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Abstract

A general approach is developed for discriminating strong and hereditary symmetric

operators. The recursion operator of the Blaszak-Marciniak (BM) equation hierarchy is

proved to be strong and hereditary symmetric. As an example of discrete soliton equations

related to 3× 3 matrix spectral problems, the τ -symmetries and Lie algebra structure of the

BM equation are built firstly.
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1 Introduction

It is well known that through a matrix spectral problem we can obtain isospectral and non-

isospectral soliton equation hierachies [1, 2]. These soliton hierarchies not only can be solved

by the inverse scattering transformation (IST) [1, 2], but also possess remarkably rich algebraic

characteristics, including the existence of conservation laws (CLs) and infinite many symmetries

[3].

For continue soliton equations, there is a mature method to construct nonisospectral soliton

equation hierarchies [4, 5, 6]. We always suppose their solutions, i.e., the potentials of the matrix

spectral problems go to zero as x → ±∞ because of the properties of solitary waves. Next, we
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usually can assume the relation of the spectral parameter λ depending on the time variable t

is λt = λk, k ∈ N. Through the so-called zero-curvature equation, we can obtain nonisospectral

soliton equation hierarchies. But that is not the case for discrete soliton equations. Du to

physical backgrounds, some potentials do not go to zero as the variable n go to infinity. So

suitable time-dependence of the spectral parameter and correct initial conditions are the name

of game if one wants to construct discrete nonisospectral soliton equation hierarchies. In [2], we

gave a relation between the spectral parameter λ and t and solve the generating nonisospectral

Toda lattice equations by the IST method. Later, Zhu et al. presented another relation and

discussed the Lie algebraic structure betweenK-symmetries and the corresponding τ -symmetries

[7].

The so-called K-symmetries actually are isospectral soliton equation hierarchies which do

not depend explicitly on space and time variables. How to find the τ -symmetries was a difficult

problem once a time. In 1987, Y.S. Li et al. found a general way to construct τ -symmetries

[6, 8]. These symmetries often constitute a Lie algebra together with K-symmetries. Li and

Cheng found that there also exist new sets of symmetries for the evolution equations which take

τ -symmetries as vector fields [9, 10]. Tu showed that these τ -symmetries may be generated

by the generators of the first degree [11]. On the basis of Tu’s work, Ma established a more

general skeleton on K-symmetries and τ -symmetries of evolution equations and their Lie alge-

braic structures [12, 13]. Chen and Zhang introduced the implicit representations of the flows of

some continue soliton equations and derived the Lie algebraic structures of these flows [14, 15].

Furthermore, they expanded this method to the Ablowitz–Ladik hierarchy [16, 17]. In [7], they

also discussed the Lie algebraic symmetries of the Toda lattice equation. Actually, there are also

many other methods to consider the Lie algebra of soliton equations such as semi-direct sums

[18, 19] and adjoined symmetries approach [20, 21].

To the authors’ knowledge, the discussion on Lie algebraic structures tends to focus on

soliton equations owning 2 × 2 matrix spectral problems. The higher order matrix spectral

problems especially the discrete ones have not been researched yet. In this paper, we obtain

the isospectral and nonisospectral equation hierarchy by the 3 × 3 matrix spectral problem of

the BM lattice equation. In the course of constructing the nonisospectral equation hierarchy we

take λtk = −4λk+1 − 27λk−2 (k ≥ 2). The recursion operator of the BM equation hierarchy is

proved to be strong and hereditary symmetric by a general approach. The Lie algebraic relations
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of the BM equation are revealed.

The rest of the paper is organized as follows. In section 2, we will discuss basic notions

and notations. In section 3, we will obtain the isospectral and nonisospectral the BM lattice

equation hierarchies. In section 4, two types of symmetries will be constructed and proved to

constitute an infinite-dimensional Lie algebra. We conclude the paper in section 5.

2 Basic notations

For the sake of simplicity, we first bring in some needful definitions and foundational notations.

They are very important to the discussion of symmetries for discrete soltion equations.

Let the functions vi = vi(t, n), 1 ≤ i ≤ s defined over R×Z satisfy vi → 0 when |n| → ∞. We

define a s-dimensional vector field as vn = v(t, n) = (v1, v2, · · · , vs)T . Suppose that fi is a C∞

differentiable function with the variables t and n defined over vn satisfying fi(v(t, n))|vn=0 = 0.

