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Abstract

Quercus mongolica (Fagaceae) is an important ecological and economic tree species in East

Asia. It has excellent biological characteristics, such as hardwood, strong resistance to biotic

and abiotic stresses. The availability of a high-quality genome will help to further reveal the

underlying mechanisms.  Here we assemble the first chromosome-level reference genome of

Q. mongolica. The final assembled genome was 809.84 Mb with contig and scaffold N50s of

2.64 Mb and 66.74 Mb, respectively. Hi-C scaffolding anchored twelve pseudochromosomes,

accounting for 95.65% of the assembled genome. Moreover, 68.5% and 5.4% of the genomic

sequence  were  transposon  elements  and  tandem repeat  elements,  respectively.  A total  of

36,553 protein coding genes were predicted, of which 94.89% were functionally annotated.‐

Comparative genomics analysis indicated that  Q. mongolica was more closely related to  Q.

robur than to either Q. lobata or Q. suber. Q. mongolica and Q. robur diverged ~10.2 Mya.

Q. mongolica had undergone two whole-genome duplications which occurred earlier than Q.

robur.  We  identified  multiple  genes  in  38  positive  selection  genes,  including  pyridoxal

reductase  1  (PLR1)  and switch  subunit  3 (SWI3B).  In  addition,  we  identified  496  genes
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related to wood formation,  88 WRKY genes,  and 124 NAC genes in  Q. mongolica.  This

genomic  information  will  be  an  important  molecular  resource  for  further  exploring  the

biological  characteristics and adaptive evolution of  Q. mongolica. Meanwhile, the genomic

resource from Asian oak will also contribute to the study of the taxonomy, evolution and

conservation of Quercus species.

KEYWORDS: Quercus  mongolica,  chromosome-scale  genome  assembly,  genome  annotation,

comparative genomic analysis, PacBio Sequel II

1 | INTRODUCTION

Oaks (genus Quercus, Fagaceae) are a major component of forests and savanna ecosystems in

the Northern Hemisphere (Cavender-Bares, 2019). They are distributed below 4,000 m above

sea level and between the equator and 60 degrees north latitude  (Kremer & Hipp, 2019).

These long-lived species  have high genetic  diversity  due to  extensive gene flow between

species (Pang et al., 2019). At present, there are more than 435 Quercus species in Asia, North

America  and  Europe  (Cannon  et  al.,  2018).  Because  of  their  ecological  dominance  and

remarkable diversity, and the increasing phylogenetic, genomic, and ecological data resources

that are available, oaks have become an important model for exploring the genomic footprint

of  evolutionary  and ecological  changes  (Cavender-Bares  et  al.,  2015;  Lesur  et  al.,  2015;

Cavender-Bares, 2019). To date, the genome sequence of three Quercus species from Europe

and North America has  been published,  namely  Q. suber (Ramos et  al.,  2018),  Q. robur

(Plomion et al., 2016,2017), Q. lobata (Sork et al., 2016). However, the genomic resources for
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Asian oak species are still insufficient, which seriously hinders research on the taxonomy,

evolution, conservsation, ecology, and genetics of Quercus species.

The Mongolian oak, Quercus mongolica, is a deciduous tree commonly found in cold

temperate zones of Asia. It is mainly distributed in the Russian Far East, Japanese Islands,

Korean  Peninsula,  and  Northern  China  (Chen  &  Huang,  1998). Q.  mongolica is  highly

resistant to pests, diseases, coldness and drought (Hao & Yang, 2016). Moreover, its wood is

hard  and  corrosion  resistant,  and  thus  an  excellent  material  for  making  vehicles,  ships,

buildings, and furniture (Li, 2003). Its leaves are rich in nutrients, where 17 amino acids are

found and contents of crude protein, fat, and fiber and calcium concentration are higher than

those of maize, making them a type of high-quality raw material for feeds for deer, cattle, and

sheep  (Mi et al., 1999). Meanwhile, oak leaf is also used for breeding the  Chinese Tussah

Silkmoth (Antheraea pernyi) (Jiang et al., 2019). Oak fruit contains more than 55% of starch,

and its total amount of unsaturated fatty acids can reach 81%, which is close to that of corn,

so it is often used in food, feed, and starch industries  (Ao et al., 1998). In addition, many

triterpenoids,  phenolic  glycosides,  flavonoids,  and  tannins  have  been  isolated  from  Q.

mongolica.  These  bioactive  substances  have  anti-oxidation,  anti-tumor,  anti-inflammatory,

and anti-fungal activities (Ishimaru et al., 1987; Omar et al., 2013; Kim et al., 2015; Zhou et

al., 2017; Yin et al., 2019).

