu∞ |u∞(x)|2dx

=

∫
R3

φ̂u∞(x)|u∞(x)|2dx,

lim
n→∞

∫
R3

a(x)|wn|pdx = lim
n→∞

∫
R3

a(x+ zn)|u∞(x)|pdx

=

∫
R3

|u∞(x)|pdx.

(5.4)

If τn → 1, we get m0 ≤ limn→∞ J(tnwn) = I∞(u∞) = m∞, form which we see that
m0 = m∞. Thus we only need to prove τn → 1. By τnwn ∈ M0, with τn ≥ 1, we
have

τ4
n(‖wn‖2 +

∫
R3

l(x)φwnw
2
ndx)

≥ τ2
n‖wn‖2 + τ4

n

∫
R3

l(x)φwnw
2
ndx = τpn

∫
R3

a(x)|wn|pdx+ τ6
n

∫
R3

|wn|6dx

≥ τpn(

∫
R3

a(x)|wn|pdx+

∫
R3

|wn|6dx).

Thus, by (5.4), we deduce that

1 ≤ τp−4
n ≤

‖wn‖2 +
∫
R3 l(x)φwnw

2
ndx∫

R3 a(x)|wn|pdx+
∫
R3 |wn|6dx

=
‖u∞‖2 +

∫
R3 φ̂u∞(x)|u∞(x)|2dx+ o(1)∫

R3 |u∞(x)|pdx+ o(1) +
∫
R3 |u∞(x)|6dx

,

which yields τn → 1 by using u∞ ∈M∞.
Next we prove m0 is not attained. Assume by contradiction that there exists

u0 ∈ M0 such that m0 = J(u0). We claim J ′(u0) = 0. Set G̃(u) = (J ′(u), u), By

the Lagrange multipliers Theorem, we obtain λ ∈ R such that J ′(u0)−λG̃′(u0)→ 0,
similar to the of proof of Theorem 1.1-(B), we have J ′(u0) = 0. Note that if u0

is sing-changing, we see that J(u0) ≥ 2m0, a contradiction. Thus we may assume
that u0 ≥ 0 in H1(R3) and the maximum principle implies that u0 is positive.

From the above proof, we see that for u0 ∈M0, there exists a unique τ0 ≤ 1 such
that τ0u0 ∈M∞. Thus,

m∞ ≤ I∞(τ0u0)

= I∞(τ0u0)− 1

p
(I ′∞(τ0u0), τ0u0)

= (
1

2
− 1

p
)‖τ0u0‖2 + (

1

4
− 1

p
)τ4

0

∫
R3

φ̂u0
u2

0dx+ (
1

p
− 1

6
)

∫
R3

|τ0u0|6dx

≤ (
1

2
− 1

p
)‖u0‖2 + (

1

4
− 1

p
)

∫
R3

l(x)φtu0
u2

0dx+ (
1

p
− 1

6
)

∫
R3

|u0|6dx

= J(u0)− 1

p
(J ′(u0), u0) = J(u0) = m0.
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From m0 = m∞, it follows that

(
1

2
− 1

p
)‖τ0u0‖2 + (

1

4
− 1

p
)τ4

0

∫
R3

φ̂u0
u2

0dx+ (
1

p
− 1

6
)

∫
R3

|τ0u0|6dx

= (
1

2
− 1

p
)‖u0‖2 + (

1

4
− 1

p
)

∫
R3

l(x)φu0u
2
0dx+ (

1

p
− 1

6
)

∫
R3

|u0|6dx,

that is

τ2
0 ‖u0‖2 + τ4

0

∫
R3

φ̂u0
u2

0dx+ τ6
0

∫
R3

|u0|6dx

= ‖u0‖2 +

∫
R3

l(x)φu0u
2
0dx+

∫
R3

|u0|6dx.