We define the linear space by Vl consisting of all vector fields f = (f1, f2, · · · , fl)T . Assume that

pij is Laurent polynomial of λ and P (t, n,vn, λ) = (pij(t, n,vn, λ))m×m is m ×m matrix, then

we define a Laurent matrix polynomials space Λm(λ) composed by all matrices P (t, n,vn, λ).

Now, let us define the shift operator E as

Efn = fn+1, E−1fn = fn−1, n ∈ Z,

where fn = f(n) is a function of variable n.

Definition 1. Let f and g belong to Vl, then the Gâteaux derivative of f in direction g is

f ′[g] = f(vn)
′[g] =

d

dε
|ε=0f(vn + εg), ε ∈ R.

Furthermore, we can define the Lie product for any f ,g ∈ Vl as

[f ,g] = f ′[g]− g′[f ],

by the Gâteaux derivative.

Note: If f is an operator on Vl, the definition of Gâteaux derivative stays the same.

Definition 2. (Ref.22). A function σ(v(t, n)) defined over Vl is called the symmetry of a discrete

evolution equation

vn,t = K(t, n,vn),
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if σt(v(t, n)) = K ′[σ(v(t, n))]. Similarly, a function γ(v(t, n)) satisfying −γt(v(t, n)) = K
′∗γ(v(t, n))

is called conserved covariant. We mark the linear space constituted by all symmetries of Eq.(2)

as S. Its adjoint space S∗ is formed by all conserved covariate.

Definition 3. (Ref.22). An operator Φ on Vl is called the strong symmetry of Eq.(2) if Φ :

S 7−→ S∗, i.e.,
dΦ

dt
= [K ′,Φ] = K ′Φ− ΦK ′.

Specially, (3) can be simplified as

Φ′[K] = [K ′,Φ]

if the operator Φ does not contain t explicitly. Finally, Φ is called a hereditary symmetry operator

if it meets

Φ′[Φf ]g − Φ′[Φg]f = Φ(Φ′[f ]g − Φ′[g]f), ∀f ,g ∈ Vl.

3 Isospectral and non-isospectral hierarchies of the BM lattice

equation

In this section, we will construct the nonisospectral BM lattice equation hierarchy by introducing

a new time-dependence spectral parameter λ. On the isospectral BM lattice equation hierarchy,

there already have been a lot of researches. In [23], the authors studied the BM equation through

the r-matrix approach. In [24], the symplectic map of the BM lattice equation was presented.

In [25], its Hamiltonian structure was shown.

For the sake of simplicity, we introduce some denotes:

E1 =


0 0 0

1 0 0

0 0 0

 , E2 =


0 1 0

0 0 1

1 0 0

 , E3 =


1 0 0

0 1 0

0 0 1

 .

First of all, let us discuss the BM spectral problem [23, 24]

Eϕ⃗n = Mϕ⃗n, M =


0 1 0

pn − λ qn 1

rn 0 0

 , ϕ⃗n =


ϕ1,n

ϕ2,n

ϕ3,n

 (3.1a)
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and its time evolution equation

ϕ⃗n,t = Nϕ⃗n, N =


An Bn Cn

Dn En Fn

Gn Hn In

 , (3.1b)

where E is a shift operator and pn = pn(t), qn = qn(t), ln rn = ln rn(t) are potential functions

defined over R× Z, and rapidly near to 0 as |n| → ∞.

By the compatibility of the equations (3.1), the matrices M and N satisfy the discrete zero

curvature equation

Mt = (EN)M −MN, (3.2)

i.e.,

(pn − λ)Bn+1 + rnCn+1 −Dn = 0,

An+1 + qnBn+1 − En = 0,

Bn+1 − Fn = 0,

(pn − λ)En+1 + rnFn+1 − (pn − λ)An − qnDn −Gn = pn,t − λt,

Hn+1 − rnCn = 0,

Dn+1 + qnEn+1 − (pn − λ)Bn − qnEn −Hn = qn,t,

Gn+1 + qnHn+1 − rnBn = 0,

En+1 − (pn − λ)Cn − qnFn − In = 0,

(pn − λ)Hn+1 − rnAn + rnIn+1 = rn,t.