Q. mongolica has shown an excellent potential to be applied in ecology, economy, and

medicine. Progress has been made in using Q. mongolica to study forest ecology (Zeng et al.,

2016; Watanabe et al., 2018; Zhang et al., 2020) (Watanabe et al., 2010; Cannon et al., 2018),

evolutionary biology  (Liao et al., 2019; Nagamitsu et al., 2019), and bioorganic chemistry
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(Yin et al., 2019; Min et al., 2020) in Asian countries like China, Japan, and South Korea.

However, the molecular biology of  Q. mongolica is still in its infancy, and the mechanisms

underlying some excellent biological properties (including hard wood, strong resistance to

biotic and abiotic stress) are still unclear. The insufficient development of genome resources

has  seriously  restricted  the  biological research,  conservation  and genome breeding of  this

species. In order to solve these problems, a high-quality  Q. mongolica genome is urgently

needed.

In this  study,  we assembled a  chromosome-level  reference genome of  Q. mongolica

based  on  the  combination  strategy  of  Illumina  short-read,  PacBio  long-read,  and  high-

throughput chromosome conformation capture (Hi-C) sequencing technology. This is the first

report of the high-quality genome of Asian oak. Genomic resources for this species will help

to study the taxonomy and evolution of oaks, and at the same time provide valuable genetic

information for the protection and utilization of Q. mongolica germplasm.

2 | MATERIALS AND METHODS

2.1 | Sample collection 

A healthy and mature Q. mongolica individual tree was chosen for sampling from the campus

of Shenyang Agricultural University (123°34′24″E, 41°49′19″N), Liaoning province, China.

The tree was 5 m tall with a chest diameter of 19.7 cm (Figure 1A). Its fruit was collected in

September 2018 (Figure 1E). Samples of its roots, twigs, leaves, female and male flowers

(Figure 1B, C, D) were collected from the same tree in May 2019. All samples were rinsed
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with  deionized  water,  frozen  in  liquid  nitrogen,  and stored  at  -80℃ for  DNA and RNA

extraction. 

2.2 | Library construction and sequencing

Genomic  DNA of Q.  mongolica were  extracted  from leaves  and  randomly  sheared  into

fragments of ~350 bp in length which was then used for library construction for Illumina

paired‐end sequencing according to the manufacturer's instructions.  Basically the libraries

were prepared following these steps: DNA fragmentation by sonication, end-polishing of the

DNA fragments, A-tailing and ligation with the full-length adapters for Illumina sequencing,

PCR  amplification,  and  purification  of  PCR  products  (AMPure  XP bead  system).  The

libraries  were  analyzed for  size distribution  using  an Agilent  2100 Bioanalyzer  and were

quantified using real-time PCR. Then the libraries were sequenced using the Illumina HiSeq

X-ten platform.

After  examination  of  the  quality  of  isolated  DNA from  the  fresh  leaves  from  Q.

mongolica, the library of 20 kb was constructed using a SMRTbell Express Template Prep Kit

2.0 (Pacific Biosciences, CA, USA). The construction includes DNA shearing, damage repair,

end repair, hairpin adapter ligation, and purification of the library. After quality control test, a

SMRTbell library was obtained. The library was sequenced using a single 8 M SMAT Cell on

the PacBio Sequel II platform (Pacific Biosciences, CA, USA) (PacBio Sequel II System). 

The Hi-C library was prepared using the method described previously (Xie et al., 2015).

In short, the library was constructed through the following steps: DNA cross-linking, Dpn II

digestion, cohesive end repair, DNA cyclization and purification and random shearing into
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300-500  bp fragments.  Avidin  magnetic  beads  were  used  to  capture  labeled  DNA.  After

quality  control  test  of  the  libraries  using  Qubit  2.0,  an Agilent  2100 instrument  (Agilent

Technologies,  CA,  USA),  and  q-PCR,  150  bp  PE  sequencing  of  these  libraries  were

performed on the Illumina HiSeq X Ten platform. 