Thus

(1− τ2
0 )‖u0‖2 +

∫
R3

(l(x)− 1)φu0u
2
0dx+

∫
R3

(φu0
− φ̂u0

)u2
0dx

+ (1− τ4
0 )

∫
R3

φ̂u0u
2
0dx+ (1− τ6

0 )

∫
R3

|u0|6dx = (1− τ2
0 )‖u0‖2

+

∫
R3

(l(x)− 1)(φu0
+ φ̂u0

)u2
0dx+ (1− τ4

0 )

∫
R3

φ̂u0
u2

0dx

+ (1− τ6
0 )

∫
R3

|u0|6dx = 0,

by τ0 ≤ 1, so ∫
R3

(l(x)− 1)(φu0
+ φ̂u0

)u2
0dx = 0,

this is a contradiction with u0 is positive, l(x) ≥ 1 and meas{x ∈ R3 : l(x) > 1} >
0. �

Lemma 5.4. There exists ρ0 > 0 such that for u ∈M0 satisfying J(u) ≤ m∞+ρ0,
there holds |β(u)| > 0.

Proof. Assume by the contrary that there exists {un} ⊂ M0 such that J(un) →
m∞ = m0 and |β(u)| = 0. Similar to the proof Theorem 1.1, we can derive by the
Lagrange multipliers Theorem that J ′(un) → 0. We omit the proof here. Similar
to the proof Lemma 3.4, we obtain un ⇀ u weakly in H, J ′(u) = 0, and

m∞ − J(u) = I∞(vn) + o(1) and I ′∞(vn) = o(1), (5.5)

where vn = un − u.
For the sequence {vn}, two cases may occur: ‖vn‖r → 0 for any r ∈ (2, 6), or

there yn ∈ R3 with |yn| → ∞ such that vn(.+ yn) ⇀ v 6= 0 weakly in H1(R3). By
virtue of J ′(u) = 0, we can deduce that J(u) ≥ 0. From Lemma 3.4, we see that

m∞ < 1
3S

3
2 . Thus m∞ − J(u) < 1

3S
3
2 .

If ‖vn‖r → 0 for any r ∈ (2, 6), by (3.33), we have m∞ − J(u) = 1
2‖vn‖

2 −
1
6‖vn‖

6
6 + o(1) and ‖vn‖2 − ‖vn‖66 = o(1). Up to a subsequence, we may assume

that ‖vn‖2 → l and then ‖vn‖66 → l. If l > 0, by the definition of S, we get

l ≥ S
3
2 . So m∞ − J(u) = 1

2‖vn‖
2 − 1

6‖vn‖
6
6 = 1

3 l ≥
1
3S

3
2 , a contradiction with

m∞ − J(u) < 1
3S

3
2 . Thus, l = 0 and then un → u in H1(R3), we get m0 = J(u),
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a contradiction with m0 is not attained. Therefore, vn(. + yn) ⇀ v 6= 0 weakly in
H1(R3). Similar to the proof Lemma 3.4, we can deduce that

m∞ − J(u) = I∞(vn(.+ yn)) + o(1),

I ′∞(vn(.+ yn)) = o(1).

Hence, I ′∞(v) = 0 and by using Fatou’s Lemma, we have that

m∞ − J(u) = I∞(vn(.+ yn))− 1

4
[I ′∞(vn(.+ yn)), vn(.+ yn)] + o(1)

=
1

4
‖(vn(.+ yn)‖2 + (

1

4
− 1

p
)

∫
R3

|(vn(.+ yn)|pdx

+
1

12

∫
R3

|(vn(.+ yn)|6dx+ o(1)

≥ 1

4
‖v‖2 + (

1

4
− 1

p
)

∫
R3

|v|pdx+
1

12

∫
R3

|v|6dx

= I∞(v)− 1

4
(I ′∞(v), v)) = I∞(v) ≥ m∞.

Combining with J(u) ≥ 0, we get J(u) = 0 and then vn(. + yn) = un(. + yn) → v
in H1(R3). By Lemma 5.2, we have

β(v(x)) + o(1) = β(un(x+ yn)) = β(un)− yn = −yn.

Which yields |β(v(x))| =∞, this leads to a contradiction. �

Lemma 5.5. There exists µ0 > 0 small such that for µ ∈ (0, µ0), we have |β(u)| > 0
for u ∈ {u ∈M : I(u) < m∞}.

Proof. Let u ∈M be such that I(u) < m∞, then we have

m∞ > I(u) = I(u)− 1

4
(I ′(u), u) ≥ 1

4
‖u‖2. (5.6)

Using the conditions (a?1), (b?1) and u ∈M , we get for any ε > 0, there exists Cε > 0
such that

‖u‖2 ≤
∫
R3

a(x)|u|pdx+ µ

∫
R3

b(x)|u|qdx+

∫
R3

|u|6dx

≤ (1 + µ)
[
ε

∫
R3

|u|2dx+ Cε

∫
R3

|u|6dx
]
.