Direct calculation gives

un,t = L1


Bn

Cn

En

− λL2


Bn

Cn

En

+ λt


0

0

1

 , (3.4)

where

L1 =


EpnE − pn ErnE − E−1rn qn(E − 1)

qn−1 − EqnE (1− E)pn E2 − E−1

rnE
2 − E−1rn − pn(E − 1)qn−1 E−1qnrn − qnrnE pn(E − E−1)

 ,
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L2 =


E2 − 1 0 0

0 1− E 0

qn−1 − qnE 0 E − E−1

 , un =


qn

ln rn

pn

 .

Let λ be independent of time t, Bn , Cn , En can be expanded as polynomials of λ
Bn

Cn

En

 =

k∑
j=0


bn,j

cn,j

en,j

λk−j (3.5a)

meeting the initial conditions 
Bn

Cn

En


∣∣∣∣∣∣∣∣∣
un=0

=


0

λk

0

 . (3.5b)

Setting Gk = (bn,k, cn,k, en,k)
T , k ∈ N, we obtain the following relations

un,tk = L1Gk,

L1Gj = L2Gj+1 (j = 0, 1, 2, · · · , k − 1),

L2G0 = 0,

through comparing the coefficients of the same power of λ in (3.4). Then, we can obtain the

isospectral BM lattice hierarchy

un,tk = L1Gk = LkK0 (k = 0, 1, 2, · · · ),

where

K0 = (rn+1 − rn−1, pn − pn+1, qn−1rn−1 − qnrn)
T

and

L ≜ L1L
−1
2 =


L11 L12 L13

L21 L22 L23

L31 L32 L33


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with

L11 = [△̄−1(pn) + qn △− △−1
+ qn]△−1, L12 = △̂(rn)△−1

− , L13 = qn △−1
+ E,

L21 = −△− △−1
+ qn△−1, L22 = △−pn△−1

− , L23 = (E2 − E−1)△−1,

L31 = △̂−1(rn)△−1, L32 = △̄(qnrn)△−1
− , L33 = pn.

by noting △ = E − E−1,△− = E − 1,△+ = E + 1, △̂(rn) = E−1rn − ErnE, △̂−1(rn) =

rnE − E−1rnE
−1, △̄−1(pn) = Epn − pnE

−1, △̄(qnrn) = qnrnE − E−1qnrn.

In particular, when k = 0, 1, the first two isospectral equations are

un,t0 = K0, (3.7)

un,t1 = K1 = LK0 = (k11, k12, k13)
T , (3.8)

where k11 = △− △+ rn−1 △+ pn−1 −△−pn, k12 = −△− [△+qn−1rn−1 + p2n] +△qn, and k13 =

△−(△+rn−2rn−1 − qn−1rn−1 △+ pn−1 − rn−1) + pn△−qn−1.

Their corresponding matrices N related to time-development are

N0 =


0 0 1

rn 0 0

−qn−1rn−1 rn−1 λ− pn


and

N1 =


−qn−1(rn−1 − 1) rn−1 − 1 λ+ pn

λ+ pn+1rn + pn(rn − 1) 0 rn − 1

rn−1(rn−2 − 1− qn−1pn−1 − λqn−1) rn−1(λ+ pn−1) λ2 − p2n + qn(1− rn)

 ,

respectively.

In the nonisospectral case, we suppose

λtk = −4λk+1 − 27λk−2 (k ≥ 2), (3.9)

and Bn, Cn, En still are polynomials of λ satisfying

Bn = 9nλk−2, Cn = 6nλk−1, En = −2nλk, (3.10)

when qn = 0, rn = 1, pn = 0.

