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Abstract 17 

Aerosol type plays a critical role in the relationship between aerosol optical depth (AOD) and 18 

particulate matter (PM) mass concentration. Here, we present a mathematical formulation of how 19 

PM2.5 is related to AOD; when simplified to a linear equation, it reveals a functional dependence 20 

of the slope on aerosol type, hygroscopic growth, and boundary layer height, while the influence 21 

of the vertical aerosol profile is embedded in the intercept. We further employed a daily averaged 22 

AERONET measurement training dataset to develop a Normalized Gradient Aerosol Index 23 

(NGAI) for classifying sub-aerosol-types: mineral dust (MD), urban-industrial pollution (U/I) 24 

and biomass burning (BB). By distinguishing the aerosol subtypes beforehand, the derived AOD-25 

PM2.5 linear regressions were significantly improved, demonstrating that NGAI can exploit the 26 

difference in aerosol hygroscopicity and improve the surface dry PM2.5 estimations. In addition, 27 

the hygroscopic growth factor, f(RH), can be estimated based on the slope (𝛽1) of the AOD-28 

PM2.5 expression.  29 

Keywords: PM2.5; Aerosol optical depth; Hygroscopicity; Aerosol type; NGAI 30 

Plain Language Summary 31 

Satellite observations provide an alternative way to depict the spatial distribution surface PM2.5. 32 

This study derived a mathematical relationship between satellite column aerosol optical depth 33 

(AOD) and ground level-dry PM2.5, revealing the importance of aerosol type, hygroscopic 34 

growth, and boundary layer height. Furthermore, based on the co-variation of AE and AOD 35 

resulting from particle growth and photochemical aging, the new aerosol index is proposed to 36 

differentiate urban-industrial pollution and biomass burning and improve the accuracy of surface 37 

dry-PM2.5 estimations. Specifically, the hygroscopic growth factor can also be retrieved based on 38 

the AOD-PM2.5 relationship. 39 

1 Introduction 40 

In the past decades, fine particulate matter (PM2.5), defined as aerosols with an 41 

aerodynamic diameter of less than 2.5 µm, has attracted public attention due to its adverse effects 42 

on both human health and the environment (Sancini et al., 2014). Ground-level monitoring 43 

networks worldwide characterize PM2.5 dry-mass concentrations as a metric for air quality 44 

assessments and epidemiological studies (Boldo et al., 2011; Kloog et al., 2011; Liang et al., 45 

2016). However, PM concentrations are highly variable on a spatiotemporal scale and not 46 

adequately covered by current monitoring networks. To supplement and extend data coverage, 47 

satellite remote sensing provides an alternative method to monitor PM on a global scale (Chu et 48 

al., 2003; Wang & Christopher, 2003; Liu et al., 2007; Kaskaoutis et al., 2007; You et al., 2016; 49 

Lin et al., 2020; Stowell et al., 2020).  50 

One of the most relevant satellite products, the aerosol optical depth (AOD), has been 51 

widely used to estimate surface dry-PM2.5. Essentially, AOD is an integration of the ambient 52 

extinction coefficient due to aerosols. However, satellite AOD retrievals are only applicable for 53 

cloud-free conditions. Moreover, there is an inherent mismatch between spatially averaged 54 

satellite AOD at a single time point and temporally averaged near-surface PM2.5 at a single 55 

spatial point. Another issue is the variation in the contribution of PM2.5 to the total PM 56 

concentration and thus total AOD; this variability is often associated with hygroscopic and 57 

coagulation growth of aged fine particles leading to changes in particle size and the 58 

granulometric fraction (Cheng et al., 2015). Therefore, the AOD-PM2.5 relationship should be a 59 
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complicated function of aerosol type, extinction and hygroscopicity, and the vertical atmospheric 60 

structure (Tsai et al., 2011; Chu et al., 2013; Lin et al., 2015; Brock et al., 2016). The 61 

complexities of the AOD-PM relationship have also been recently summarized, among others, by 62 