(5.7)

Choose ε ∈ (0, 1
4 ), we have 1

2‖u‖
2 ≤ (1 + µ)Cε

∫
R3 |u|6dx for µ ∈ (0, 1). In fact, if

ε ∈ (0, 1
4 ) and µ ∈ (0, 1), we get 0 < (1 +µ)ε < 1

2 , and then 1
2 − (1 +µ)ε > 0. Thus,

there holds true

1

2

∫
R3

|∇u|2dx+ (
1

2
− (1 + µ)ε)

∫
R3

|u|2dx ≥ 0,

that is
1

2
‖u‖2 ≤ ‖u‖2 − (1 + µ)ε

∫
R3

|u|2dx,

by (5.7), we have

‖u‖2 − (1 + µ)ε

∫
R3

|u|2dx ≤ (1 + µ)Cε

∫
R3

|u|6dx,
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so
1

2
‖u‖2 ≤ (1 + µ)Cε

∫
R3

|u|6dx.

Thus, by the definition of S, there exists L0 > 0 independent of µ ∈ (0, 1) such that∫
R3

|u|6dx ≥ L0

(1 + µ)
3
2

. (5.8)

Similar to the argument of Lemma 5.3, we can deduce that for any u ∈ M , there
exists a unique τ(u) ≥ 1 such that τ(u)u ∈M0. Then

τ4(u)(‖u‖2 +

∫
R3

l(x)φuu
2dx)

≥ τ2(u)‖u‖2 + τ4(u)

∫
R3

l(x)φuu
2dx = τp(u)

∫
R3

a(x)|u|pdx+ τ6(u)

∫
R3

|u|6dx

≥ τ6(u)

∫
R3

|u|6dx,

which implies that τ2(u) ≤ ‖u‖2+
∫
R3 l(x)φtuu

2dx∫
R3 |u|6dx

. Together with (5.6) and (5.8), we

derive there exists C > 0 independent of µ ∈ (0, 1) such that

1 ≤ τ2(u) ≤ C(1 + µ)
3
2 . (5.9)

Note that for u ∈M with I(u) < m∞, thus

m∞ > I(u) = sup
t≥0

I(tu) ≥ I(t(u)u) = J(t(u)u)− µt
q(u)

q

∫
R3

b(x)|u|qdx.

By (5.6) and (5.9), there exists a small µ0 ∈ (0, 1) such that µ ∈ (0, µ0),

J(t(u)u) < m∞ + µ
tq(u)

q

∫
R3

b(x)|u|qdx ≤ m∞ + ρ0.

Form Lemma 5.4, we have |β(t(u)u)| > 0. Hence, Lemma 5.2 implies that |β(u)| >
0. �

Lemma 5.6. For µ ∈ (0, µ0), define G : {u ∈ M : I(u) < m∞} → S2 by G(u) =
β(u)
|β(u)| . Then for R > R0 and µ ∈ (0, µ0), the map

G ◦ FR : S2 → S2; y → G ◦ (FR(y))

is homotopic to the identity.

Proof. Similar to the argument of Proposition 2.9 in [1], define the map ζ(θ, y) :
[0, 1]× S2 → S2 by

ζ(θ, y) =


G((1− 2θ)FR(y) + 2θu∞(x−Ry)), θ ∈ [0, 1

2 ),
G(u∞(x− R

2(1−θ)y), θ ∈ [ 1
2 , 1),

y, θ = 1.

By the definition of G and Lemma 2.6, it is not difficult to check that ζ(θ, y) ∈
C([0, 1]× S2, S2), ζ(0, y) = G ◦ (FR(y)) for y ∈ S2 and ζ(1, y) = y for y ∈ S2. The
proof is completed. �
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Proof of Theorem 1.2. Form Lemma 2.6, Lemma 5.1 and Lemma 5.6, we have
that for R > R0 and µ ∈ (0, µ0), there holds

cat({u ∈M : I(u) ≤ m∞ − ε(R)}) ≥ 2.

Then by Lemma 3.4 and Lemma 2.5, we see that I admits at least two nontrivial
critical point in {u ∈M : I(u) < m∞}.
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