For convenience, we only consider the cases of k = 2 and k > 2.
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When k = 2, λt2 = −4λ3 − 27, substituting (3.5a) into (3.4) and comparing the coefficients

of same power of λ yield

un,t2 = L1G2 − 27e3,

L1G1 = L2G2,

L1G0 = L2G1,

L2G0 = −4e3,

where e3 = (0, 0, 1)T . It follows that bn,0 = 0, cn,0 = 0, en,0 = −2n from the initial value

condition (3.10). In this case, we obtain

un,t2 ≜ σ2 = (u21, u22, u23)
T ,

where

u21 =− 2[pn+1 + qn △− △−1
+ qn]△−1 {[pn+1 + qn △− △−1

+ qn]△−1 qn + 2qn △−1
+ pn+1

+ 3△̂(rn)n}+ 2△̂(rn)[△−1
+ qn △−1 qn − 3npn − 2(△+ + E−1)△−1 pn]

− 2qn △−1
+ [△̃(rn)△−1 qn + 3△̄(qnrn)n+ 2p2n],

u22 =2[△− △−1
+ qn△−1]{[pn+1 + qn △− △−1

+ qn]△−1 qn + 3△̂(rn)n+ 2qn △−1
+ pn+1}

+ 2△− pn[△−1
+ qn △−1 qn − 3npn − 2(△+ + E−1)△−1 pn]

− 2(E2 − E−1)△−1 [△̂−1(rn)△−1 qn + 3△̄(qnrn)n+ 2p2n],

u23 =− 2△̂−1(rn)△−1 {[Epn + qn △− △−1
+ qn]△−1 qn + 3△̂(rn)n+ 2qn △−1

+ pn+1}

+ 2△̄(qnrn)[△−1
+ qn △−1 qn − 3npn − 2(△+ + E−1)△−1 pn]

− 2pn[△̂−1(rn)△−1 qn + 3△̄(qnrn)n+ 2p2n]− 27.

where △̃(rn) = ErnE − rnE
−1.

When k > 2, we have

un,tk = L1Gk,
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L1Gj = L2Gj+1 (j = 0, 1, 3, · · · , k − 1),

L1G2 − L2G3 − 27e3 = 0,

L2G0 = −4e3.

Then, we get the following nonisospectral BM lattice hierarchy

un,tk ≜ σk = Lk


−2qn

−6

−4pn

− 27Lk−2


0

0

1

 (k > 2). (3.11)

The right side of the equation (3.11) is the so-called k-order BM lattice nonisospectral flows,

which are vector fields with three components. In a word, the isospectral and nonisospectral

flows possess the following general representations

Km = LmK0(m = 0, 1, · · · ), σl = Ll−2σ2(l = 2, 3, · · · ).

Obviously, we find that the nonisospectral flows (3.11) include two parts. This is because

we assume the time relation of spectral parameter (3.9). In [7], the time relation is λt =

λk+1 − 4λk−1. Actually, to meet the initial condition

σk|un=0 = 0,

we always suppose that the difference in order of λ in the evolution relation is the order of

the spectral matrix. It is a general relationship and can be applied in other discrete soliton

equations.

4 Two sets of symmetries for a hierarchy of the BM lattice

equation and their Lie algebra structure

In this section, general theories of distinguishing strong and heredity symmetry operators are

developed. The two sets of symmetries named K-symmetry {Km} and τ -symmetry {σl} of the

BM lattice equation are constructed and proved to satisfy the Lie algebra relations.
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4.1 Zero curvature representation

In this subsection, we will develop general theories to prove the recursion operator L of the

BM equation hierarchy is strong and heredity symmetric by the implicit expression of the zero

representations.

In the isospectral case, for λt = 0, we have Mt = M ′[un,t], then the discrete zero curvature

equation (3.2) can be rewritten as

M ′[un,t] = (EN)M −MN.

In non-isospectral cases, because λtn ̸= 0, we get Mt = M ′[un,t] + λtnMλ. So (3.2) can be

transformed into

M ′[un,t] = (EP )M −MP − λtnMλ.

With a view to the corresponding the isospectral flow Kl and the non-isospectral flow σk, the

above two equations have the following expression

M ′[Kl] = (ENl)M −MNl, (4.1a)

M ′[σk] = (EPk)M −MPk + λk−2(4λ3 + 27)Mλ. (4.1b)

Eq.(4.1a) and (4.1b) are called the zero-curvature representations of the isospectral flow Kl and

the non-isospectral flow σk of the BM lattice equations, separately.