For PacBio Iso-Seq, full-length complementary DNA was synthesized from a total RNA

sample  where  the  equal  amounts  of  total  RNA from  different  tissues  were  mixed.  The

SMARTer PCR cDNA Synthesis Kit (Takara Bio) was used for cDNA synthesis. The cDNA

product was filtered using the BluePippin DNA Size Selection System (Sage Science). The

Iso-Seq libraries were constructed following the standard SMRT bell construction protocol

(Pacific Biosciences, CA, USA) and sequenced on the PacBio Sequel II platform (Pacific

Biosciences, CA, USA).

2.3 | Genome survey and de novo assembly

The genome size of Q. mongolica was estimated by the k-mer method (Liu et al., 2013) using

sequencing data from Illumina DNA library. Quality-filtered reads were subjected to 17-mer

frequency distribution analysis using the GCE program. 

The PacBio SMRT-Analysis package (https://www.pacb.com) was used for the quality

control of the raw polymerase reads; sequencing adaptors and low-quality short reads were

removed. The remaining high-quality subreads of Q. mongolica were initially assembled by

Falcon v.2.0  (Chin et al., 2013) software with the following parameters: seed_coverage=55

and Length_cutoff_pr=15k.  Then the  original  assembly  results  were  polished with  Arrow

embed smrtlink 7.0 based on corrected subreads. Finally, the polished sequences were further
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corrected with reference to the Illumina reads with Pilon  (Walker  et  al.,  2014) using two

rounds.  The  draft  genome  was  obtained  by  filtering  the  heterozygous  redundant  contigs

through Purge_haplotigs (Roach et al., 2018). 

2.4 | Chromosome-scale assembly with Hi-C data

Low-quality  Hi-C  reads  were  filtered  and  the  remaining  reads  were  aligned  to  the  draft

genome  of  Q.  mongolica by  BWA v.0.7.8  (Li  &  Durbin,  2009) software  using  default

parameters. Reads were excluded from subsequent analysis if they did not align within 500 bp

of a restriction site. After assisted assembly of the genome, interaction maps were constructed

using Juicer v.1.6.2 (Durand et al., 2016) and visually using JucieBox v.1.8.8 (Durand et al.,

2016).  The  preassembled  contigs  were  clustered,  ordered  and  directed  onto  the

pseudochromosomes  with  LACHESIS  software  (Burton  et  al.,  2013).  To  improve  the

chromosome-scale assembly quality,  manual adjustment of orientation errors with obvious

discrete chromatin interaction patterns was performed.

2.5 | Genome assembly quality assessment

To assess the quality of genome assembly, the Continuous Long Reads (CLR) subreads of Q.

mongolica were selected and aligned back to the assembled genome using minimap2 v.2.5

(Li, 2018). In addition, BUSCO v.3.0.2 (Simão et al., 2015) was used to evaluate the integrity

of the gene regions in the whole assembly results. 

2.6 | Repeat elements annotation
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Annotation of the repetitive sequences in  Q. mongolica genome was completed using two

approaches, homology based and de novo prediction. To construct a de novo repeat library, the

specific  transposable  elements  in  our  assembly  were  first  screened  using  RepeatModeler

(http://www.repeatmasker.org/RepeatModeler.html),  Piler  (Edgar  &  Myers,  2005),

RepeatScout  (Price  et  al.,  2005),  and  LTR_FINDER  v.1.0.5  (Zhao  & Hao,  2007).  Then

RepeatMasker  (Smit  &  Hubley,  2019) was  applied  to  perform a  homology-based  repeat

search  using  both  the  de  novo repeat  library  and the  known Repbase  (Bao et  al.,  2015)

transposable elements database. Tandem repeat sequences were annotated by Tendem Repeat

Finder (Gary, 1999).

2.7 | Gene prediction and functional annotation

Three methods (de novo, homology-based and Iso-Seq-based predictions) were integrated to

annotate protein-coding genes. Augustus v.3.12 (Mario et al., 2004) and GlimmerHMM v.3.03

(Majoros  et  al.,  2004) were  utilized  for  de  novo prediction  of  gene  structures.  For  the

homology-based  prediction,  protein  sequences  from  six  related  plant  species  were

downloaded from public databases, including Castanea mollissima (Xing et al., 2019), Fagus

sylvatica (Mishra et al., 2018), Q. lobate (Sork et al., 2016), Q. suber (Ramos et al., 2018), Q.