Jin et al. (2020) and deSouza et al. (2020). 63 

Many studies have focused on the regional relationships of satellite AOD and ground 64 

PM2.5. Due to the uncertainties associated with satellite AOD retrievals, these studies (e.g., 65 

aerosol type classification and AOD-PM2.5 relationship investigations) often incorporate ground 66 

truth measurements. The globally distributed AERONET (Aerosol Robotic Network), a sun-67 

photometer network, provides near-real-time, multi-spectral observations of aerosol optical 68 

properties as an adequate ground-truthing option (Holben et al., 1998). Classification for major 69 

aerosol types, including anthropogenic urban-industrial pollution (U/I), biomass burning (BB), 70 

sea salt, and mineral dust (MD) (Bellouin et al., 2005), are routinely performed by using 71 

AERONET observations of fine-mode fraction (FMF) and Å ngström exponent (AE), which is 72 

inversely related to average particle radius. However, since U/I and BB aerosols have similar 73 

FMFs and are therefore challenging to differentiate, a two-dimensional clustering analysis is 74 

often applied to better distinguish U/I and BB aerosols. Also, spectral curvature information has 75 

been used for partitioning fine/coarse mode aerosols (O’Neill et al., 2003), where Hansell et al. 76 

(2014) demonstrated that the spectral derivative could be used to resolve distinctions in aerosol 77 

properties, implying a use for also classifying aerosol types.  78 

In this study, Normalized Gradient Aerosol Index (NGAI), also known as Normalized 79 

Derivative Aerosol Index (NDAI) proposed by Lin et al. (2016), is elaborated on further and 80 

applied to distinguish aerosol types before analyzing the AOD-PM2.5 relationship. The method 81 

used in the study is trained by AERONET daily averages for understanding the practicality of 82 

daily averages in the sub-aerosol-type classification. Finally, the influence of hygroscopic 83 

growth on specific aerosol types is quantified, thus clarifying the AOD-PM2.5 relationship and 84 

emphasizing the reliability of NGAI. 85 

2 Materials and Methods 86 

AOD, a dimensionless integral (Eqn. 1) of extinction coefficient from the surface to the 87 

top-of-atmosphere (TOA), is measured by ground-based sun photometers through transmitted 88 

radiance or retrieved through reflected radiance by satellite imaging sensors: 89 

𝐴𝑂𝐷 = (𝜆) = ∫ 𝜌(𝑧)𝜎𝑒𝑥𝑡(𝑧, 𝜆)𝑑𝑧
𝑇𝑂𝐴

0

 90 

(1) 91 

where 𝜏(𝜆) is AOD at wavelength 𝜆; 𝜌(𝑧) is PM mass concentration at altitude z (μg/m3); 92 

𝜎𝑒𝑥𝑡(𝑧, 𝜆) is aerosol mass extinction efficiency per unit mass (m2/μg). To eliminate the inherent 93 

mismatch between satellite AOD and surface PM data, this study used collocated ground-based 94 

sun photometers to investigate the AOD-PM2.5 relationship. It was generally assumed that 95 

aerosols are confined and well-mixed within the planetary boundary layer (PBL) (i.e., 𝜌 and 𝜎𝑒𝑥𝑡 96 

are constant over z). Nevertheless, the actual aerosol extinction coefficient is frequently not zero 97 

above the top of PBL and decreases with height. For improving surface PM2.5 estimations, the 98 

aerosol vertical profile from the top of the PBL was revised by an additional exponential decay 99 

in Eqn. 2 and integrated into Eqn. 3 (Tsai et al., 2011; Chu et al., 2013).  100 
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𝐴𝑂𝐷 = ∫ 𝜌𝜎𝑒𝑥𝑡𝑑𝑧 +
𝑃𝐵𝐿𝐻