Theorem 1. Let U is a l × l matrix containing the potential un and Φ : Vl 7→ Vl is a linear

map. If for any given f ∈ Vl, there are solutions V = V (un) ∈ Λl(λ) meeting

U ′[Φf − λf ] = (EV )U − UV, V |un=0 = 0, (4.2)

where U ′[Φf−λf ] refers to the Gâteaux derivative of U with respect to un, then Φ is a hereditary

symmetric operator.

Proof. For arbitrary f ,g ∈ V3, we can suppose that

U ′[Φf − λf ] = (EN̄)U − UN̄, (4.3a)

U ′[Φg − λg] = (ER)U −MU, (4.3b)
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U ′[Φ(Φ′[g]f)− λ(Φ′[g])f ] = (EV )U − UV,

U ′[Φ(Φ′[f ]g)− λ(Φ′[f ])g] = (EW )U − UW,

by taking advantage of (4.2). One more derivative of (4.3a) and (4.3b) in direction of Φg − λg

and Φf − λf respectively gives

U ′[Φ′[Φg]f − Φ′[Φf ]g − Φ(Φ′[g]f − Φ′[f ]g)] = (EP )U − UP,P |un=0 = 0,

where

P = N̄ ′[Φg − λg]−R′[Φf − λf ] + [N̄ , R]− V +W.

Obviously, we obtain

Φ′[Φg]f − Φ′[Φf ]g − Φ(Φ′[g]f − Φ′[f ]g) = 0,

i.e., the operator Φ is hereditary.

Theorem 2. Let K ∈ Vl, U and V are l × l matrices comprising potential vn, which satisfy

U ′[K] = (EV0)U − UV0, where U ′[K] represents the Gâteaux derivation with respect to vn. For

any given f ∈ Vl, there are solutions V = V (vn, λ) ∈ Λl(λ) meeting

U ′[Φf − λf ] = (EV )U − UV, V |vn=0 = 0, (4.4)

where Φ : Vl 7→ Vl is a linear map. Then Φ is a strong symtric operator of equation vn,t = K.

Proof. For any f ,g ∈ Vl, we obtain

Φ′[f ,g] = (Φ′[f ])′[g]− (Φ′[g])′[f ],

by directly calculation. Through (4.4), we get

U ′[Φf − λf ,K] = (EṼ )U − UṼ ,

where

Ṽ = V ′[K] + [V, V0]− V ′
0 [Φf − λf ].

On the other hand, it is easy to acquire

[Φf − λf ,K] = (Φ′[K]− [K ′,Φ])f +Φ[f ,K] − λ[f ,K].
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Assume that

U ′[Φ[f ,K] − λ[f ,K]] = (EV̂ )U − UN̂, V̂ |un=0 = 0,

then we can have

U ′[(Φ′[K]− [K ′,Φ])f ] = (EQ)U − UQ, Q|un=0 = 0.

So we obtain

(Φ′[K]− [K ′,Φ])f = 0,

which means the operator Φ is a strong symmetry of the equation un,t = K.

Corollary 1. The recursion operator of the BM hierarchy L is a strong and hereditary operator

of the equation (3.7).

Proof. It is easy to verify that

M ′[K0] = (EN0)M −MN0.

For any f ∈ V3, the equation

M ′[Lf − λf ] = (EV )M −MV

gives

(pn − λ)vn,12 + rnvn+1,13 = vn,21, vn+1,11 + qnvn+1,12 = vn,22, vn+1,12 = vn,23,

vn+1,22 − (pn − λ)vn,13 − qnvn,23 = vn,33, vn+1,31 + qnvn+1,32 = rnvn,12, vn+1,32 = rnvn,13,

and

Lf − λf = L1


vn,12

vn,13

vn,22

− λL2


vn,12

vn,13

vn,22

 , (4.5)

where V = (vn,ij) is a 3× 3 matrix. Obviously, the equation (4.5) has solutions

L−1
2 f =


vn,12

vn,13

vn,22

 .

Furthermore, we can deduce the other elements of the matrix V . From the Theorem 1 and

Theorem 2, we conclude that L is a strong and hereditary operator of the equation (3.7).
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4.2 Symmetry and Lie algebra structure

The two sets of symmetries called K− and τ−symmetries are formed by the isospectral and

nonisospectral flows of the BM lattice equation. Next, the Lie algebra structure of them will be

discussed. Since the time evolution matrices of the isospectral flow Km and the nonisospectral

flow σl are Nm and Pl respectively, we define:

Definition 4.