robur (Plomion et al., 2017), and Populus trichocarpa (Tuskan et al., 2006). These data were

aligned against the  Q. mongolica genome using TBLASTN v.2.60  (Gertz et al., 2006). We

utilized the method of Minoche et al. (Minoche et al., 2015) to make the prediction based on

Iso-Seq. MAKER v.3.0 (Cantarel et al., 2008) was used to generate a non-redundant gene set

from the above three approaches. All protein-coding genes were aligned to two integrated
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protein sequence databases: SwissProt and NR. Protein domains were annotated by searching

against the InterPro v.32.0 using InterProScan (Mulder & Apweiler, 2007), and Pfam v.32.0

(El-Gebali et al., 2019) databases by HMMER. The Gene Ontology (GO) (Ashburner et al.,

2000) terms for each gene were obtained from the corresponding InterPro or Pfam entries.

The pathways in which the genes might be involved were assigned by BLAST against the

KEGG databases  (Minoru  & Susumu,  2000),  with  an  E-value  cutoff  of  1e-5.  Functional

annotation results from these two strategies were then merged.

2.8 | Non-coding RNA annotation

The tRNAscan-SE v.1.3.1 (Peter et al., 2005) was used to evaluate the tRNAs in Q. mongolica

genome. Based on the high degree of conservation of ribosomal RNAs (rRNAs), the rRNAs

of related  species  were selected  as  reference  sequences,  and the  rRNAs in  Q. mongolica

genome was searched through BLASTN alignment. Sequences of microRNAs (miRNAs) and

small nuclear RNAs (snRNAs) in the genome were predicted based on the covariance model

of  the  Rfam family,  INFERNAL v.1.1  (Nawrocki  et  al.,  2009;  Nawrocki  & Eddy,  2013)

software in the Rfam database v.14.1 (Griffiths-Jones et al., 2005).

2.9 | Comparative genomics analysis

To study the evolutionary relationship between Q. mongolica and its related species, we first

identified and clustered the gene families of these 13 species. The original protein sequences

of the remaining 12 species (Q. lobate,  Q. robur, Q. suber, Betula pendula (Salojärvi et al.,

2017), C. mollissima,  Eucalyptus grandis  (Alexander A Myburg et al., 2014), F. sylvatica,
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Juglans regia (Martínez-García et al., 2016), Malus domestica (Velasco et al., 2010), Oryza

sativa  (International Rice Genome Sequencing Project, 2005),  P. trichocarpa,  Vitis vinifera

(Jaillon et al., 2007)) were downloaded from NCBI (Kitts et al., 2016) and GigaDB (Sneddon

et al., 2012) databases. Next, the longest transcript protein sequence for each gene was taken,

and similarity relationships between these protein sequences across species were determined

using  BLASTp  v.2.2.30  (e-value  set  to  1e-5)  (Camacho  et  al.,  2009).  To  ensure  the

comparison quality, those with identities < 30% or coverage < 50% were filtered out. Based

on sequence similarity, gene family clustering was completed by the OrthoMCL v.2.0.9 (Li et

al., 2003) process (expansion coefficient set to 1.5). 

After gene family clustering, single-copy protein sequences were retained if the genes

with amino acid length were greater than or equal to 100. MUSCLE v.3.8.31 (Edgar, 2004)

was  used  to  perform  multiple  sequence  alignments  on  the  genes  in  each  single-copy

homologous  gene  family.  Finally,  the  multi-sequence  alignment  results  were  merged  and

transformed to a super-gene alignment in PHYLIP format, and RAxML v.8.2.11 (Alexandros,

2014) was used to construct the evolutionary tree by maximum likelihood method. We also

used the constructed evolutionary tree along with the Time Tree (Sudhir et al., 2017) website

and  associated  literatures  to  obtain  time  correction  points.  The  software  r8s  v.1.7.1

(Sanderson, 2003) and the MCMCTREE program (from PAML v.4.9 (Yang, 2007) software

packages) were used to estimate the divergence time of these 13 species based on the penalty

likelihood method combined with the Bayesian relaxed molecular clock correction method. 

CAFE (http://sourceforge.net/projects/cafehahnlab/)  (Bie et  al.,  2006) with the default

parameters was used to calculate the expansion and contraction of orthologous gene families
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in genomes of the 13 species. Ka and Ks values were calculated for pairs of orthologous

genes using the CodeML utility within the PAML software package, and genes under positive

selection were detected with the branch-site model. 