0

∫ 𝜌𝜎𝑒𝑥𝑡𝑒−
𝑧−𝑃𝐵𝐿𝐻

𝐻 𝑑𝑧
𝑇𝑂𝐴

𝑃𝐵𝐿𝐻

 101 

(2) 102 

𝐴𝑂𝐷 = 𝜎𝑒𝑥𝑡(𝑃𝐵𝐿𝐻 + 𝐻) 103 

(3) 104 

where the characteristic height (H) is the vertical distance that the aerosol extinction 105 

coefficient decreases to 1/e of that at the top of PBL (PBLH). However, as revealed by 106 

comprehensive measurements via unmanned aerial vehicle (UAV), lidar, and radiosonde, 𝜌𝜎𝑒𝑥𝑡 107 

is not a constant even within the PBL (Tian et al., 2017). As a result, Lin et al. (2020) developed 108 

a log-normal model, and Li et al. (2016) applied an aerosol bottom isolation factor (as a function 109 

of PBLH) to account for the total aerosol vertical profile. In this study, the total aerosol vertical 110 

profile is expressed by an arbitrary 𝑔  function. Eqn. 3 can be rewritten as Eqn. 4 and rearranged 111 

as Eqn. 5 to estimate the surface PM2.5 concentration:  112 

𝐴𝑂𝐷 = 𝜎𝑒𝑥𝑡𝑃𝐵𝐿𝐻 − ∫ (𝜌𝜎𝑒𝑥𝑡 − 𝑔(𝑧))𝑑𝑧
𝑃𝐵𝐿𝐻

0

+ 𝑞 ∙ 𝜌𝜎𝑒𝑥𝑡𝐻 113 

(4) 114 

𝑃𝑀2.5 ≈ 𝜌 =
1

𝜎𝑑𝑟𝑦
𝑒𝑥𝑡 𝑓(𝑅𝐻)(𝑃𝐵𝐿𝐻 + 𝑎𝐻)

× AOD +
∫ (𝜌 − 𝑔(𝑧))𝑑𝑧

𝑃𝐵𝐿𝐻

0

(𝑃𝐵𝐿𝐻 + 𝑞 ∙ 𝐻)
 115 

= 𝛽1 × AOD + 𝛽0 116 

(5) 117 

As shown in the derivation, the surface dry-PM2.5 can be estimated by a simple linear 118 

function of AOD. For hygroscopic aerosols (e.g., sulfate- and nitrate-dominant), both particle 119 

size and extinction efficiency change in a non-linear behavior as the relative humidity (RH) 120 

increases. Therefore, 𝑓(𝑅𝐻) is included in Eqn. 5 to correct for the influence of hygroscopic 121 

growth (𝜎𝑑𝑟𝑦
𝑒𝑥𝑡 𝑓(𝑅𝐻) = 𝜎𝑒𝑥𝑡) and is specifically embedded in the slope, 𝛽1, of the AOD-PM2.5 122 

regression, which is impacted by PBLH; the influence of vertical aerosol profiles in the PBL is 123 

also buried in the intercept, 𝛽0. Through inspecting  𝛽1 and assuming the 𝑓(𝑅𝐻) equal to 1.0 at 124 

𝑅𝐻 ≤ 50%, f(RH) can be deduced by taking the ratio of 𝛽1. This idea for estimating f(RH) is 125 

proposed and tested for the first time in this study. 126 

2.1 Normalized Gradient Aerosol Index (NGAI) 127 

Atmospheric aerosols are generally classified according to their radiation absorptivity and 128 

size (Giles et al., 2012). AE (𝛼), a widely-used indicator for the aerosol type is defined as a 129 

function of the spectral wavelength: 130 

α(𝜆1, 𝜆2) = −
ln(𝜏(𝜆2) 𝜏(𝜆1)⁄ )

ln(𝜆2 𝜆1⁄ )
 131 

(6) 132 
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The dependency of AE on wavelength is mainly a result of the particle size distribution 133 

(PSD) and secondarily due to refractive indices (Eck et al., 1999, 2005; Gobbi et al., 2007; 134 