< Nm, Nl >= N ′
m[Kl]−N ′

l [Km] + [Nm, Nl],

< Nm, Pl >= N ′
m[σl]− P ′

l [Km] + [Nm, Pl]− λl−2(4λ3 + 27)Nm,λ,

< Pm, Pl >= P ′
m[σl]− P ′

l [σm] + [Pm, Pl] + λm−2(4λ3 + 27)Pl,λ − λl−2(4λ3 + 27)Pm,λ.

Theorem 3. The Lie products of the flows of the BM equation satisfy

M ′[[Km,Kl]] = (E < Nm, Nl >)M −M < Nm, Nl >, (4.7a)

M ′[[Km, σl]] = (E < Nm, Pl >)M −M < Nm, Pl >, (4.7b)

M ′[[σm, σl]] = (E < Pm, Pl >)M −M < Pm, Pl > +(l −m)λm+l−5(4λ3 + 27)2Mλ, (4.7c)

with boundary conditions

< Nm, Nl > |un=0 = 0, (4.8a)

< Pm, Pl > |un=0 = (l −m)(4Pm+l + 27Pm+l−3), (4.8b)

< Nm, Pl > |un=0 = 6λm+l(E1 − E2λ
−1 − 3

2
E3λ

−2)− 4(m+ 1)Nm+l − 27mNm+l−3. (4.8c)

Proof. We only prove (4.7c) and (4.8b), the others can be obtained similarly. By the Gâteaux

derivatives in the direction σl with respect to un, we have

(M ′[σm])′[σl] = (EPm)′[σl]M + (EPm)(EPl)M − (EPm)MPl − (EPl)MPm

+ λl−2(4λ3 + 27)[(EPm)Mλ −MλPm] + λl+m−4(4λ3 + 27)2Mλ,λ

+ λm−2(4λ3 + 27){(EPl)λM + (EPl)Mλ −MλPl −MPl,λ

+ [12λl + (4λ3 + 27)(l − 2)λl−3]Mλ}+ (MPl)Pm −MP
′
m[σl].
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Similarly,

(M ′[σl])
′[σm] = (EPl)

′[σm]M + (EPl)(EPm)M − (EPl)MPm − (EPm)MPl

+ λm−2(4λ3 + 27)[(EPl)Mλ −MλPl] + λl+m−4(4λ3 + 27)2Mλ,λ

+ λl−2(4λ3 + 27){(EPm)λM + (EPm)Mλ −MλPm −MPm,λ

+ [12λm + (4λ3 + 27)(m− 2)λm−3]Mλ}+ (MPm)Pl −MP
′
l [σm].

So

M ′[[σm, σl]]

=(M ′[σm])′[σl]− (M ′[σl])
′[σm]

=(EPm)′[σl]M − (EPl)
′[σm]M +MP ′

l [σm]−MP ′
m[σl] + (l −m)(4λ3 + 27)2λm+l−5Mλ

− λl−2(4λ3 + 27)[(EPm)λM −MPm,λ] + λm−2(4λ3 + 27)[(EPl)λM −MPl,λ].

On the other side,

(E < Pm, Pl >)M −M < Pm, Pl > +(l −m)λm+l−5(4λ3 + 27)2Mλ

={E[P ′
m[σl]− P ′

l [σm] + [Pm, Pl] + λm−2(4λ3 + 27)Pl,λ − λl−2(4λ3 + 27)Pm,λ]}M

−M [P ′
m[σl]− P ′

l [σm] + [Pm, Pl] + λm−2(4λ3 + 27)Pl,λ − λl−2(4λ3 + 27)Pm,λ]

+ (l −m)λm+l−5(43 + 27)2Mλ

=(EPm)′[σl]M − (EPl)
′[σm]M +MP ′

l [σm]−MP ′
m[σl] + (l −m)(4λ3 + 27)2λm+l−5Mλ

− λl−2(4λ3 + 27)((EPm)λM −MPm,λ) + λm−2(4λ3 + 27)((EPl)λM −MPl,λ).

That is to say (4.7c) is correct.