2.10 | Gene family analysis

BLASTP  and  HMMER  (http://www.hmmer.org/)  were  used  to  search  for  homologous

proteins harboring conserved domains of related gene families in the  Q. mongolica genome

using an e-value threshold of <1e-10. The final deduced full-length amino acid sequences

were aligned using the MUSCLE program with default parameters. The phylogenetic tree was

constructed using RAxML v.8.2.11 and visualized using the Evolview web tool (Subramanian

et al., 2019). We performed a pathway enrichment analysis using the KEGG pathway database

(http://www.genome.jp/kegg) to identify enriched metabolic or signal transduction pathways

associated  with  plants.  The  classification  of  biological  terms  and  the  KEGG  pathway

enrichment analysis were completed with the clusterProfiler R package.

2.11 | Whole genome duplication analyses 

Protein sequences of Q. mongolica, Q. robur, P. trichocarpa, and V. vinifera were reciprocal

aligned  using  BLASTP  with  e-value  cutoff  of  1e-05.  For  each  genome  pair,  putative

paralogous  and  orthologous  genes  within  and  between  genomes  were  searched.  4DTV

(fourfold  degenerate  synonymous  sites  of  the  third  codons)  were  extracted  from  each

alignment and concatenated to generate one super-gene for each species. 4DTV values were

calculated  using  in-house  Perl  scripts.  The  4DTV range  was  determined  by  plotting  the
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distribution frequency histogram of 4DTV values.

3 | RESULTS AND DISCUSSION

3.1 | Genome sequencing and assembly

Q. mongolica is an important ecological and garden tree species in East Asia with a karyotype

of 2n = 24 chromosomes. We sequenced and assembled its genome using combination of

sequencing  technologies  (FigureS1,  Table  1).  Based  on  the  17-Kmer  analysis,  the  Q.

mongolica genome was estimated to be 842.80 Mb in size with a heterozygosity of 1.09% and

repeat of 62.10% (Table S1 and Figure S2), close to that reported for other Fagaceae species

(Table S2). A total of 86.9 Gb subreads from PacBio Sequel II were used for the initial contig

assembly using FALCON software, which resulted in a total sequence length of 809.83 Mb,

with a contig N50 size of 2.64 Mb. The initial contigs were polished with PacBio long reads

and  Illumina  short  reads.  Subsequently,  102.2  Gb  clean  reads  were  obtained  from  Hi-C

sequencing, providing 121.8x coverage of the  Q. mongolica genome. The polished contigs

were  assembled into  12 pseudomolecules  by  LACHESIS software  resulting  in  774.59Mb

(95.65%) sequences distributed on 12 pseudochromosomes with scaffold N50s of 66.74Mb

(Figure S3). 

To assess the quality of the assembled genome, three indicators were used. First, the final

assembled genome size of Q. mongolica (809.84 Mb) was similar to the size calculated based

on the K‐mer frequency distribution (842.80 Mb). Second, the subreads of the Continuous

Long Reads (CLR) of Q. mongolica were selected and aligned back to the assembled genome
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using  minimap2  v.2.5.  The  mapping  rate  and  coverage  rate  were  97.43%  and  99.77%,

respectively  (Table  S3).  Third,  we  performed  Benchmarking  Universal  Single‐Copy

Orthologs (BUSCO) analysis, and 93.3% of the eukaryotic single‐copy genes were detected

in  the  assembled genome which was higher  than the most  reported  genomes  of  Quercus

species (Table S4). The high contiguity and quality of the Q. mongolica genome will therefore

be of great value for further research on the evolution and genomic characteristics of Quercus

species.

3.2 | Genome annotation

Based on homologous and  de novo prediction, a total of 554.52 Mb of repetitive elements

occupying 68.46% of the Q. mongolica genome were annotated including 43.62Mb (5.38% of

the  genome)  of  tandem  repeat  sequences  and  531.67  Mb  (65.64%  of  the  genome)  of

transposable elements (Figure S4 and Table S5). The majority of the repeats are long terminal

repeats (LTRs) (44.07% of the genome) while the short interspersed nuclear elements (SINEs)

made up just 0.03% of the genome. In addition, long interspersed nuclear elements (LINEs)

and DNA elements comprised 8.27% and 15.82% of the genome, respectively (Table S5). 