O’Neill et al., 2001). AE is sensitive to effective radius/diameter, known as surface mean 135 

diameter (Sauter mean diameter), particularly at < 0.25 𝜇𝑚 (Schuster et al., 2006), and is often 136 

used as a qualitative indicator of the aerosol particle size. Based on the relative cluster location in 137 

an AOD-AE diagram, dust and non-dust aerosols can be distinguished. Nevertheless, Kang et al. 138 

(2016) found that the contributions of the more fine-mode aerosols, such as U/I and BB type 139 

aerosols, are not necessarily changing significantly with AE. These two types are generally 140 

overlapped in the fine-mode region, while they behave differently during hygroscopic growth 141 

(Eck et al., 2005; Giles et al., 2012; Kumar et al., 2018; Lee et al., 2010).  142 

The derivative of AE (spectral curvature of AOD) with respect to ln 𝜆 has been further 143 

proposed to indicate the relative influence of fine/accumulation mode versus coarse mode (Eck 144 

et al., 1999, 2005), distinguish aerosol growth from cloud contamination, and observe aerosol 145 

humidification (Basart et al., 2009; Che et al., 2015). However, as shown in the two-dimensional 146 

AOD-AE clustering analysis, AE is a function of not only wavelength but also AOD. The 147 

derivative of AE to AOD could reveal the particle growth dynamics as well as photochemical 148 

aging during deteriorating situations. Therefore, an index based on the derivative of 𝛿(𝜆1, 𝜆2) 149 

with respect to AOD (so-called the Normalized Gradient Aerosol Index, NGAI) has been 150 

proposed by Lin et al. (2016) and applied in multiple studies (Lin et al., 2016; Owili et al., 2017). 151 

In this study, the concepts of "slope" (𝛿, changes in AOD with wavelength under linear scale) 152 

and "normalization" (changes in slope over changes in AOD) are presented: 153 

𝛿(𝜆1, 𝜆2) = −
𝜏(𝜆2) − 𝜏(𝜆1)

𝜆2 − 𝜆1
 154 

𝑁𝐺𝐴𝐼 = −
𝑑(𝛿(𝜆1, 𝜆2))

𝑑𝜏(𝜆3)
 155 

(7) 156 

Training by the AERONET data during event periods (Dataset I), the NGAI threshold is 157 

used to distinguish and sub-classify aerosol types previously indistinguishable by AE (i.e., U/I 158 

and BB). Furthermore, using different wavelength pairs for NGAI could provide additional 159 

information about the size distribution and fine-mode aerosol fraction.  160 

2.2 Ground-based measurements 161 

AERONET is a network of ground-based sun photometers providing a global, long-term 162 

dataset of total columnar AOD at standard aerosol wavelengths of 0.340, 0.380, 0.440, 0.500, 163 

0.675, 870, 1.020, and 1.640 µm (Holben et al., 1998; Giles et al., 2019). A sun photometer 164 

measures the attenuation of direct solar radiation in the atmosphere; the data is used as a ground 165 

truth. Two datasets were employed in this study. Dataset I was for aerosol type classification 166 

(Level 2.0 daily averages used). The primary consideration for choosing AERONET sites for 167 

Dataset I are (1) the likelihood of a single dominant aerosol type at the site and (2) the temporal 168 

completeness of data during the study periods. AERONET level 2.0 daily averages were used in 169 

this study, and an AOD threshold of 0.4, suggested in other studies for event cases (Hsu et al., 170 

2006; Ge et al., 2010; M. Kim et al., 2016), was used. Dataset II sites were selected for 171 

establishing the AOD-PM2.5 relationship (Level 2.0 all points used, 10~15 minutes resolution). 172 

AERONET data were obtained from the AERONET website (http://aeronet.gsfc.nasa.gov) from 173 

http://aeronet.gsfc.nasa.gov/
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1997 to 2017. PM2.5 mass concentration data were downloaded from the Centre for Environment 174 

