Link
O’Brien, R.M. (2007). A caution regarding rules of thumb for variance
inflation factors. Quality & quantity, 41(5),
673-690.
Ojeda, V. S., Suarez, M. L., & Kitzberger, T.
(2007). Crown dieback events as key processes creating cavity habitat
for magellanic woodpeckers. Austral Ecology, 32(4), 436-445.doi.org/10.1111/j.1442-9993.2007.01705.xPakkala,
T., Tiainen, J., Piha, M., & Kouki, J. (2019). Hole life: survival
patterns and reuse of cavities made by the Lesser Spotted Woodpecker
Dendrocopos minor. Ardea, 107(2), 173-181.doi.org/10.5253/arde.v107i2.a4Pasinelli,
G. (2000). Oaks (Quercus sp.) and only oaks? Relations between habitat
structure and home range size of the middle spotted woodpecker
(Dendrocopos medius). Biological Conservation, 93(2), 227-235.doi.org/10.1016/S0006-3207(99)00137-8Pechacek,
P., & d’Oleire-Oltmanns, W. (2004). Habitat use of the three-toed
woodpecker in central Europe during the breeding period. Biological
Conservation, 116(3), 333-341.doi.org/10.1016/S0006-3207(03)00203-9Pechacek,
P., & Kristin, A. (2004). Comparative diets of adult and young
three‐toed woodpeckers in a European alpine forest community. The
Journal of wildlife management, 68(3), 683-693.doi.org/10.2193/0022-541X(2004)068[0683:CDOAAY]2.0.CO;2PRISM
Climate Group, Oregon State University, http://prism.oregonstate.edu,
created 31 Jul 2020.
R Core Team (2013). R: A language
and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. http://www.R-project.org/.
Rhodes, B., O’donnell, C., & Jamieson, I. (2009). Microclimate of
natural cavity nests and its implications for a threatened
secondary-cavity-nesting passerine of New Zealand, the South Island
Saddleback. The Condor, 111(3), 462-469.doi.org/10.1525/cond.2009.080030Rioux
Paquette, S., Pelletier, F., Garant, D., & Bélisle, M. (2014). Severe
recent decrease of adult body mass in a declining insectivorous bird
population. Proceedings of the Royal Society B: Biological Sciences,
281(1786), 20140649.doi.org/10.1098/rspb.2014.0649
Robles, H., & Martin, K. (2013). Resource quantity and quality
determine the inter-specific associations between ecosystem engineers
and resource users in a cavity-nest web. PLoS One, 8(9), e74694.doi.org/10.1371/journal.pone.0074694Rodewald,
A. D. (2004). Nest-searching cues and studies of nest-site selection and
nesting success. Journal of Field Ornithology, 75(1), 31-39.doi.org/10.1648/0273-8570-75.1.31
Rota, C. T., Rumble, M. A., Lehman, C. P., Kesler, D. C., & Millspaugh,
J. J. (2015). Apparent foraging success reflects habitat quality in an
irruptive species, the Black-backed Woodpecker. The Condor:
Ornithological Applications, 117(2), 178-191.doi.org/10.1650/CONDOR-14-112.1
Sauer, J. R., Link, W. A., Fallon, J. E., Pardieck, K. L., & Ziolkowski
Jr, D. J. (2013). The North American breeding bird survey 1966–2011:
summary analysis and species accounts. North American Fauna, 79(79),
1-32.doi.org/10.3996/nafa.79.0001Schaaf,
A. A. (2020). Effects of sun exposure and vegetation cover on woodpecker
nest orientation in subtropical forests of South America. Journal of
Ethology, 38(1), 117-120.doi:10.1007/s10164-019-00617-2Schroeder, E. L.,
Boal, C. W., & Glasscock, S. N. (2013). Nestling diets and provisioning
rates of sympatric golden-fronted and ladder-backed woodpeckers. The
Wilson Journal of Ornithology, 125(1), 188-192.doi.org/10.1676/12-041.1Seavy,
N. E., Burnett, R. D., & Taille, P. J. (2012). Black‐backed woodpecker
nest‐tree preference in burned forests of the Sierra Nevada, California.
Wildlife Society Bulletin, 36(4), 722-728.doi.org/10.1002/wsb.210Sedgwick,
J. A., & Knopf, F. L. (1990). Habitat relationships and nest site
characteristics of cavity-nesting birds in cottonwood floodplains. The
Journal of wildlife management, 112-124.doi:
10.2307/3808910
Showalter, C. R., & Whitmore, R. C. (2002). The effect of gypsy moth
defoliation on cavity-nesting bird communities. Forest Science, 48(2),
273-281.