We were able to annotate 36,553 protein-coding genes, with an average sequence length

of 6,084 bp (Figure S5 and Table S6) based on three methods (de novo, homology-based, and

Iso-Seq-based predictions).  On average,  each  predicted gene  contains  4.82 exons with  an

average sequence length of 268 bp. Approximately 94.89% of the genes were functionally

annotated by similarity searches against homologous sequences and protein domains (Table

S7). In addition, we identified noncoding RNA (ncRNA) genes, including 4,896 rRNA, 768
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tRNA, 129 miRNA, and 371 snRNA genes (Table S8). 

3.3 | Gene family clustering analysis

We performed orthologous clustering of the genes from Q. mongolica and 12 related species

using OrthoMCL. A total of 453 gene families were specific  to the  Q. mongolica  genome,

which were related to cellular processes, metabolism and signal transduction based on KEGG

enrichment  analysis  (Figure  S6  and  Table  S9).  The  complexity  of  gene  families  of  Q.

mongolica was then compared with three other Quercus species, Q. lobata, Q. robur, and Q.

suber. A total of 9,312 gene families were shared by the four  Quercus  species and most of

genes were involved in glycan biosynthesis, metabolism, environmental adaptation, and other

processes  (Figure  2A and  Table  S10).  Only  1,089 gene  families  were  specific  to  the  Q.

mongolica genome compared with the other three species and these were involved in cellular

and environmental information processing and other roles (Figure 2A and Table S11).

3.4 | Phylogenetic analysis

The phylogenetic relationship among  Q. mongolica  and 12 related species was determined

using a set of 242 single-copy genes. The results showed that Q. mongolica was more closely

related to  Q. robur than to either  Q. lobata or  Q. suber. The divergence time between  C.

mollissima and  Quercus species  was  estimated  to  be  20.6  million  years  ago,  while  Q.

mongolica and Q. robur separated 10.2 million years ago (Figure S6).

3.5 | Gene family expansion and contraction
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During the process of plant evolution, the expansion and contraction of gene families plays an

important role in driving phenotypic diversification and enhancing adaptability.  To further

understand the evolutionary dynamics of Q. mongolica genes, the expansion and contraction

of orthologous gene families in the genomes of  Q. mongolica and 12 related species was

compared using CAFE based on the default parameters. Based on this analysis, we detected

1,057  gene  families  that  have  undergone  expansion  and  706  gene  families  that  have

contracted in Q. mongolica (Figure 2B). The expanded gene families were mainly involved in

plant-pathogen  interactions,  linoleic  acid  metabolism,  ABC  transporters,  and  the  MAPK

signaling pathway (Table S12), while the gene families that contracted were mainly involved

in  plant-pathogen  interactions,  phenylpropanoid  biosynthesis,  Sesquiterpenoid  and

triterpenoid biosynthesis, and the MAPK signaling pathway (Table S13).

3.6 | Positive selection analysis

To study the  adaptive  evolution of Q.  mongolica,  we identified positively  selected  genes

based on the results of gene family clustering. Evidence for positive selection was found for

38 genes (FDR < 0.05), of which 34 genes were annotated with potential functions using the

Swissprot  database  (Table  S14).  Among  them,  we  identified  the  LpxB and  LpxC5 genes

encoding key enzymes in the biopolysaccharide biosynthesis pathway (Li et al., 2011), which

may be involved in the regulation of plant immune response to pathogens  (Newman et al.,

1997; Dow et al., 2000; Zeidler et al., 2004; Shang-Guan et al., 2018); the pyridoxal reductase

1 (PLR1) gene encoding a key enzyme in the vitamin B6 metabolic pathway, which plays a

key role in resistance to osmotic stress (Herrero et al., 2011); and the switch subunit 3 (SWI3)
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gene encoding a positive regulator of ABA signaling  (Saez et al., 2008) that participates in

resistance to abiotic stress. The positive selection of these genes may reflect Q. mongolica’s

outstanding resistance to disease, cold, and drought, and accordingly, this knowledge may be

helpful in guiding future improvements in related species.