Monitoring of Vietnam (http://www.cem.gov.vn/), Air Quality and Noise Management Bureau, 175 

Pollution Control Department, Thailand (http://www.air4thai.com/webV2/index.php), and 176 

Beijing Municipal Ecological and Environmental Monitoring Center 177 

(http://www.bjmemc.com.cn/; https://quotsoft.net/air/). PM2.5 concentrations were measured by 178 

either tapered element oscillating microbalance (TEOM) or beta attenuation monitor (BAM). 179 

Location and detailed information of the ground-based measurement data are listed in Table S1. 180 

3 Result and Discussion 181 

3.1 Optical characteristics of aerosol type 182 

 183 

Figure 1. The behavior of 𝛿 versus AOD at different paired wavelengths. Panel (a, c) and panel 184 

(b, d) are the shorter and longer wavelength pairs to the shortest and longest AOD wavelength, 185 

respectively. (c) shows the visual difference in AOD pair with increasing AOD. 186 

In this study, NGAI, the derivative of 𝛿 with respect to AOD, was first trained using 187 

AERONET daily averages from Dataset I and applied for the aerosol type classification. The 188 

NGAIs were calculated based on 𝛿 pairs of 0.44-0.67, 0.67-0.87, and 0.87-1.02 µm with respect 189 

to AOD wavelengths of 0.44, 0.67, 0.87, and 1.02 nm. As seen in Fig. 1, the distinguishable 190 

difference in NGAI between BB and U/I aerosols can be ascribed to the different rates of change 191 

in their physicochemical properties (full results for AE and 𝛿 variations are shown in Fig. S1 and 192 

Fig. S2). As concluded by Kaskaoutis et al. (2006), the co-variation of AE and AOD is the result 193 

of both particle growth (due to hygroscopicity, condensation, and coagulation) and 194 

http://www.cem.gov.vn/
http://www.air4thai.com/webV2/index.php
http://www.bjmemc.com.cn/
https://quotsoft.net/air/
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photochemical aging. Thus, NGAI reflects the evolution of PSD and chemical composition as 195 

AOD increases, implying the rate at which the aerosol physicochemical properties change during 196 

a deteriorating situation. Moreover, the 𝛿 behaviors of U/I and BB aerosols are more 197 

distinguishable in the short-wavelength pairs compared to the long-wavelength pairs. Thus, 198 

NGAI thresholds between U/I and BB aerosols were obtained by an unsupervised K-means 199 

clustering algorithm from Fig. 1(a) and Fig. 1(c). The value was -1.71 for NGAI(0.44-0.67, 0.44) 200 

with an accuracy of 72.5% (91.0% for BB; 50.7% for U/I), whereas the value for NGAI(0.44-201 

0.67, 1.02) was -6.04 with an accuracy of 75.6% (77.8% for BB; 73.1% for U/I). Notably, the 202 

difference between BB and U/I was enhanced for the AOD with a longer wavelength. Kaskaoutis 203 

et al. (2006) reported that the co-variation between AE and AOD at shorter wavelengths was 204 

more sensitive to fine-mode particle size, while those at longer wavelengths were more sensitive 205 

to fine-mode volume fraction. Although the wavelength pairs used in this study differed from 206 

those mentioned in Kaskaoutis et al. (2006), the observed behavior still concurs with the 207 

findings. The probability distributions of AE and NGAI revealed the wavelength effects as 208 

mentioned above (Figure 2). The combination of shorter-pair 𝛿 (AOD0.44-0.67) and longer-209 

wavelength AOD (AOD1.02) combined the influences from fine-mode particle size and volume 210 

fraction, intensifying the difference. 211 

 212 
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Figure 2. Box-and-violin plots of AE and NGAI for MD, U/I, and BB aerosols include median 213 

lines, boxes between 25 and 75 percentiles, and probability distribution shapes (The enclosed 214 

area is the same for all). 215 

3.2 AOD-PM2.5 relationship 216 

The impact of the NGAI-based aerosol type classification, derived above, on the 217 

relationship between AOD and groud PM2.5 concentrations in Dataset II was then analyzed. Root 218 