Now, let us verify (4.8b). For

Pl|un=0 =


−2(n− 1)λ2 9(n− 1) 6nλ

(−3n+ 6)λ −2nλ2 9n

9(n− 2) 6(n− 1)λ (4n− 2)λ2

λl−2,
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then

< Pm, Pl > |un=0

=[P ′
m[σl]− P ′

l [σm] + [Pm, Pl] + λm−2(4λ3 + 27)Pl,λ − λl−2(4λ3 + 27)Pm,λ]|un=0

=[λm−2(4λ3 + 27)Pl,λ − λl−2(4λ3 + 27)Pm,λ]|un=0

=(l −m)λm+l−5(4λ3 + 27)


−2(n− 1)λ2 9(n− 1) 6nλ

(−3n+ 6)λ −2nλ2 9n

9(n− 2) 6(n− 1) (4n− 2)λ2


=(l −m)(4Pm+l + 27Pm+l−3)|un=0.

The Lie algebra relation of two flows Km and σl of the BM lattice equations is discussed

below.

Theorem 4. For the isospectral flow Km and the non-isospectral flow σl of the BM lattice

equation, we have the following relations:

[Km,Kl]|un=0 = 0, (4.9a)

[Km, σl]|un = −4(m+ 1)Km+l − 27mKm+l−3, (4.9b)

[σm, σl]|un = (l −m)(4σm+l + 27σm+l−3), (4.9c)

and also have the following form:

< Nm, Nl >= 0, (4.10a)

< Nm, Pl >=− 4(m+ 1)Nm+l − 27mNm+l−3 + 6λm+l(E1 − E2λ
−1 − 3

2
E3λ

−2), (4.10b)

< Pm, Pl >= (l −m)(4Pm+l + 27Pm+l−3), (4.10c)

in which m = 0, 1, 2, · · · and also K−1 = 0, but l = 2, 3, · · · .

15



Proof. In the light of Theorem 1, only admitting zero solution, comparing (4.7a) and (4.8a), we

can get (4.9a) and (4.10a) are right.

Setting

X̃ = [Km, σl] + 4(m+ 1)Km+l + 27mKm+l−3,

Ã =< Nm, Pl > +4(m+ 1)Nm+l + 27mNm+l−3,

then we find that

M ′[[Km, σl] + 4(m+ 1)Km+l + 27mKm+l−3]

=[E(< Nm, Pl > +4(m+ 1)Nm+l + 27mNm+l−3)]M −M [< Nm, Pl >

+ 4(m+ 1)Nm+l + 27mNm+l−3]

and satisfy

(< Nm, Pl > +4(m+ 1)Nm+l + 27mNm+l−3)|un=0 = 6λm+l(E1 − E2λ
−1 − 3

2
E3λ

−2).

which have only zero solutions X̃ = 0 and

Ã = −9E3λ
m+l−2 − 6E2λ

m+l−1 + 6E1λ
m+l

that means (4.9b) and (4.10b) are valid. In the similarly way, we can prove (4.9c) and (4.10c)

are correct.

By virtue of the above results, it is very easy to obtain two sets of symmetries and their Lie

algebra for any equation in the isospectral BM equation hierarchy.

Theorem 5. There are two sets of symmetries {Km} and

τ lm = −4(l + 1)tlKl+m − 27ltlKl+m−3 + σm,

where l = 0, 1, 2, · · · ,m = 2, 3, · · · ,K−1 = 0, which we called K-symmetries and τ -symmetries,

respectively. They construct a Lie algebra which satisfy the following Lie product relations:

[Km,Kk]|un = 0,

[Km, T l
k]|un = −4(m+ 1)Km+k − 27mKm+k−3,

[T l
m, T l

k]|un = (k −m)(4T l
m+k + 27T l

m+k−3).
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5 Conclusion

In this paper, the nonisospectral soliton equation hierarchy of a discrete 3× 3 spectral problem

is first presented by taking the BM spectral problem as example. To achieve this goal, we

select the relation of the spectral parameter λ and t as λtk = −4λk+1 − 27λk−2 (k ≥ 2).

The nonisospectral soliton equation hierarchy together with isospectral one are formed the K-

symmetries and τ -symmetries of the BM equation respectively. The infinite-dimensional Lie

algebra are constructed by the two sets of symmetries.
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