3.7 | Wood formation genes in Q. mongolica

Wood formation is an important biological process occurring in woody plants, so here we

focused on analyzing the genes involved. Wood mainly consists of cellulose, hemicellulose,

and lignin. In Q. mongolica, we annotated 30 gene families involved in cell wall formation,

including 19 gene families involved in cellulose and hemicellulose biosynthesis, and 11 gene

families involved in lignin synthesis (Table S15). According to statistics, a total of 403 genes

were related to cellulose and hemicellulose biosynthesis, including 34 cellulose synthase-like

(CSL), 247 glycoside hydrolase (GH), 20 glucan synthase like‐  (GSL), 38 glycosyltransferase

family  8 (GT8),  9  reversibly  glycosylated  polypeptides (RGP),  5  xyloglucan

fucosyltransferase (XFT),  45  xyloglucan  glucosyltransferase (XGT)  and  5  xyloglucan

xylosyltransferase (XXT)  genes.  In  addition,  a  total  of  93  genes  were  involved  in  lignin

synthesis, including 4 4-coumarate:CoA ligase (4CL), 2 p-coumarate 3-hydroxylase (C3H), 3

Trans-cinnamate-4-hydroxylase (C4H),  17  cinnamyl  alcohol  dehydrogenase (CAD),  16

caffeoyl-CoA 3-O-methyltransferase (CCoAOMT),  4  cinnamoyl  CoA reductase  (CCR),  11

caffeic  acid  O-methyltransferase (COMT),  4  ferulate  5-hydroxylase (F5H), 1

hydroxycinnamoyl-Coenzyme  A  shikimate/quinate  hydroxycinnamoyltransferase (HCT),  26

Laccase and 5 phenylalanine ammonia-lyase (PAL) genes. Simultaneously, we also annotated
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403 genes and 402 genes related to cellulose and hemicellulose biosynthesis in Q. robur and

P. trichocarpa, as well as 87 and 86 genes involved in lignin biosynthesis. Compared with A.

thaliana, these three woody plants had more genes involved in lignin biosynthesis and fewer

genes involved in cellulose and hemicellulose biosynthesis, which was consistent with the

botanical classification and use of these species. In these three woody plants, the total number

of genes in gene families was similar,  but the number of genes in each gene family was

different.  Phylogenetic  analysis  showed  that  there  were  more  GSL,  XGT genes  in  Q.

mongolica than that in  Q. robur  and P. trichocarpa, more  CSL and  RGP genes  in  Q.robur

than in Q. mongolica and P. trichocarpa (Figure 3 and Table S15). For the number of genes

in the  GT8 gene family, more in  P. trichocarpa than in  Q. mongolica  and  Q.robur (Figure

S8). For GH orthologs, Q. mongolica contained the largest number of GH3, GH5, GH10 and

GH35 genes, Q.robur contained more GH18 and GH27 genes, while P. trichocarpa had more

GH9, GH16, GH17 and GH28 genes than Q. mongolica and Q.robur (Figure S9). The wood

of  Q. mongolica and  Q. robur is  harder  than that  of  P. trichocarpa,  which are excellent

materials  for  making  vehicles,  ships,  buildings  and  furniture.  The  total  number  of  genes

involved in lignin synthesis of Q. mongolica and Q. robur was slightly more than that of P.

trichocarpa, especially CCoAOMT and COMT genes, while the opposite trend was observed

for CCR genes (Figure S10). In conclusion, although wood formation processes are common

in woody plants,  each species has its  own unique formation process,  which also leads to

differences in final products.

3.8 | Transcription factor analysis
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Transcription factors (TFs) are molecules involved in regulating gene expression which is

vital for the normal development of an organism, as well as for routine cellular functions and

response to disease. The WRKY transcription factors (TFs) are one of the largest families in

higher plants and are found throughout the green lineage (Ulker & Somssich, 2004). They are

involved  in  plant  defense  regulatory  networks,  including  response  to  various  biotic  and

abiotic stresses. A total of 88 WRKY genes were annotated in Q. mongolica, which was more

than the ones found in Arabidopsis thaliana. The phylogenetic analysis (Figure 4A) indicated

that these genes can be divided into three large groups corresponding to the group I, II and III,

as was first defined in Arabidopsis thaliana by Eulgem et al. (Eulgem et al., 2000). 

NAC proteins constitute one of the largest families of plant-specific transcription factors,

and the family is present in a wide range of land plants. The structure of NAC transcription

factors is distinct and their functions are diverse. NAC transcription factors have a variety of

important functions not only in plant development but also in abiotic stress tolerance. A total

of  124 genes  were  annotated  in  Q. mongolica, which  is more than  the  ones  found in  A.

thaliana. Phylogenetic analyses indicate that six major groups of NAC transcription factors

were already established in Q. mongolica (Figure 4B).