Mean Square Error (RMSE) values were determined from the deviations of measured vs. 219 

predicted values from AOD-PM2.5 regressions. Without NGAI classification, a moderate 220 

coefficient of determination (R2 = 0.45) with an RMSE of around 60 μg/m3 was found in Beijing 221 

during the period influenced by dust storms (Figure S3a). For urban areas, a much better 222 

correlation (R2 = 0.65) and RMSE (~31 μg/m3) were observed (Figure S3b). For Chiang Mai, 223 

where BB was expected to be the dominant aerosol type, the best correlation (R2 = 0.74) with the 224 

lowest RMSE of 10.5 μg/m3 was observed (Figure S3c). The decreasing slopes and increasing R2 225 

for expected U/I-dominant and BB-dominant cases suggest a consistent aerosol type with high 226 

FMF. Thus, aerosol classification by NGAI, rather than classification simply through location 227 

and time, improved the AOD-PM2.5 relationship. As seen in Figure S3d, RMSE was reduced 228 

from ~60 to ~40 μg/m3, and R2 increased to 0.81 for the MD aerosol type, despite Zheng et al. 229 

(2017) concluding that coarse non-absorbing aerosols would induce the lowest correlation 230 

between AOD and PM2.5. To note, only 6% of the Beijing data (18/262) in Dataset II qualified as 231 

MD aerosol type by NGAI, suggesting Beijing may not be a good study area for MD aerosols. 232 

For the U/I and BB datasets, comparing the pre- and post-NGAI classification data (Fig. S3b, c 233 

vs. Fig. S3e, f), the correlations and RMSE were not significantly improved because a single 234 

aerosol type already dominated the data sets. The U/I Dataset exhibited the lowest AOD to PM2.5 235 

correlation, which may be due to the influences of complex hygroscopic behavior on aerosol 236 

optical properties. Nevertheless, after NGAI classification, the AOD-PM2.5 regression intercept 237 

decreased for all aerosol types, particularly MD and BB cases.  238 

To further elucidate the AOD-PM2.5 relationship, the hygroscopic growth factor, f(RH), 239 

was quantified. However, since the aerosol hygroscopicity varies with chemical compositions, 240 

applying f(RH) for all types of aerosols could cause over-correction. U/I aerosol composition is 241 

typically dominated by the hygroscopic components, such as sulfate and nitrate, while fresh BB 242 

aerosols are more hydrophobic and expected to have a smaller f(RH). The lesser degree of 243 

sensitivity of BB aerosol to RH was evident from the relatively unchanging slope (𝛽1) and 244 

intercept (𝛽0) of the AOD-PM2.5 relationship in Chiang Mai up to RH ~ 80% (Table 1). On the 245 

other hand, 𝛽1 decreased and 𝛽0 increased with increasing RH in U/I-dominant conditions. This 246 

finding further demonstrates the feasibility of NGAI and stresses the importance of deriving 247 

f(RH) for each NGAI sub-classified aerosol type. Jung et al. (2021) parameterized the size 248 

dependency of f(RH) for log-normal distributed aerosols by PSD modeling and applied a simple 249 

quadratic function for f(RH). Based on Eqn. 5, 𝛽1 is inversely proportional to f(RH). Therefore, 250 

normalized 1/𝛽1 values (𝛽1(𝑅𝐻 < 50%)/𝛽1(𝑅𝐻)) of U/I aerosols in this study were empirically 251 

fitted with respect to the corresponding RH levels (Figure S4a).  252 

𝑓(𝑅𝐻) =
𝛽1(𝑅𝐻 < 50%)