3.9 | Whole-genome duplication analysis 

Paralogous gene pairs within the genomes of Q. mongolica, Q. robur, P. trichocarpa and V.

vinifera were detected based on their protein sequences and the fourfold synonymous third-

codon transversion (4DTV) value for each gene pair was calculated. Plotting the 4DTV values

for the paralogous gene pairs revealed two peaks in both Q. mongolica and Q. robur (Figure
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5) indicating that Q. mongolica and Q. robur not experienced lineage-specific whole-genome

duplication expect for the ancestral  triplication shared among the eudicots (γ) which were

consistent with a previous report (Plomion et al., 2017). The peak appeared at 4DTV values of

0.4770, 0.4375, 0.0758 and 0.4186 in Q. mongolica, Q. robur, P. trichocarpa and V. vinifera,

respectively. The results show that the time of whole-genome duplication in  Q. mongolica

was earlier than those in Q. robur, P. trichocarpa and V. vinifera.

4 | CONCLUSIONS

Here we assembled a chromosome-level reference genome of  Q. mongolica  based on the

combination  strategy  of  Illumina  short-read,  PacBio  long-read,  and  Hi-C  sequencing

technology. This is the first report of the high-quality genome of Asian oak. Details of genome

structure and function provide further insights into the phylogenetic diversity of oaks. This

genome not only provides an important resource for revealing the biological characteristics

and  evolutionary  adaptability  of  Q.  mongolica,  but  also  contributes  to  the  study  of  the

taxonomy, evolution and conservation of Quercus species.
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FIGURE 1 Photograph and genome features of the Quercus mongolica. Photograph of the Q.

mongolica (A) and its male flowers (B), leaf (C), female flowers (D) and fruits (E) (photo:

Wanfeng Ai). (F) The chromosomal features of the  Quercus mongolica  were Chromosome

size with units in Mb, GC content, TE density and gene density from outer to inner rings.

Lines  in  the  center  linking  different  chromosomal  regions  show  the  syntenic  blocks  on

homologous chromosomes.
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FIGURE 2 The Gene family clustering in Quercus species and the expansion and contraction

of gene families. (A) Venn diagram of the protein-coding orthologues shared among Quercus

lobata,  Quercus robur,  Quercus suber and  Quercus mongolica. Each number represents the

number of gene families; (B) The expansion and contraction of gene families for 13 plants.

The blue number indicates the number of expanded gene families,  while  the red number

indicates the number of contracted gene families.
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FIGURE  3 Phylogenetic  analysis  of  genes  involved  in  cellulose  and  hemicellulose

biosynthesis  in  Quercus mongolica, Quercus  robur,  Populus trichocarpa and Arabidopsis

thaliana. (A)  Glucan synthase-like (GSL); (B)  Xyloglucan galactosyltransferase (XGT); (C)

Cellulose synthase-like (CSL); (D) Reversibly glycosylated polypeptides (RGP). 
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FIGURE 4  Phylogenetic  tree showing the evolutionary relationship of  WRKY and NAC

genes in Quercus mongolica (blue) and Arabidopsis thaliana (red). (A) WRYK; (B) NAC.

FIGURE 5  Four-fold synonymous third-codon transversion (4DTV) for each homologous

gene pair for Quercus mongolica, Quercus robur, Populus trichocarpa and Vitis vinifera.
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Table 1 Summary of genome and transcriptome sequencing information for Quercus mongolica.

Library type Sequencing platform Insert size Clean data (Gb)
Sequence

coverage (×)

DNA library
Illumina HiSeq X Ten 350bp 105.20 124.80 

PacBio Sequel II 20kb 86.90 103.10 
Hi-C Illumina HiSeq X Ten 300-500bp 102.20 121.80 

RNA library PacBio Sequel II 4kb 20.70 25.00 

Table 2 Statistics for assembled genome information of Quercus mongolica.

Category Q. mongolica genome

Estimate of genome size(Mb) 842.80 

Assembly size (Mb) 809.83 

Total number of contigs 735

Contig N50  length (bp) 2,446,788

Total number of scaffold 321

Scaffold N50 length(bp) 66,735,633

 GC content (%) 35.84

% sequence anchored on chromosome 95.65

Number of protein-coding genes 36,533

Repeat content (%) 68.46
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