𝛽1(𝑅𝐻)
= 0.612(1 − 𝑅𝐻)−0.714, 𝑓or 𝑅𝐻 > 50%  253 

(8) 254 
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Our results show a 𝑓(𝑅𝐻 ≥ 80%) ~2.57 for U/I-dominated aerosols, consistent with 255 

earlier publications (Kotchenruther et al., 1999; J. Kim et al., 2006; X. Liu et al., 2008). 256 

Furthermore, 𝛽0 values of U/I-dominant conditions were larger than of BB-dominant conditions, 257 

which may result from a lower PBLH or inhomogeneous condition for U/I aerosols (i.e., the 258 

accumulation of PM near the surface leading to a steep decrease of PM2.5 from the surface to the 259 

top of the PBLH; 𝑞 in Eqn. 5). U/I aerosols are emitted from the surface and tend to accumulate 260 

there, while BB aerosols are carried to the upper atmosphere by thermal convection, likely 261 

causing such differences in 𝛽0. Thus, the ability of NGAI classification to distinguish U/I and 262 

BB aerosols is further supported by segregating the data based on RH levels before regressing 263 

the AOD-PM2.5 data. 264 

Table 1. AOD-PM2.5 aerosol type regression models a separated by RH level 265 

Aerosol 

type 

RH 

(%) 
N 𝛽0 𝛽1 R2 RMSE p-value 𝑓(𝑅𝐻) 

U/I ≤50 b 14 1.90 65.11 0.48 5.02 <0.01 1.00 

 50–60 33 12.21 59.56 0.72 23.00 <0.01 1.09 

 60–70 43 21.35 57.57 0.76 22.53 <0.01 1.13 

 70–80 61 28.40 37.58 0.49 32.13 <0.01 1.73 

 ≥80 34 34.06 25.30 0.46 23.66 <0.01 2.57 

BB 50–60 47 4.15 53.37 0.73 9.47 <0.01 1.00 

 60–70 38 4.07 49.57 0.74 12.18 <0.01 1.07 

 70–80c 39 16.93 26.45 0.35 10.74 <0.01 -- 

 ≥60 95 5.09 45.43 0.76 10.76 <0.01 1.17 

 ≥80 22 7.82 36.37 0.92 2.19 <0.01 1.47 

a 𝑃𝑀2.5 = 𝛽1 × 𝐴𝑂𝐷 + 𝛽0 

b a few points at RH < 50% 

c low R2 value 

 266 

4 Conclusions 267 

A mathematical framework for (i) a unique aerosol type classification index, NGAI, and 268 

(ii) an accounting of the vertical atmospheric structural parameters embedded in the AOD-PM2.5 269 

relationship were presented in this study. NGAI was established based on the co-variation of AE 270 

and AOD resulting from particle growth (due to hygroscopicity, condensation, and coagulation) 271 

and photochemical aging. It was then used to distinguish and sub-classify aerosol types (i.e., U/I 272 

and BB) previously indistinguishable by two-dimensional AOD-AE clustering analysis. After 273 

NGAI classification, larger 𝛽0 values in the AOD-PM2.5 regression were generally found for U/I 274 

aerosols, which may have been due to lower PBLH and more significant vertical heterogeneity 275 

than areas dominated by BB aerosols. In addition, 𝛽1 values were applied to estimate the optical 276 
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hygroscopic growth factor, f(RH), for different aerosol types. To validate the proposed scheme, 277 

AOD and PM data for mixed aerosol types in Beijing were tested. After applying NGAI 278 

classification and RH correction, the R2 value increased from 0.65 to 0.78, and RMSE was 279 

reduced (Figure S4b). Most of the improvement was associated with cases of high AOD but low 280 

PM, again suggesting high AOD can be caused by hygroscopic aerosol growth. Our results 281 

showed that the estimation of dry PM2.5 could be improved with the NGAI classification of 282 

aerosol type. In the future, the proposed approach can be applied in satellite AOD products for 283 

estimating surface dry-PM2.5 concentrations. 284 
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